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ABSTRACT: The shale deposits of Damodar Valley have received great attention since preliminary
studies indicate their potential for shale gas. However, fundamental information allied to shale gas re-
servoir characteristics are still rare in India, as exploration is in the primary stage. In this study, Ba-
rakar shale beds of eastern part of Jharia Basin are evaluated for gas reservoir characteristics. It is
evident that Barakar shales are carbonaceous, silty, contains sub-angular flecks of quartz and mica,
irregular hair-line fractures and showing lithological variations along the bedding planes, signifying
terrestrial-fluviatile deposits under reducing environment. The values of TOC varies from 1.21 wt.%
to 17.32 wt.%, indicating good source rock potentiality. The vitrinite, liptinite, inertinite and mineral
matter ranging from 0.28 vol.% to 12.98 vol.%, 0.17 vol.% to 3.23 vol.%, 0.23 vol.% to 9.05 vol.%,
and 74.74 vol.% to 99.10 vol.%, respectively. The ternary facies plot of maceral composition substan-
tiated that Barakar shales are vitrinite rich and placed in the thermal-dry gas prone region. The low
values of the surface area determined following different methods point towards low methane storage
capacity, this is because of diagenesis and alterations of potash feldspar responsible for pore blocking
effect. The pore size distribution signifying the micro to mesoporous nature, while Type II sorption
curve with the H2 type of hysteresis pattern, specifies the heterogeneity in pore structure mainly

combined-slit and bottle neck pores.
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0 INTRODUCTION

In the recent years, shale gas has become very important
to provide ample of hydrocarbon to balance the conventional
resources deficit. Increased growth of natural gas production
from shale gas reservoirs is due to the successful application
and advances obtained in horizontal drilling and multi-stage
hydraulic fracturing technologies (Shiver et al., 2015; Wang L
et al., 2015; Loucks et al., 2009; Jarvie et al., 2007; Pollastro,
2007; Montgomery et al., 2005; Curtis, 2002). Shale gas is a
natural gas (mostly methane) obtains from organically rich
shales. Shales are fine grained, clastic sedimentary rock com-
posed of mainly clay matters and tiny fragments of other min-
erals, especially quartz/mica and 2%—20% of organic matter
(Varma et al., 2015; Hardy, 2014; Brown, 2009). Methane
generated from the transformation of organic matter by bacte-
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rial action (biogenic gas) and geochemical (thermogenic gas)
processes during the burial at variable depth (Passey et al.,
2010; Claypool, 1998). Shales are the unconventional gas sys-
tem where it acts as both source and reservoir rocks for gas
mainly methane and is the store house of continuous petroleum
accumulation (Jarvie et al., 2007; Schmoker, 1995). The proc-
ess of adsorption plays an important role in unconventional
resource for the retention of gas that is ultimately cracked to
shale gas system (Jarvie, 2012). Organic matter in shale re-
sponsible for the in-situ gas generation which is stored in the
micropore structure of organic matter (Loucks et al., 2009) and
clay minerals (Varma et al., 2014; Ross and Marc, 2009;
Chalmers and Bustin, 2007). The quality of shale reservoirs
depends on their thickness and extent, organic content, thermal
maturity, depth and pressure, fluid saturations and permeability
(Mendhe et al., 2016, 2015a; Mishra et al., 2016; Ruppel et al.,
2008). In India, shale gas can emerge as an important new
source of energy. The shale gas formations are spread over in
26 sedimentary basins some of them are Jharia, Raniganj, Bo-
karo, Cambay, Gondwana, Krishna-Godavari and Cauvery
containing thick shale beds of both Gondwana and Tertiary
Period (Padhy and Das, 2013). Estimates of shale gas resources
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in India vary from 63 trillion cubic feet (TCF) by Energy In-
formation Administration and International Energy Agency
(EIA, 2012, 2011; IEA, 2007) to as high as 2 000 TCF by
Schlumberger (2012), of which the recoverable resources range
between 100 and 300 TCF.

In this paper, through investigation of shales of Barakar
Formation in Jharia Basin, India is presented. The results of
analyses like technological properties, rockeval and TOC,
maceral-mineral composition, vitrinite reflectance and low
pressure N, sorption isotherm are relatively correlated. The
depositional process of shale beds of Barakar involved multiple
weathering, erosional, transport, and alterations and basin scale
hydro-geologic circulations influenced by shifting of river
course and creation of sites for organic deposits through the
back-lake system. The studied Barakar shales are significantly
organic rich, thermally matured, contains Type III/IV kerogen,
having cylindrical, slit to bottle neck pores and encourages the
further exploration and development of shales gas in Jharia
Basin.

1 STUDY AREA—JHARIA BASIN
The Jharia Basin lies in the heart of Damodar Valley along

the north of Damodar River, located in Dhanbad District of
Jharkhand State, covering an area of 450 km® (Sengupta, 1980).
The geological map of the Jharia Basin marked with study area
and the cross section along A—A4’ is shown in Fig. 1. The base-
ment of the Jharia Basin is composed of metamorphic rocks
overlain by the Talchir Formation followed by Barakar and Bar-
ren Measures formations, which are the main shale bearing hori-
zons covering an area of about 218 km®” The Barakar Formation
comprise basal conglomerates, fine to coarse grained and pebbly
sandstones, brownish flinty rock, fire clay, shales and coal seams,
the cumulative thickness of Barakar shale beds is >100 m. The
Barren Measures include carbonaceous shale with ironstone
bands, micaceous siltstones and rarely very fine grained sand-
stones. The Barren Measure is conformably overlain by the shale
and coal bearing Raniganj sequence. The rocks of this stage
comprise fine to medium grained sandstones-greyish to greenish
in colour, siltstones, and carbonaceous shales with thick coal
seams. Shale core samples were obtained from Barakar Forma-
tion in the eastern part of Jharia Basin during exploratory drilling.

A generalized regional chrono-stratigraphic succession of Jharia
Coal Field is given in Table 1 (after Coal India Limited, 1993;
Chandra, 1992; Sengupta, 1980).
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Figure 1. Geological map of Jharia Basin (a) marked location of the study area and (b) cross section along 4—4’ central part of Jharia Basin (after Sengupta, 1980).
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Table 1 The generalized stratigraphic succession of Jharia Basin (after Coal Atlas-CMPDI, 1993; Chandra, 1992; Sengupta, 1980).
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Age Group/ Series/ Max. | Litho-type Borehole Section
Formation | Epoch Thick
ness
(m)
Tertiary to | - - Dolerites dykes mica
Lower lamprophyre dyke and sills
Jurassic
- 800 Fine  grained  sandstone,
Upper L 5 siltstones, carbonaceous and
. Raniganj £ .
Permian = grey shale with shale seams
3
o =
- 5 ) 730 Carbonaceous  shale  With | [
Middle 2 | Barren = - ) i
. S| m 28 ironstones bands, siltstones
Permian 5 easures = AR AR
= O = and sandstones AR
=DE<= 1250 | Buff coloured coarse and
Lower medium  grained felspathic
: Barakar g -
Permian -2 sandstones, grits, shale,
<
E] carbonaceous shale  and
) sandstones, shale seams
Upper Talchic 245 Fine Ag}r]alzet]i sandstones and
Carboniferous greenish shale
e
Unconformity
Meta- - Granites, granite-gneiss,
Archaean | morphics quartzite and mica-schist and
amphibolites

2 MATERIALS AND METHODS
2.1 Collection of Borehole Core Samples

In this study, total ten shale core samples were collected
from exploratory borehole in the eastern part of Jharia Basin.
The studied shale core samples photographs indicating ho-
mogenous and banded nature with visible flecks of minerals
like quartz and muscovite is shown in Table 2.

2.2 Megascopic and Litho-Band Analysis

The megascopic properties of shale core samples were re-
corded and vertical as well as horizontal photographs are illus-
trated in Tables 2 and 3. Shales are characteristically carbona-
ceous and siliceous type containing variable amounts of clay
minerals, quartz/mica flecks and the colour is varying from
black to grey. The sub-conchoidal to uneven fractured surfaces
were clearly visible in shale core samples. The detailed descrip-
tion about the colour, banding pattern, associated minerals and
fossil imprints are given in Table 3. From the detailed litho-
band analysis, the dominant lithologies observed are carbona-
ceous materials, sandstone, siltstone and intercalations and the
logs are presented in Table 2.

2.3 Technological Properties and TOC Content

The technological properties of shale/coal or rock is basi-
cally the determination of moisture, ash, volatile matter and
fixed carbon. Out of four constituent determined under this
analysis, the first three are determined experimentally in the
laboratory, while the fixed carbon is estimated by subtracting
the sum of the total of percentage moisture, ash, and volatile
matter from 100 (i.e., fixed carbon=100—(Moist.%+Ash%
+VM%). The proximate analysis was carried out following the
Bureau of Indian Standards (BIS-1350; Part I, BIS, 1995).

The total organic carbon (TOC) was measured by using a
Vinci technologies “Rock Eval 6 Plus with TOC module” in-
strument to obtain information organic matter content (as
weight percent) in the shale core samples. The preliminary
cycle of analysis consists of two steps. Firstly, the oven is pre-
set with an initial temperature of 300 °C, which increases to
650 °C at the rate of 25 °C per minute. Released hydrocarbons
are studied by a FID (Flame Ionization Detector), forming the
so-called peaks S1 (free hydro-carbons from cracking of lipids)
and S2 (hydrocarbons from thermal cracking of organic matter).
The CO and CO, released during pyrolysis can be monitored in
real time by an infrared cell. This complementary stage allows
determination of total organic carbon content of the samples
(Mendhe et al., 2016; Mishra et al., 2014).

2.4 Petrographic Analysis

For petrographic studies, the samples were air dried,
manually crushed and sieved to size 0.8 to 1.0 mm for pellet
preparation used following International Committee for Coal
and Organic Petrology (ICCP, 1998, 1995, 1993, 1973, 1963).
The maceral observation was performed on one-side polished
pellets with a Carl Zeiss, AXIO Imager M2m microscope at
CSIR-CIMFR, Dhanbad using reflected white and fluorescent
light as prescribed by ICCP (1993, 1971). All the ten shale
samples were analysed for their maceral group and clay and
mineral composition. Three major maceral groups have been
considered viz., vitrinite, liptinite and inertinite. More than
1 000 points were counted under reflectance and fluorescence
attachment with auto-petrolog point counter to have the volu-
metric composition of maceral group, maceral and mineral
matter. The volume percentage of maceral groups and mineral
matter are reported in Table 4.
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The random reflectance is measured on vitrinite maceral
in monochromatic light (wavelength: 546 nm) on Leica DM
4500P microscope, using immersion oil (refractive index:
1.518), 50% objective lens along with a pair of 10x oculars, and
Saphire (0.594) along with yttrium-aluminum-garnet (0.904)
and gadolinium-gallium-garnet (1.725) as reflectance standards
for calibration. microscope photometry system (PMT III) and
software MSP 200 is used for the random reflectance meas-
urements and data calculation.
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2.5 Low Pressure N, Sorption Isotherm

The BET method is used for measurement of adsorption
and desorption isotherm points of shale samples using nitrogen
as adsorbate at low pressure (<760 mmHg) and isothermal
condition maintained with liquid nitrogen (temperature of 77 K)
(Sing, 2001). These adsorption and desorption points are used
to obtain surface area, pore size and pore volume per mass of
the samples (Mishra et al., 2016; Mendhe et al., 2015a; Labani
et al., 2013). Quantachrome ‘AutosorbiQ™ 2MP-XR’ system
at CSIR-CIMFR has been used to measure the low pressure N,
sorption isotherm. The amount of gas adsorbed is evaluated by

Table 2 Facies type and depositional environment of Barakar Formation of Jharia Basin

Weathering/
Litholog/ Litho-banding schematic Litho-facies transport and Depos_lt_lonal
Samples depositional conditions
process
Carbonaceous | Weathering Palaeosol -
shale and restricted
composed of | pedogenesis limno-
clay, silt and with low terrestrial
uCarb. Shale organic energy onshore
matter sediments transition
14 alteration
12
10
5 |
6
41
o L
JHTS 1
Carbonaceous Fine The profusion
shale interlayered of uni-
composed of | clastic bands directional
fine to developed | currents under
medium distally in palaeosol -
u Dark grey carb shale grained low lying restricted
sandstone inter-channel limno-
8 interlayers areas of terrestrial
p containing meandering onshore
; mica flakes river under transition
' and sub- low energy
2 angular environment
0 quartz
JHTS 2
Intercalations | Laminated Laminated
containing shale of lenticular shale
fine shale to | carbonaceous | beds under
silty clastic matter with sandwiched
laminae, [low suspension| between two or
interlayered in fluvial more channels
u shale with condition | deposition from
12 T laminated | corresponding|  suspension
104 ) carbonaceous | to levee- during low
819 shale floodplain stage
61 deposits
4 4
24
0 *
THTS 3
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Table 2 Continued

Carbonaceous | Weathering Palaeosol -
shale and restricted
composed of | pedogenesis limno-
clay, silt and with low terrestrial
organic energy onshore
® Carb shale matter sediments transition
alteration
4
12 4
10 |
.
6 4
4 o
04
JHTS-4
Alternate Planner Alternative
bands of fine, channel thin lenticular
medium and multiple shale beds
coarse currents deposited
grained transport mostly from
siltstone, clay | suggesting | suspension due
ushale and organic | intercalation to velocity
sandy shale matter deposits currents
16 ¢ sa0d while coarse
41 grained
ol implies
8 { rolling of
‘j 1 beds
ol
JHTS-S
Grey shale, The The presence
silt and thin | association of | of grey shale
bands of thin with thin
carbonaceous | carbonaceous stratified
matter bands carbonaceous
indicates matter
- z:’:k transport apd deposited
4 deposition in under low
g vertical energy
104 accretion condition with
g along the river irregular
6 bank-levee | fluctuation in
44 areas of fluviall energy level
24 system
" JHTS 6

measuring the change of gas pressure. The amounts of adsorp-
tive are introduced successively with the auto system unless it
attains equilibrium corresponding to a series of single points on
adsorption. It is necessary to pay particular attention to the
choice and calibration of the pressure gauges, the verification
of adsorption equilibrium and the conditions of out gassing
(Rouquerol et al., 1999).

The autosorbiQ is based on the volume of the manifold
and hence it is regularly calibrated. The quartz rod, glass cali-
bration tube, spring, O-ring and ferrules are installed. The tem-
perature of the manifold and calibration tube stabilize at the
same temperature. The steps suggested by autosorbiQ advanced
operation software followed until the confirmation of calibra-
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tion complete. To ensure accurate temperature readings, the
temperature transducer and associated electronics are calibrated
with the help of the thermometer, thermocouple calibrator, and
calibrated resistors. All the sensors of temperature calibrated
following the command prompts on the screen of calibration
until confirmation. The pressure transducers are calibrated to
ensure accurate readings through its operating range. The 1 000
torr transducers calibrated entering current atmospheric pres-
sure while low pressure transducers are calibrated following the
prompts on the screen until confirmation.

The cell containing samples are calibrated along with filler
rod without sample (blank analysis). The cell calibration is a
blank measurement used to account for the amount of adsor-



902 Vinod Atmaram Mendhe, Subhashree Mishra, Ranjit G. Khangar, Alka Damodhar Kamble, and et al.

bate gas occupying the cell void volume during the adsorption
measurement. After calibration of equipment parts the refer-
ence material (alumina-Al,O3) having BET surface area 214.15
m?*/g was used for validation.

After satisfactory calibration of the system, about 30 to 40
mg of prepared shale samples (crushed in size of 0.8 to 1 mm)
were taken using high precision balance and samples were

allowed to outgas at 300 °C for 3 to 4 h ensuring the removal of
bound water adsorbed in the samples. Reagent grade (99.995)
N, gas was used as adsorbent at liquid nitrogen temperature
(-195.79 °C or 77.35 K), and adsorption-desorption isotherms
were obtained under relative pressures (P/Po) ranging from 0
to 0.99 (Quantachrome, 2014). Comprehensive physisorption
calculation using single and multipoint BET, Langmuir,

Table 2 Continued

Carbonaceous | Weathering Palaeosol -
shale and restricted
composed of | pedogenesis limno-
clay, silt and with low terrestrial
organic energy onshore
aCarh s matter sedime'nts transition
alteration
14 -
12
10 -
84
6 1 >
4
04
JHTS-7
Sandy and Weathering | The upward
carbonaceous | and transport coarsening
shale with under low | material states
= Sandy shale fine to suspension asymmetric
= Carb shale medium currents channel
:‘ 1 grained silt, | chiefly uni- | currents due to
o] visible tiny | directional in decline of
g ] flakes of an abundant current
61 muscovite channel fill velocity in
41 and quartz fluvial system
01
JHTS-8
Sandy shale Laminated | Massive sandy
with coarse striations shale with
grain of indicating stratified
muscovite, regular laminations of
quartz and geometry feldspathic
feldspar, in indicates laths suggests
# Sandy shale between sediment differential
discrete deposited ina| transport in a
:f ] laminae of vertical channel due to
2 ] very thin accretions | fall in energy
10 1 dispersed under fluvial | of deposition
81 organic system
f | : matter
ol
JHTS-9
Carbonaceous | Weathering Palaeosol -
shale and restricted
composed of | pedogenesis limno-
shakgeyabdale | olay siltand | with low terrestrial
organic energy onshore
10 matter sediments transition
8 - alteration followed by
6 ] with reducing | fluvial system
N environment
0l
JHTS-10
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Table 3 Megascopic and technological properties of Barakar shales in Jharia Basin

Sample Depth Rock Ash ™M VM FC S1 S2 Tnax TOC HI Physical properties

No. (m) type Wwt.%)  (wt.%) (wt.%) (Wt.%) (Wt.%)

JHTS-1 102.50 Carbona- 73.04 0.77 10.68 1551 327 21.14 462 17.32 122 Black to grey, sub-conchoidal to
ceous shale uneven fracture, fossil imprints

JHTS-2 72.50 Carbona- 86.31 1.32 8.33 4.04 079 982 454 6.81 144  Dark grey, massive, uneven fracture,
ceous shale mica and quartz flecks

JHTS-3 60.50 Banded 80.71 1.37 10.5 7.42 0.92 4.82 436 9.36 51 Alternative bands of silt and clay,

shale uneven fracture, fossil imprints, fine

grained mica, feldspar and quartz

JHTS-4 116.00 Shale 75.10 1.12 10.88 1290 227 20.54 468 14.65 140  Laminated alternate bands of silt and
clay, flecks of mica and quartz

JHTS-5 1450  Sandy shale  88.07 1.23 791 2.79 0.49  1.82 364 3.15 58  Dark grey, alternate band of carbo-
naceous material, silt and clay, flecks

of mica and quartz

JHTS-6 122.00  Sandy-silty ~ 91.89 0.93 4.33 2.85 035 258 438 4.08 63 Uneven to sub-conchoidal fracture,
shale fossil imprints, laminated bands of

silt and sand

JHTS-7 81.50 Carbona- 76.84 1.05 10.46 11.65 1.27 18.14 466 14.25 127 Uneven to sub-conchoidal fracture

ceous shale and slicken slide

JHTS-8 84.50  Sandy shale  91.44 0.92 5.34 2.30 042 617 439 2.78 222 Uneven to sub-conchoidal fracture,
intercalations, minor grains of mica

and quartz

JHTS-9 39.50  Sandy shale  85.97 1.29 11.76 0.98 0.12 587 442 1.67 351  Light grey, intercalations in between

carbonaceous  material, uneven

fracture
JHTS- 54.50 Shale 91.14 0.62 7.73 0.51 0.18 0.29 444 1.21 24 Alternate bands of silts and intercala-
10 tions, uneven to sub-conchoidal

fracture, minor grains of mica and

quartz

S1. Free hydrocarbons in sample (mg HC/g rock); S2. remaining hydrocarbons (mg HC/g rock); Tiax. maximum temperature of pyrolysis (°C); TOC. total
organic carbon (wt.%); HI. [(S2/TOC)x100] hydrogen index (mg HC/g TOC).

Table 4 Maceral and mineral matter composition of shale core samples

Sample No.  Vitrinite  Liptinite  Inertinite Mineral matter Total mineral matter Vitrinite
(vol.%) (vol.%) (vol.%) (vol.%) (vol.%) reflectance (%)
Quartz  Muscovite  Clay
JHTS-1 12.98 3.23 9.05 12.49 6.77 55.48 74.74 1.23
JHTS-2 5.32 1.03 291 232 6.38 82.03 90.74 0.76
JHTS-3 7.34 0.17 1.80 0.36 6.10 84.23 90.69 0.85
JHTS-4 11.51 1.29 0.96 0.98 2.70 82.57 86.24 1.26
JHTS-5 1.85 0.34 0.42 1.61 2.81 92.96 97.39 0.76
JHTS-6 3.97 0.70 0.23 0.56 3.91 90.64 95.10 1.19
JHTS-7 10.89 1.33 2.34 0.38 1.09 83.98 85.44 1.02
JHTS-8 0.86 0.32 0.68 0.46 3.41 94.27 98.14 0.96
JHTS-9 0.28 0.23 0.39 10.78 0.32 88.00 99.10 0.92
JHTS-10 0.81 0.76 0.56 0.65 0.85 96.37 97.87 0.78

BJH, DFT, DR, DA and t-plot methods were carried out to 3 RESULTS AND DISCUSSIONS

determine surface area, pore size distribution and pore volume 3.1 Megascopic and Technological Properties
of shale samples (Mendhe et al., 2017a, b, 2015b; Mishra et al., The studied shale core samples obtained from Barakar
2016; Kuila et al., 2012). Formation in Jharia Basin laterally varying depth from 14.50 to

122 m, black, dull, dark to light grey in colours, typically com-
posed of variable amounts of clay/mud and minerals like quartz
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and mica flecks, however, alternate bands of silt/clay and inco-
herent amounts of minor constituents alters the colour of the
shales. The detailed description about the colour, banding pat-
tern, associated minerals, and fossil imprints are given in Table
3. The fractured surfaces of samples are sub-conchoidal to un
even. The black to grey shale results from the presence rich
carbonaceous material (organic content) and deposited in low-
energy fluvio-lacustrine waters in reducing environment. It is
accentuated that the organic-rich nature of the shale, along with
its high degree of lamination suggests anoxic waters that pro-
tected the organic material from decay, while its clay content is
high, makes the shale relatively massive, which is likely effect
on the response of the shale to hydraulic fracturing. The
megascopic photographs of the shale core samples are given in
Table 2.

Results of technological properties of shale core samples
determined following the Bureau of Indian Standard (IS:1350;
BIS, 1995) on air-dried basis is given in Table 3. It includes

B Ash{wt.%) B IM{wt.%)

100p
9o}
sof
70}
so}
sof
aof

301

Technological parameters (wt.%)

20f

JHTS-1 JHTS-2 JHTS-3 JHTS-4 JHTS-5

moisture, ash, volatile matter and fixed carbon content likely
varies from 0.62 wt.% to 1.37 wt.%, 73.04 wt.% to 91.89 wt.%,
4.33 wt.% to 11.76 wt.%, and 0.51 wt.% to 15.51 wt.%, respec-
tively. The high ash content is confirming the dominance of
minerals in the studied shale samples. The distribution of tech-
nological properties with depth of the shale core samples is
shown in Fig. 2. The values of total organic carbon (TOC) vary-
ing from 1.21 wt.% to 17.32 wt.%, signifying excellent source
rock potential, the similar observations are made by Mani et al.
(2015) for Jharia shales. The TOC ranges are similar to that of
the Chang 7 shale of Yanchang Formation Ordos Basin in China
presented by Zhao et al. (2017). The relationships between fixed
carbon with the depth show that the maturity of the shale spans
the reduction in volatile matter and raise in carbon content with
depth of burial of shale beds (Fig. 3, correlation coefficient
R?=0.274 7), which is the most widely accepted indices of ma-
turity of shale or coal. The usual decline trend of fixed carbon
with increasing ash percentage is shown in Fig. 4 (R*=0.901).

= VM (wt%) BFC(wt.%)

7 2
WA —_
A 7 4
7 7
“ 1) '4
v i 2
7 v 7
7 7 /
&~ 11 A
“ & Z
7 7 7
2] 1] 7
7 17 /
Z % 4
7 7 7
“ 7
] 7] /4
% 7 /
) 7

JHTS-6 JHTS-7 JHTS-8 JHTS-9 JHTS-10

Sample No.

Figure 2. Distribution of technological parameters in shale cores samples.
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Figure 3. Increasing trend of fixed carbon with depth.

3.2 Facies-Depositional Environment

The core samples describing litho-bands of carbon rich,
silt, clay-sericite, intercalations and sandy shales containing
coarse grained visible discrete sub-angular quartz and mica
flecks along the laminae, signifies the mode of heterogeneity,

— 16 -~
N
5 )
Z 12 O | y=-0.723x+66.93
g : R*=0.901
s 8
S | *
b=l =
o AN
K4 [ ] .
[t 5 .
0 * e
60 65 70 75 80 8 90 95 100
Ash (wt.%)

Figure 4. Declining trend of fixed carbon with ash content.

transport and depositional process for shale deposits. Table 2
shows the vertical and horizontal section of core samples de-
scribing facies type and depositional environments of Barakar
shale beds. The studied samples are placed, according to the
occurrence in borehole, elucidating low energy sediments nu-
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merously altered under reducing environment. It is found that
the massive nature of carbonaceous and silty shale presenting
profusion of uni-directional currents under palacosol-restricted
limno-terrestrial-fluivial onshore transition bedding characteris-
tics (Sen et al., 2016; Jacob et al., 1958). The significant
amount of angular to sub-angular grains of quartz makes shale
beds detrital nature may favour artificial hydrofrac during well
completion. Though, the degree of sorting is less among the
samples point towards the homogenous nature of shale beds,
therefore a larger proportion of the grains are finer-clay than
the silt and grit. The intricate microstructures, fractures and
tapered matrix resulting poor pore connectivity influenced by
osmotic effects on clays and mineral alteration (Roshan et al.,
2016; Singh, 2016).

The study of source material of Barakar shale deposits,
signifies mineral constituents are derived from granitic rocks,
however, the sericite-clay and the associated mineral grains
have been contributed by low grade metamorphic rocks during
the weathering, erosion and pre-post digenetic process, similar
opinions also noted by several authors (Chandra, 1990;
Chandra and Betekhtina, 1990). The lithofacies, weathering,
transport, depositional process and environment demonstrating
Barakar shales were sorted and deposited under quitter, irregu-
lar low energy and fluvial conditions, similar observation re-
corded by several researchers (Chandra, 1992; Casshyap and
Tewari, 1987; Tewari and Casshyap, 1982; Jacob et al., 1958).
According to Tewari and Casshyap (1983), Casshyap (1970),
the channel shaped fine grain siltstone and shale beds are the
results of attributed largely to channel shifting corresponds to
levee deposits of the meandering stream under reducing
fluviatile-fresh water conditions acted by Damodar River. Ac-
cording to Chandra (1992), during Lower Permian, the process
of river course changes created back swamp areas favourable
for coal seam deposits.

It is concluded that the content of organic matter is in-
versely proportional to sedimentation level, thus the rate of
accumulation of organic carbon were similar in carbonaceous
shale beds (USGS, 1986). However, the type of organic matter
deposits in shale beds controlled by reduction in intensity of
anaerobic diagenesis and by the influence of terrestrial organic
matter. The facies briefs the evolutionary trend of basin sedi-
ments, the cycle of weathering, erosion and sedimentation
process causing changes in composition pointed by striations
(Table 2). The chiefly clay content indicating terrestrial-fluvial
facies. According to Brooks (1952) and Grim (1947), the abun-
dance of clay minerals in shale help to concentrates organic
constituents by adsorbing the source material, consequently
behaving as catalysts in hydrocarbon generation and accumula-
tion. However, clay minerals in large shall have an impact over
porosity and permeability required for gas flow in the reservoir.
The dissolution of clay, due to diagenetic processes may block
the secondary porosity and cause the reduction in permeability.

3.3 Petrographic Controls on Reservoir

The results of petrographic analyses containing maceral
composition and mineral matter determined on volume per-
centage are exhibited in Table 4. The vitrinite, liptinite, iner-
tinite and mineral matter values are measured in the range of

0.28 vol.% to 12.98 vol.%, 0.17 vol.% to 3.23 vol.%, 0.36
vol.% to 9.05 vol.%, and 74.74 vol.% to 99.10 vol.%, respec-
tively, however, mineral matter is further subdivided into
chiefly appearing minerals like quartz, muscovite and clays
varies from 0.36 vol.% to 12.49 vol.%, 0.32 vol.% to 6.77
vol.%, and 55.48 vol.% to 96.37 vol.%, respectively. The
petrographic analysis also focused by means of the origin of the
constituents, texture-layout and distribution of grains, the de-
gree in which they fill the rock spaces, structure and orientation
of grain size and shape, pore and hair fracture space character-
istics and interconnections of empty voids. It is observed that
shales are frequently very heterogeneous during microscopy.
The micro-photographs of maceral present within the shale
samples are given in Fig. 5.

The organo-petrographic study shows vitrinite as domi-
nant maceral followed by inertinites and liptinites with inor-
ganic minerals like quartz, muscovite, pyrite and clays
(kaolinite/sericite). The usually observed inertinites are
funginite, semifusinite and fusinite, while the inputs of liptinite
maceral like alginite and sporinite pointing towards proneness
of gas genesis potential of shale. The macerals of vitrinite
group such as tellinite (Fig. 5g), collotellinite, and vitroderinite
are differentiated on the basis of the presence and absence of
the textural features structures and their size. The macerals
collotellinite is homogeneous in appearance whereas tellinite
shows well preserved cell structures where cell lumens are
either filled with colliniteor clay minerals. When collotellinite
occurs in particulate form (<10 pm in size> it is characterised
as vitrodetrinite (Taylor et al., 1998) (Fig. 5a). Liptinite macer-
als are characterized by dark gray to black colour in low rank
shale with distinct morphology (Fig. 5d). The liptinite macerals
are sporinite, alginite, and liptodetrinite. It is characterized by
more or less lens shaped in section perpendicular to the bed-
ding cavity appear as thin line, size of sporinite can vary from 5
to 350 pum. Inertinite is branded by well-preserved cell struc-
ture and shape of cavities vary in size and shape being more
commonly round, oval or elongated, yellowish white to white
colour with very high reflectance and strong relief (Figs. Sc,
Se). The macerals emifusinite distinct as a stage between fusin-
ite and telocollinite/collotelinite, cell structure is less well de-
fined as compared to fusinite (Fig. 5b).

The maceral composition of the shale has been studied in
detail, in order to obtain a microfacies classification and to
deduce palaco-environments during shale deposition. The
volumetric percentages of the three maceral groups, vitrinite,
inertinite and liptinite are presented in ternary diagram (Fig. 6)
in order to provide the fundamental information on thermal
maturity. It is substantiated that Barakar shales of Jharia are
vitrinite rich and placed in thermal-dry gas prone region, Type
IV kerogen (Fig. 6) (Mendhe et al., 2016; Mishra et al., 2016;
Hakimi et al., 2013; Tissot and Welte, 1978).

The amalgamation of diagenetic and depositional condi-
tions revel heterogeneity in shale beds mineralogy controlling
the percentage of clay, quartz, feldspar, muscovite and other
detrital mineral grains. The ternary plot of mineral distribution
illustrating weathering pattern of Barakar shale beds in Jharia
and likely influence on porosity and permeability as given in
Fig. 7. The studied shale samples belong to high porosity and



906 Vinod Atmaram Mendhe, Subhashree Mishra, Ranjit G. Khangar, Alka Damodhar Kamble, and et al.

¥ aamue

\\\\\\Cf

\'\1\\‘“‘( % 3 a L.

Figure 5. Micro-photographs of Barakar shale core samples of Jhraia Basin. (a) Collotelinite-vitrodetrinite and macrinite (JHTS-1); (b) fusinite bounded by
clay and disbursed organic matter (JHTS-1); (c) semifusinite showing elongated pores (JHTS-1); (d) sporinite-liptodetrinite imbedded in vitrinite and clay/mud
(JHTS-2); (e) fusinite with distinct hexagonal pore filled with clays/muds (JHTS-2); (f) collotellinite laths interbred by micrinite and clays in ground mass
(JHTS-4); (g) telinite with elongated macro- and meso-pores (JHTS-4); (h) funginite and disbursed vitrinite (JHTS-7).
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of Jharia are placed in thermal-dry gas prone region. and permeability based on weathering pattern of deposition.
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very low permeability pointing towards dominance of clay and
silts. The formation of shale beds containing chiefly clays from
granitic and feldspathic rocks occurred in Damodar Valley
Basin is the result of multiple weathering, erosional, transport,
alteration during post depositional process and basin scale
hydro-geologic circulation, Several authors reported that the
secondary alteration and dissolution affects the porosity and
permeability through blocking effects (Person et al., 1996;
Winstch et al., 1995; Moore et al., 1982).

The contribution of different macerals in total organic
content shown in Fig. 8, indicating positive correlations with
the macerals however, vitrinite content largely contributing in
TOC as well as in types III and IV kerogen. It is concluded that

thermally matured vitrinite and inertinite are the major source
of gas generation and the potential source rock (Wei et al.,
2016; Mastalerz et al., 2012a). The negative correlation of TOC
and clay content (R>=0.641) shown in Fig. 9 implies that sedi-
mentation of clays occurred mostly by change in channel posi-
tion, which affects continuity of organic deposits at the similar
location while enhances the degree of decomposition of organic
matter as a result TOC preservation diminishes. However, large
amount of clays derived from K-feldspar causing reduction of
permeability, because of intensive early and post diagenetic
carbonate and silicates cementations. Hence, it is interpreted
that organic matter content significantly affected during altera-
tion of hydrocarbon compounds influenced by terrestrial
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Figure 9. Relation of total organic content with clay content.
hydrologic cycles (Uysal et al., 2004).

3.4 Pore Facets and Their Implications on Methane Stor-
age

The low pressure N, sorption isotherm is used to deter-
mine the amount of gas adsorbed and desorbed at different
relative pressure (P/P,), where P is the gas vapour pressure in
the system and P, is the saturation pressure of adsorbent. The
Quantachrome Autosorb system has given the adsorption iso-
therm points by measuring nitrogen adsorbed quantity and the
equilibrium pressure, while desorption isotherm obtained by
measuring the quantities of released from the sample as the
relative pressure is lowered. The adsorption isotherm curves
are grouped into five types (types I to V) (Quantachrome, 2014;

Brunauer et al., 1940, 1938). The results of surface area, pore
size and pore volume obtained through low pressure N, sorp-
tion isotherm is given in Table 5.

The surface area determined by methods like multipoint
BET, Langmuir, BJH, DFT and DR is varying from 2.60 to
11.31, 4.40 to 19.28, 1.57 to 4.99, 1.98 to 8.60, and 2.08 to
11.85 m%g, respectively (Figs. 13 and 15). The pore size dis-
tribution obtained using BJH, DFT, DA, DH, DR and average
pore diameter ranges from 2.98 to 3.95, 3.92 to 3.97, 1.58 to
1.84, 2.98 to 3.95, 1.45 to 1.94, and 6.12 to 11.01 nm, respec-
tively (Table 4), indicating that the studied Barakar shales are
mostly mesoporous. According to IUPAC (1997) pore size
classification is such as micropore <2 nm, mesopore 2—50 nm
and micropore diameter >50 nm. The low pressure N, sorption
curve obtained (Fig. 11) have been correlated with different
types of hysteresis loops illustrated by de Boer (1958), Labani
et al. (2013) (Fig. 10). Type A hysteresis corresponds to cylin-
drical pores; Type B is related to slit-shaped pores; types C
and D hysteresis are attributed to wedge-shaped pores, and
Type E hysteresis is produced by bottle neck pores.

It may be observed that low pressure N, isotherms are
mostly Type II curve and shows H2 type of hysteresis pattern
(Fig. 11). Type II curve shows presence of non-porous to
macro-porous adsorbent and also indicate both monolayer-
multilayer adsorption. The hysteresis H2 pattern represents the
presence of dis-ordered and the distribution of pore size and
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shape is not well defined. Hence, the observation shows that
Barakar shales are heterogeneous in nature for their pore struc-
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Figure 10. Different types of hysteresis pattern representing their pore geometrical shapes (after Labani et al., 2013; de Boer, 1958).
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Figure 11. Low pressure N, sorption isotherm of Barakar shale core samples (a) cylindrical-type A; (b) large spaced open slit pores-type B; (¢) cylindrical-type
A; (d), (e) and (f) bottle neck-type E.
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Figure 12. Multipoint BET plots for surface area determination of shale core samples.

adsorbed, hence surface area get reduced (Mendhe et al., 2017a,
2015b). The size of pores increases with increase in overburden
pressure, specifying basin tectonics and re-structuring account-
able for creation of secondary or meso to macro pores in shale
beds (Fig. 15¢) (Chalmers and Bustin, 2007). This leads to
reduction in pore volume, because larger pores have less pore
volume compared to smaller pores (Fig. 15d) (Mendhe et al.,
2017a, b; Mishra et al., 2016).

3.6 Controls of Thermal Maturity

The vitrinite reflectance is the maturity parameter used for
coal or shale dispersed organic matter for evaluation of source
rock, relating to transformation of kerogen due to temperature
effects (Pophare et al., 2008; Durand et al., 1986). The results
of vitrinite reflectance measured randomly varies from 0.76%
to 1.26%, signifying thermally matured shales prone for dry
gas genesis (Mendhe et al., 2016; Mishra et al., 2016; Varma et
al., 2015). The plot of vitrinite reflectance and varying depth is
given in Fig. 16a, illustrating excellent correlation (R>=0.710 8)

suggests that like coal, shale beds carbonaceous matter also
controlled by depth of occurrence. As a result, deeper shale
beds are relatively less weathered and preserved organic matter
functioned as gas genesis source. The positive correlation of
TOC and vitrinite reflectance (R*=0.389 3) pointing usual trend
of matured material containing higher organic carbon (Fig. 16b)
(Mendhe et al., 2017c, d). Figure 16¢ shown the very good
negative correlation of surface area and VRo (R’=0.606 6),
indicating influence of vertical stresses and thermal maturity
compacted the shale beds in massive form, destroyed pore
structures, fractures and free spaces. However, size of pore
increases with vitrinite reflectance, implies thermal cracking of
kerogen and repulsion of volatiles generated larger mesopores
of size 2.98 to 3.95 nm (Fig. 16d). The plot of S2 vs. TOC
shows that hydrocarbons released is characterized as domi-
nantly presence of Type III/IV gas-prone kerogen in the Bara-
kar shales (Fig. 16e), similar interpretations also recorded by
Mani et al. (2015). The values of Ti,,, ranges between 364 to
468 °C (Table 3), signifying matured source rock, except Sam-
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ple JHTS-5 obtained from least depth (14.50 m). Figure 17f,
shown Tp.x vs. HI of shale samples, demonstrating condensate-
wet to dry gas window and hence falling within mature stage
(Mendhe et al., 2017a; Mani et al., 2015; Varma et al., 2015).

3.7 Controls of TOC on Pore Features

The multipoint BET surface area and pore volume showed
weak negative correlation with TOC (R’=0.285 2 and 0.280 8),
signifying that the organic matter content does not play major
role in the of storage gas in the studied shale samples (Figs. 17a
and 17b). The decline of surface area may be due to the abun-
dance of disintegrated minerals, although, sudden increase in
temperature and pressure caused cracking of organic matter and
destruction of pores which would have reduced the association
of organic pores in surface area (Mendhe et al., 2017a, b, c, d;
Li et al., 2016; Wang M et al., 2015; Curtis et al., 2012). The
relationship between pore size and TOC content showed the
collective trend (R>=0.532 4) (Fig. 17¢) suggesting that thermal
evolution of organic matter affects the complexity and hetero-
geneity of pore size and structures, as a results pore size in-
creases (Fu et al., 2017; Li et al., 2016). The pore volume
mostly dependent on pore size and structures shale beds influ-
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enced by organic and inorganic matter. Figure 17d, emphasized
that fixed carbon do not contribute to smaller pore formation
compared to clay and other minerals.

4 SUMMARY AND CONCLUSION

The Barakar Formation of Jharia Basin have been evalu-
ated for shale gas reservoir characteristics focusing on organo-
petrographic and pore facets controlled by depositional envi-
ronment and different geological parameters. The black to grey
shale bed of Barakar Formation resulted from low-energy
fluvio-lacustrine waters in reducing environment containing
high carbonaceous material (organic content). However, high
degree of lamination suggests anoxic waters that protected the
organic material from decay, though high clay content makes
the shale relatively massive, whereas moderate quartz content,
likely make the shale beds brittle and may favour during hy-
draulic fracturing. The volatile matter reduction and increased
in TOC content with depth have been observed. The maceral
composition based facies substantiated that Barakar shales of
Jharia are vitrinite rich and placed in thermal-dry gas prone
region. The shale beds of Barakar Formation are the results of
multiple weathering, erosional, transport, and alteration during
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Figure 13. Estimation of pore size distribution in shale core samples by BJH method.
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Figure 14. DFT plots for determination of surface area, pore size and pore volume of shale core samples.
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and the distribution of pore size and shape is not well defined.
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pores and encourages the further exploration and development

of shales gas in Jharia Basin.
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