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China, consists of Meso-Neoproterozoic granitoids and Paleo-
zoic strata, granite and basalt along with Mesozoic volcanic 
and sedimentary rocks (Wu et al., 2011; Zhou et al., 2011; Ge 
et al., 2007a, b, 2005; HBGMR, 1993). The Xing’an Block is 
located in the southeastern part of the Ergun Block, consists of 
Neoproterozoic and Paleozoic strata, granitoids, metabasalt and 
gneiss with huge amount of Mesozoic volcanic and granitic 
rocks and sedimentary rocks (Zhang et al., 2008; Miao et al., 
2007, 2003). The Songnen Block is in the central part of the NE 
China, composes mainly of Songliao Basin, Zhangguangcai 
Range and the Lesser Xing’an Range. The basement of the 
Songliao Basin is weakly metamorphosed, the cover sedimen-
tary is only Paleozoic strata, and a few Proterozoic granitoids, 
according to the drill holes data (Gao et al., 2007; Wang et al., 
2006; Wu et al., 2001). The Jiamusi Block consists mainly of 
Mashan complex, Heilongjiang complex and Early Paleozoic 
granitic intrusions. The Mashan complex is related to the Early 
Paleozoic metamorphic event; the Heilongjiang complex con-
sists mainly of blueschist, ultra-mafic rocks, metamorphosed 
pillow lava and marbles (Wilde et al., 2003, 1997). 

Toudaoqiao blueschist occurs along the Xinlin-Xiguitu 
suture in the northern part of the Xing’an Block (Fig. 1). As 
known, the boundary between the Ergun Block and Xing’an 
Block, is a controversy for a long time. There are mainly two 
models (Fig. 1b). One is that the Derbugan fault is the boundary. 

There is clear geophysical evidence showing the different cha-
racteristic gravity anomalies between the east side and west 
side of the Derbugan fault (HBGMR, 1981), but there are no 
occurrence of ophiolite or blueschists. The other model is that 
Xinlin-Xiguitu suture is the boundary, which is distinguished 
by the Xinlin ophiolite, in the eastern part of the suture (Li, 
1991), and Toudaoqiao blueschist in the northwest part of the 
Xing’an Block.  

The outcrop in the Toudaoqiao area is very poor and cov-
ered with heavy forest. It consists mainly of Neoproterozoic to 
Paleozoic strata, Late Paleozoic and Mesozoic granites together 
with huge amounts of Mesozoic acidic to basic volcanic rocks 
and mélange (Fig. 1c; HBGMR, 1981). The mélange is com-
posed of blocks of Ordovician, Lower Devonian and Lower 
Carboniferous breccias. Blueschist accompanied by pelitic 
schist occur to the south of the Toudaoqiao Village, all the me-
tamorphic rocks have a NE-SW trend (HBGMR, 1981). The 
blueschist and associated metamorphic rocks are bounded by 
Jurassic volcanic rocks to the northwest with a high angle fault 
contact, and to the southeast they are covered by Quarternary 
deposits.  

Three samples of blueschist (TD7, TD9 and TD13) and 
one sample of pelitic schist (TD6) were collected for this study 
(Fig. 1c).

 

 

Figure 1. Simplified geological maps of the study area. (a) Geotectonic map of the eastern Asia (Wu et al., 2007); (b) Geological map of NE China showing the 

main continental blocks, boundary suture and faults (after Wu et al., 2007); The location of study area is shown by solid star and the location of Xinlin ophiolite 

is shown by solid circle; (c) Geological map of the Toudaoqiao area (after Heilongjiang Bureau of Geology and Mineral Resources, HBGMR, 1981).  
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2  PETROGRAPHY OF BLUESCHISTS AND PELITIC 
SCHISTS 

Blueschist sample TD13 consists mainly of amphiboles 
(sodic and sodic-calcic amphiboles) (20%–25%), epidote 
(10%–15%), phengite (5%), chlorite (30%–35%), albite (15%) 
and quartz (5%) (Fig. 2a). Titanite, hematite, calcite and apatite 
are present as accessory minerals. Schistosity is defined by 
prefered orientation of amphibole and chlorite. Amphibole 
occurs as subhedral prismatic crystal with size up to 0.5 mm 
long. It contains inclusions of epidote, chlorite, titanite, rutile 
and hematite (Fig. 2e). It is partly replaced by chlorite along the 
rim and crack (Figs. 2e and 2g). Some amphiboles are optical 
zoned with winchite core, magnesioriebeckite/glaucophane rim 
and winchite outermost rim (Fig. 2a). Phengite appears as an-
hedral platy crystal up to 0.2 mm long. Epidote occurs as anhe-
dral rounded grain with size up to 0.1 mm across. Chlorite is 
euhedral to subhedral, with size up to 0.3 mm across. Albite is 
subhedral to anhedral, and its size is up to 0.5 mm across.  

Blueschist sample TD7 consists mainly of amphibole 
(sodic and sodic-calcic amphiboles) (10%–15%), epidote 
(10%–15%), albite (10%), phengite (5%), chlorite (35%–40%), 
quartz (5%), calcite and titanite with minor amounts of hema-
tite. Amphibole occurs as subhedral prismatic crystal with size 
up to 0.2 mm long. It contains inclusions of amphibole (kata-
phorite and barroisite) as a relic of the precusor metamorphic 
event. Some amphiboles are optical zoned with winchite core 
to magnesioriebeckite rim, accasionally with winchite outer-
most rim (Fig. 2b). 

Blueschist sample TD9 consists mainly of chlorite 
(20%–25%), epidote (5%–10%), amphibole (sodic amphibole) 
(10%–15%), quartz (5%), albite (35%–40%), hematite, apatite 
and titanite. Amphibole occurs as euhedral prismatic crystal 
with size up to 0.3 mm long. Epidote occurs as anhedral 
rounded grain with size up to 0.1 mm across. Chlorite is euhe-
dral to subhedral, and its size is up to 0.3 mm across (Fig. 2c). 

Pelitic schist sample TD6 consists mainly of phengite 
(20%–25%), albite (5%), chlorite (25%–30%) and quartz 
(35%–40%). Hematite, calcite, apatite and carbonaceous ma-
terial are present as accessory minerals. Schistosity is defined 
by phengite and chlorite. Phengite occurs as anhedral platy 
crystal up to 0.3 mm long. Chlorite is subhedral, with size up to 
0.4 mm across. Albite is subhedral to anhedral, and its size is 
up to 0.5 mm across (Fig. 2d). 

 
3  MINERAL CHEMISTRY 

The chemical compositions of minerals were analyzed us-
ing a JEOL JXA-8800 electron microprobe analyzer at the de-
partment of Geoscience, Shimane University. The analytical 
conditions were as follows: accelerating voltage, 15 kV; probe 
current, 2×10-8 A; and probe diameter, 5 μm. The representative 
mineral chemical compositions are shown in Table 1. Abbrevi-
ations of the minerals and end-members used in the figures and 
tables are followed Kretz (1983).  
 
3.1  Amphibole 

For Fe3+ estimation of the amphibole, a normalization 
factor of 13eCNK (O=23) was used, and the classification of 

amphibole was referred from Leake et al. (1997). 
Amphiboles are classified as magnesioriebeckite, winchite 

and a little amount of glaucophane (Figs. 3a and 3c). Magnesi-
oriebeckites are found in the matrix of each blueschist samples 
and rims of the zoning amphiboles, winchites are found in the 
core and outermost rim of sample TD13 and TD7, glauco-
phanes are found in sample TD13 and TD9. Amphiboles in 
blueschist sample TD7 and TD13 are commonly zoned with 
winchite core and magnesioriebeckite/glaucophane rim (Fig. 
2e), occasionally accompanied by outermost rim of winchite 
(Figs. 2f–2h). The cores of the zoned amphiboles have compo-
sitions of winchite with Si=7.50–7.83 apfu, NaB=0.55–1.46 
apfu, AlVI=0.13–0.56 apfu, XMg[=Mg/(Mg+Fe2+)] =0.55–0.95, 
the rims have compositions of magnesioriebeckite and glauco-
phane with Si=7.83–7.96 apfu, NaB=1.52–1.79 apfu,      
AlVI=0.20–0.94 apfu, XMg=0.54–0.64, the outermost rims have 
compositions of Si=7.83–7.92 apfu, NaB=0.80–1.49 apfu,   
AlVI=0.09–0.40 apfu, XMg=0.61–0.62. The Si content in the 
zoned amphiboles of sample TD13 shows a little increase, then 
decrease, NaB content shows dramatic increase, then decrease, 
AlVI content shows dramatic increase, then decrease, XMg is 
continuous from core to outermost rim (Fig. 3b). 
 
3.2  Phengite 

Phengites in blueschist sample TD13 have high Si con-
tents ranging from 6.67 to 6.98 apfu (O=22), and 
XNa[=Na/(Na+K)] ranging from 0.010 to 0.038, (Fe+Mg) con-
tents ranging from 1.29 to 1.74 apfu. Phengites in blueschist 
sample TD7 have a little higher Si contents (6.78 to 7.09 apfu) 
than those in sample TD13, XNa ranges from 0.01 to 0.042, and 
(Fe+Mg) contents ranges from 1.25 to 1.70 apfu. Phengites in 
pelitic schist also have high Si contents ranging from 6.68 to 
6.93 apfu, and XNa ranging from 0.002 to 0.039, (Fe+Mg) con-
tents ranging from 1.09 to 1.70 apfu (Fig. 3d). 

 
3.3  Epidote 

Epidotes are commonly homogeneous, XPs=Fe3+/(Al+Fe3+) 
ranges from 0.31 to 0.35. Some zoned epidotes show XPs 
slightly decreasing from core to rim. 

 
3.4  Chlorite 

Chlorites in blueschist are characterized by compositions 
with Si contents ranging from 5.46 to 6.36 apfu and 
XMg[=Mg/(Mg+Fe2+)] of 0.38–0.45. Chlorites in pelitic schist 
have compositions with Si contents ranging from 5.56 to 6.03 
apfu and XMg of 0.49–0.52. 

 
4  MINERAL PARAGENESIS AND P-T ESTIMATIONS 
4.1  P-T Estimation for the Blueschist Sample TD13 

Based on the texture and chemical compositions of the 
constituent minerals, the metamorphism of the blueschist sam-
ple TD13 is divided into three stages, i.e., the prograde, peak 
and retrograde stages. The P-T evolution of blueschist is con-
structed from the zoned amphiboles that show zoning from 
winchite core to magnesioriebeckite/glaucophane rim, then 
winchite outermost rim. 
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Figure 2. Photomicrographs and Back-scattered electron images of the Toudaoqiao blueschist. (a) Mineral compositions of Sample TD13. Some amphiboles are 

optical zoned. (b) Mineral compositions of Sample TD7. Some amphiboles are optical zoned. (c) Mineral compositions of Sample TD9. (d) Mineral composi-

tions of Sample TD6. (e) Zoned amphibole coexisting with epidote, phengite, chlorite, albite and hematite, the winchite core has inclusions of chlorite and 

epidote (TD13); (f), (g) and (h) Zoned amphibole with winchite core, magnesioriebeckite/glaucophane rim and winchite outermost rim (TD13). Abbreviations: 

Amp. amphibole; Ab. albite; Chl. chlorite; Ep. epidote; Mus. muscovite; Mrb. magnesioriebeckite; Win. winchite; Phg. phengite; Hem. hematite. 
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Table 1  Microprobe analyses of major minerals from the Toudaoqiao blueschists and pelitic schist 

  Amp                       

  TD13               Outermost
rim 

  TD9     

  Matrix       Core   Rim     Matrix     

SiO2 (wt.%) 52.25 53.88 53.81 54.94 53.44 53.39 55.3 53.85 53.68 53.62 56.99 55.46 54.51 

TiO2 0.03 0.13 0.14 0 0.07 0.05 0.05 0 0.04 0.05 0.07 0.07 0.08 

Al2O3 2.74 2.72 3.48 5.74 2.58 2.58 3.29 3.11 1.98 2.56 4.49 4.69 3.37 

Cr2O3 0.01 0.01 0.03 0 0 0 0 0 0 0 0 0.08 0.04 

FeO 20.46 22.15 21.72 18.24 22.94 21.92 20.87 23.35 19.02 20.23 19.07 18.63 20.83 

MnO 0.23 0.23 0.21 0.28 0.27 0.26 0.26 0.18 0.37 0.26 0.24 0.27 0.29 

MgO 10.42 8.78 8.32 8.46 8.91 9.36 9.03 7.41 11.28 9.86 7.79 8.64 8.97 

CaO 5.76 2.69 1.93 1.06 4.44 4.21 1.97 1.27 5.31 3.59 0.62 0.49 1.27 

Na2O 4.12 5.71 6.2 6.75 4.77 4.9 6.26 6.54 4.17 5.48 6.55 7.45 6.98 

K2O 0.14 0.09 0.06 0.05 0.11 0.11 0.07 0.05 0.09 0.07 0.06 0.05 0.05 

Total 96.16 96.39 95.89 95.52 97.53 96.77 97.09 95.76 95.94 95.71 95.88 95.82 96.38 

O= 23 23 23 23 23 23 23 23 23 23 23 23 23 

Si (apfu) 7.688 7.871 7.88 7.953 7.785 7.802 7.957 7.934 7.834 7.875 8.223 8.03 7.908 

Ti 0.004 0.014 0.016 0 0.008 0.005 0.005 0 0.005 0.006 0.007 0.008 0.009 

Al 0.475 0.467 0.6 0.979 0.443 0.443 0.558 0.54 0.341 0.442 0.763 0.8 0.576 

Cr 0.001 0.001 0.003 0 0 0 0 0 0 0 0 0.009 0.004 

Fe3+ 1.123 1.286 1.228 0.881 1.216 1.215 1.154 1.315 1.128 1.093 0.741 0.865 1.222 

Fe2+ 1.394 1.419 1.433 1.327 1.579 1.463 1.357 1.561 1.193 1.391 1.56 1.391 1.306 

Mn 0.029 0.028 0.026 0.034 0.033 0.032 0.032 0.023 0.045 0.033 0.03 0.033 0.036 

Mg 2.286 1.913 1.816 1.825 1.935 2.039 1.937 1.627 2.455 2.159 1.676 1.864 1.94 

Ca 0.908 0.421 0.303 0.164 0.693 0.66 0.303 0.2 0.83 0.565 0.096 0.075 0.197 

Na 1.175 1.618 1.761 1.894 1.348 1.388 1.746 1.869 1.178 1.559 1.831 2.09 1.962 

K 0.026 0.017 0.012 0.01 0.02 0.021 0.012 0.009 0.016 0.012 0.011 0.01 0.009 

Total 15.109 15.055 15.076 15.069 15.061 15.068 15.061 15.077 15.024 15.137 14.938 15.175 15.168

Phg         Ep       Chl     

TD13     TD7   TD13   TD9 TD7 TD13   TD9 

SiO2 (wt.%) 51.74 50.4 50.07 51.76 50.03 36.93 35.31 36.59 36.21 26.91 26.2 26.247 

TiO2 0.17 0.14 0.07 0.04 0.18 0.04 0.05 0.07 0.27 0.04 0.01 0.072 

Al2O3 24.43 24.17 24.43 23.63 24.18 21.45 19.1 21.7 21.17 18.44 17.92 18.681 

Cr2O3 5.29 6.95 6.09 5.48 6.08 0.05 0 0 0.03 0 0 0.094 

FeO 0.11 0.06 0.06 0.02 0.05 14.74 15.68 13.53 14.25 25.22 24.42 23.313 

MnO 3.89 3.77 4.1 4.09 4.53 0.25 0.17 0.19 0.22 0.63 0.61 0.762 

MgO 0.05 0.03 0.03 0.1 0.07 0 0.03 0.15 0.04 16.74 16.38 16.402 

CaO 0.09 0.11 0.13 0.18 0.15 22.12 18.97 22.53 21.9 0.09 0.07 0.141 

Na2O 10.51 10.64 10.34 10.53 10.25 0 0 0.2 0.02 0.08 0.1 0.004 

K2O 0 0 0.01 0.02 0 0.06 0.04 0.03 0.02 0.06 0.03 0.024 

Total 96.28 96.26 95.31 95.85 95.52 95.63 89.34 94.99 94.13 88.18 85.73 85.74 

O= 22 22 22 22 22 25 25 25 25 28 28 28 

Si (apfu) 6.937 6.839 6.824 6.983 6.806 2.991 3.051 2.983 2.98 5.654 5.659 5.631 

Ti 0.017 0.014 0.007 0.004 0.018 0.002 0.003 0.004 0.017 0.006 0.001 0.012 

Al 3.86 3.865 3.923 3.757 3.877 2.047 1.945 2.085 2.053 4.566 4.561 4.724 

Cr 0 0 0 0 0 0.003 0 0 0.002 0 0 0 

Fe3+ 0.593 0.788 0.694 0.618 0.692 0.998 1.133 0.923 0.981 0 0 0.016 

Fe2+ 0.012 0.007 0.006 0.002 0.006 0 1 2 3 4.432 4.41 4.183 

Mn 0.778 0.763 0.832 0.823 0.919 0.017 0.013 0.013 0.016 0.112 0.111 0.138 

Mg 0.007 0.004 0.004 0.014 0.01 0 0.004 0.018 0.005 5.243 5.274 5.246 

Ca 0.023 0.029 0.034 0.047 0.04 1.919 1.756 1.968 1.931 0.02 0.016 0.032 

Na 1.798 1.842 1.798 1.812 1.779 0 0 0.016 0.001 0.031 0.044 0.002 

K 0 0 0.001 0.002 0 0.006 0.004 0.003 0.002 0.015 0.009 0.007 

Total 14.026 14.15 14.123 14.063 14.146 7.985 8.909 10.011 10.987 20.08 20.085 19.991 
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Figure 3. (a) Si vs. NaB diagram showing chemical compositions of amphibole in the blueschists samples. Arrow shows chemical zoning of amphibole. (b) 

Chemical variation from core to outermost rim of zoned amphibole in sample TD13. (c) Fe3+/(Fe3++AlVI) vs. Mg/(Mg+Fe2+) diagram showing chemical compo-

sitions of amphibole in the blueschist samples. (d) Chemical compositions of phengites. Abbreviations: Ktp. kataphorite; Brs. barroisite; Gln. glaucophane; Win. 

winchite; Mrb. magnesioriebeckite; Rbk. riebeckite. 

 
The prograde metamorphic stage is characterized by win-

chite, as core of zoned amphiboles, chlorite, epidote, albite, 
hematite and quartz. The metamorphic conditions of the pro-
grade stage are T>300 °C and P>4 kbar, according to winchite 
stability field with hematite-bearing basic schist (Fig. 4; Otsuki 
and Banno, 1990).  

The peak metamorphic stage is represented by an equili-
brium mineral assemblage of magnesioriebeckite/ glaucophane, 
epidote, phengite (Si<7.0 apfu), chlorite, albite, hematite and 
quartz. The chemical compositions of magnesioriebeck-
ite/glaucophane coexisting with epidote and hematite are simi-
lar to the sodic-amphibole 6 compositions defined by Evans 
(1990), that constrain the metamorphic conditions within the 
epidote-blueschist facies (Fig. 4). The stability field of the 
magnesioriebeckite/glaucophane and the upper stability limit of 
albite (Holland, 1983) constrain P-T condition of 
T=350–600 °C and P=10–13 kbar for the peak stage of the 
epidote-blueschist facies. Phengites (Si<7.0 apfu) in the matrix 
suggest an upper pressure limit of <12 kbar for the peak stage 
(Wei et al., 2009). According to these evidences, the peak me-
tamorphism conditions are T=350–400 °C, P=10–12 kbar.  

The retrograde metamorphic stage is characterized by 
winchite as the outermost rim of the zoned amphiboles, sug-
gesting similar mineral assemblage with the prograde meta-
morphic stage, also suggesting the similar metamorphic condi-
tions with the prograde metamorphic stage (Fig. 4).  
 
4.2  P-T Estimation for the Other Samples 

Sample TD7 has similar constituent minerals with sample 

TD13, they also have the same P-T path. For blueschist sample 
TD9, the mineral assemblage of peak stage is distinguished as 
magnesioriebeckite, glaucophane, epidote, chlorite, albite, he-
matite and quartz, suggesting similar peak metamorphic condi-
tions with the other blueschists. Phengites in pelitic schists 
sample TD6 also show high Si contents (Si<7.0 apfu), which is 
consistent with the high P/T metamorphic conditions of the 
blueschist. 

 
5  DISCUSSION AND CONCLUSIONS 

The peak metamorphic conditions of the blueschist are the 
epidote-blueschist facies of T=350–400 °C and P=10–12 kbar 
(Fig. 4). The prograde (winchite to glaucophane) and retrograde 
(glaucophane to winchite) paths are likely to be the similar 
trajectory of the hair-pin type. The peak mineral assemblage of 
the blueschist is well preserved, only very sharp winchite out-
ermost rim occurring during the retrograde stage, these charac-
ters are well corresponding to the Franciscan type, indicate the 
retrogression approximately retraced the prograde (temperature) 
P-T path (Wei, 1994; Ernst, 1988).  

The recent geochemistry data indicate that the protolith of 
Toudaoqiao blueschist was predominantly metabasalts with 
OIB and N-MORB affinities (Miao et al., 2015; Zhou et al., 
2015), which implies that an ancient subduction zone passes 
through the Toudaoqiao area. This is corresponding to occur-
rence of tectonic mélange, which extends in a general NE-SW 
direction, same with blueschist complex (Fig. 1c). Although 
there is no typical ophiolites have been reported in this area, the 
Xinlin Ophiolite has been recognized in the east part of the 
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Ergun Block for a long time, which is also along the       
Xinlin-Xiguitu suture (Fig. 1b). Li (1991) has first described 
the Xinlin ophiolite represents a typical upper mantle-oceanic 
crust succession. Geochemical data indicate the origin basalts 
are MORB. The age of ophiolite were reported as 570 Ma. 
These evidences suggest that the Xinlin-Xiguitu suture was 
most likely the suture zone between the Ergun and the Xing’an 
blocks. 

 

 

Figure 4. Metamorphic P-T history of the blueschists. The boundaries of the 

metamorphic facies are after Takasu (1989). Broken lines show the stability 

fields of actinolite, winchite, magnesioriebeckite, glaucophane and barroi-

site (Otsuki and Banno, 1990). The dotted line (6) is the stability field of 

sodic-amphibole 6 (Evans, 1990). The isopleths of Si in phengite are re-

ferred from (Wei et al., 2009). Reaction 1: albite. jadeite quartz (Holland, 

1983). Abbreviations: ECL. eclogite facies; GL. glaucophane schist facies; 

EA. epidote-amphibolite facies; AMP. amphibolite facies; GS. greenschist 

facies; Act. actinolite. 

 
The recent geochronological data review the protoliths of 

the Toudaoqiao blueschist with age of about 510 Ma and 
syn-collision granitic dike with age of 490 Ma (Miao et al., 
2015; Zhou et al., 2015). The Tahe granite, located in the sou-
theastern margin of the Ergun Block, with 490 Ma 
post-orogenic age, which is consistent with the age of the gra-
nitic dike in Toudaoqiao area. It indicates that the collision has 
occurred at least 490 Ma ago (Ge et al., 2007b; 2005). Besides, 
both of Ergun and Xing’an blocks have Cambrian or Neopro-
terozoic meta-igneous rock, which were correlated to the active 
continental margin. The geochronology information can con-
strain the maximum age of the collision time between the two 
blocks (Miao et al., 2007). In summary, the geochronological 
data from the blueschist, ophiolite and post-orogenic granite 
record that the oceanic crust between the two blocks was 
formed at c. 570 Ma, followed by subduction, collision and 
related metamorphism and magmatism during the period c. 
510–490 Ma.  

Similar tectonic processes as closure of a paleo-ocean and 
subsequent continent-continent collision took place among the 
microcontinents along the southeastern segment of the CAOB 
(Miao et al., 2007; Xiao et al., 2003; Buchan et al., 2002). 

These microcontinents collided with the Siberian Craton along 
the Mongol-Okhstk belt (Zorin, 1999; Muller et al., 1991). At 
present, researchers (Badarch et al., 2002; Salnikova et al., 
2001; Sal’nikova et al., 1998) suggest that the Ergun Block is 
connected to the Central Mongolian and Tuvino blocks, and 
they found that it underwent an orogenic metamorphic event at 
536±6 Ma, with emplacement of a series of 490 Ma granitic 
plutons during the post-orogenic stage, coeval with the em-
placement of the Early Paleozoic Tahe pluton and other 
post-orogenic granitoids in Ergun Block. 
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