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Some scholars held the opinion that the Paleo-Asian Ocean was 
closed in the Devonian (Zhu et al., 2004). Some scholars 
agreed with the viewpoint that the closure occurred in the Early 
Carboniferous (Shao et al., 2014, 1991; Cao et al., 1986). 
Meanwhile, other scholars believed that the closure of the  
Paleo-Asian Ocean occurred during the Permian (Xiao et al., 
2015, 2003; Li et al., 2006; Miao et al., 2006; Chen et al., 2001; 
Sengor et al., 1993). 

West Ujimqin is located at the central Inner Mongolia, and 
belongs to the XMOB. Detailed structural and stratigraphic 
investigations are challenging in this region, and the tectonic 
setting of the West Ujimqin has been a source of scientific con-
troversy. Voluminous Paleozoic–Early Mesozoic magmatism 
occurred in this region and may provide information regarding 

the tectonic evolution and constraints on the middle part of the 
XMOB or CAOB (Li et al., 2016; Liu et al., 2016; Li et al., 
2015, 2013, 2012b; Dong., 2014; Bai., 2013; Liu et al., 2009; 
Bao et al., 2007, 2006; Su et al., 1996). However, the petroge-
nesis and tectonic settings of Early Carboniferous magmatism 
are poorly constrained due to the scarcity of geochemical and 
geochronologic data in this region. Through a regional geolog-
ical survey at 1 : 50 000 scale, we first discovered the Early 
Carboniferous gabbro. Owing to this contribution, we present 
new zircon LA-ICP-MS U-Pb dating and geochemical data for 
the Early Carboniferous gabbros and diorites from West Ujim-
qin, to better discuss the petrogenesis and the Late Paleozoic 
tectonic evolution.  

 

 

Figure 1. Sketch maps of Inner Mongolia, the Xingmeng orogenic belt, and the study area. (a) Geotectonic location of Inner Mongolia (modified from Jian et 

al., 2008). (b) Geological map of the Xingmeng orogenic belt, modified from Jian et al. (2008) based on our own observations showing the Solonker suturezone 

separating the Northern and Southern Paleozoic orogens. (c) Geological map of the study area, southern West Ujimqin (modified from 1 : 50 000 geological 

maps of Houtoumiao and Alatengaobaonongdui). 
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1  GEOLOGICAL SETTING AND SAMPLING AND 
PETROGRAPHY 
1.1  Geological Setting 

West Ujimqin is situated, tectonically, in the Northern 
Orogen in the middle of the XMOB (Fig. 1b). It is a critical 
area to reveal the tectonic evolution of the Paleo-Asian Ocean 
and XMOB. The most ancient strata in the study area are Xilin 
Hot Group (BGMRN, 1991). Strata overlying the Xilin Hot 
Group include Carboniferous volcanic-sedimentary rocks, 
Permian strata and Jurassic–Cretaceous strata which are all 
deposits of continental or marine-terrigenous facies. The mag-
matic activities were frequent during Late Paleozoic. A newly 
discovered ophiolitic mélange outcrops at Zhunmubutai Dis-
trict show that Early Carboniferous intrusive rocks are com-
posed of gabbro and diorite. Late Carboniferous quartz diorite 

intrudes into ophiolitic mélange, Early Carboniferous diorite 
and Carboniferous volcanic-sedimentary rocks. Permian intru-
sions are dominated by granite. 

The gabbro and diorite plutons of this study are mainly 
distributed in Alatengaobaonongdui and Houtoumiao which 
located in the south of West Ujimqin (Fig. 1c). The plutons are 
poorly exposed, with outcrops that are cracked but relatively 
fresh. We have constructed cross sections across the gabbro and 
diorite plutons (Figs. 1c and 2). The Section PM103 (Fig. 2a) 
reveals that the diorite intruded the gabbro. And the Section 
PM105 (Fig. 2b) shows that the diorite is intruded by Late 
Carboniferous quartz diorite. The gabbro and diorite are un-
conformably overlain by Permian and Jurassic–Cretaceous 
strata.  

 

 

Figure 2. Cross-sections of the gabbro and the diorite in this study (the section locations are in Fig. 1). 

 
1.2  Sampling and Petrography 

Fresh gabbros and diorites were sampled from the south-
ern West Ujimqin. In this paper, we present geochemical data 
of three gabbroic and three dioriteic samples. Additionally, we 
collect two geochronologic data for gabbro and diorite samples. 
The sample locations are shown in Fig. 1c. 

The Early Carboniferous gabbro plutons were mapped for 
the first time through regional geological survey in Alatengao-
baonongdui which covers an area of 4 km2 at 1 : 50 000 scale. 
The gabbros mainly exhibit gabbroic texture and massive 
structure. They have three types of granular textures in the field, 
i.e., fine-grained, coarse-to medium-grained, and coarse- 
grained, from the rim to the core of the pluton (Fig. 3a and 3b). 
The gabbros are comprised of plagioclase (~60 vol.%), pyrox-
ene(~30 vol.%), hornblende (~8 vol.%), and a few accessory 
minerals such as zircon, titanomagnetite and apatite (Figs. 3e 
and 3f). Some samples have underwent slight alteration, for 
example, zoisitization and sericitization occured in plagioclase 
grains, amphibolization presented in some pyroxene grains, and 
actinolitization exists in some hornblende grains. 

The Early Carboniferous diorite exposed in Houtoumiao 
village is a small rock stock of about 5 km2. The diorite stock 
shows fine-grained texture and massive structure. In some lo-
cations, the fine-grained diorites experienced weak mylonitiza-
tion (Figs. 3c and 3d). The diorites are consisted of plagioclase 
(~55 vol.%), hornblende (~40 vol.%), quartz (~2 vol.%), biotite 
(~2 vol.%), and various accessory minerals, such as zircon, 
sphene and magnetite (Figs. 3g and 3h). Some mineral grains 
have undergone slight alteration, e.g., sericitization occurred in 
plagioclase grains, epidotization exists in some hornblende 
grains, and chloritization presented in biotite grains. 

 
2  ANALYTICAL METHODS 

Zircons were selected for U-Pb dating at the laboratory of 
the Hebei Institute of Regional Geology and Mineral Resources 
Survey. Zircons for U-Pb analysis were separated by conven-
tional magnetic and density techniques to concentrate 
non-magnetic, heavy fractions. Transmitted and reflected light 
micrographs and cathodoluminescence (CL) images were used 
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Figure 3. Representative field photos and photomicrographs. (a & b) gabbros; (c & d), diorites; (e & f) photomicrographs of gabbros; (g & h) photomicrographs 

of diorites. Hb. Hornblende; Pl. Plagioclase; Py. Pyroxene.   
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to guide the U-Th-Pb isotope analysis. The CL study was con-
ducted at Beijing Zirconium Technology Limited Company. 
Zircon U-Pb isotopic compositions were analyzed at the labor-
atory of the Tianjin Geological Survey Center using 
LA-ICP-MS. The specific experimental principles and data 
analytical procedures were modeled after Li H K (2010, 2009). 

All samples were crushed and powered in an agate mortar 
to an average size of less than 200 μm and then saved in clean 
plastic bags. Contamination from other samples was avoided, 
and the utensils used for grinding were kept the same for each 
sample to guarantee their representativeness. Major elements 
were analyzed by XRF at the laboratory of the Hebei Institute 
of Regional Geology and Mineral Resources Survey, with an 
analytical uncertainty of less than 5%. Trace elements and rare 
earth elements were determined by ICP-MS at the laboratory of 
the Hebei Institute of Regional Geology and Mineral Resources 
Survey, with analytical precision better than 10%. 
 
3  RESULTS 
3.1  Zircon U-Pb Geochronology 

The representative zircon CL images from gabbro and 
diorite samples are shown in Figs. 4a and 4b, respectively. The 
LA-ICP-MS zircon U-Pb analytical data are given in tables 1 
and 2, and the results are plotted on the Wetherill-type Concor-
dia diagrams (Figs. 5a and 5b). 

The coordinates of the gabbro sample (PM103-3TW1) are 
44°15′59″N, 117°54′55″E. The zircons are colorless to dark 
brown, subhedral to euhedral, short columnar to long columnar 
and with length/width ratios between 2 : 1 and 3 : 1 (Fig. 4a). 
Most of the zircons show densely oscillatory zoning, indicating 
an igneous origin (Pidgeon, 1996; Hancher and Miller, 1993) 
and a high temperature environment of formation (Wu and 
Zheng, 2004). The U concentrations of zircons vary from 36 to 
528 ppm and the Th/U ratios are between 0.30 and 1.05, which 
also suggests the magmatic origin (Koschek, 1993). Thirteen 
analyses define an age population with a weighted mean 
206Pb/238U age of 321±2.0 Ma (MSWD=0.65) (Fig. 5a), which 
is interpreted as the best estimate of the crystallization age for 
the gabbro (Fig. 5b). 

The diorite sample (PM105-17TW2) is located at 
44°15′59″N, 117°54′55″E. The zircons are light brown, irregu-
larly shaped, and granular, with a few arranged in short col-
umns. Most of the zircons lack typical oscillatory zoning (Fig. 
4b). The U concentrations of zircons range from 67 ppm to   
1 455 ppm, and the Th/U ratios vary from 0.12 to 0.67, indi-
cating of a magmatic origin (Koschek, 1993). Sixteen analyses 
define an age population with a weighted mean 206Pb/238U age 
of 319.4±1.5 Ma (MSWD=0.42), which is considered as the 
intrusion age of the diorite (Fig. 5b). 

 

 

Figure 4. CL images for analyzed zircon grains from the gabbro (a) and diorite (b). Circles indicate the locations of analyzed sites. 

 

 

Figure 5. Concordia diagrams for analyzed zircon grains from the gabbro (a) and diorite (b). 



Shiwei Ma, Changfeng Liu, Zhiqin Xu, Zhiguang Zhou, Jinyuan Dong and Hongying Li 

 

254

Table 1  Analytical U-Pb zircon data of gabbros (PM103-3TW1) from West Ujimqin 

Spot Content (ppm) 232Th/238U Isotope ratios Apparent ages (Ma) 

Pb U 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 206Pb/238U 1σ 207Pb/235U 1σ

1 6  108  0.407 4 0.050 2  0.000 9 0.371 3 0.036 8 0.053 6 0.003 7 316  6  321  32 

2 5  81  0.297 5 0.050 9  0.000 7 0.405 4 0.032 7 0.057 8 0.004 4 320  4  346  28 

3 13  253  0.349 5 0.051 5  0.000 5 0.370 4 0.007 6 0.052 1 0.001 1 324  3  320  7 

4 4  162  0.473 6 0.021 7  0.000 3 0.148 4 0.013 8 0.049 5 0.004 7 139  2  141  13 

5 15  329  0.614 5 0.043 9  0.000 4 0.321 2 0.005 7 0.053 1 0.000 9 277  3  283  5 

6 10  177  1.053 5 0.050 1  0.000 5 0.365 6 0.021 7 0.052 9 0.003 1 315  3  316  19 

7 28  467  0.834 0 0.050 9  0.000 4 0.418 3 0.012 2 0.059 6 0.001 5 320  3  355  10 

8 5  80  0.591 2 0.051 0  0.001 1 0.380 7 0.033 1 0.054 1 0.004 7 321  7  328  28 

9 6  98  0.415 5 0.050 9  0.001 0 0.379 8 0.029 6 0.054 1 0.004 1 320  6  327  25 

10 29  528  0.681 0 0.051 3  0.000 5 0.376 2 0.004 4 0.053 2 0.000 6 322  3  324  4 

11 2  36  0.608 9 0.051 1  0.000 8 0.388 2 0.036 4 0.055 1 0.004 6 321  5  333  31 

12 4  67  0.563 3 0.051 0  0.000 6 0.406 5 0.034 2 0.057 8 0.004 8 321  4  346  29 

13 5  204  1.145 6 0.020 2  0.000 2 0.138 0 0.010 1 0.049 6 0.003 6 129  1  131  10 

14 3  52  0.706 9 0.051 3  0.000 8 0.398 8 0.032 9 0.056 4  0.004 5 322  5  341  28 

15 3  43  0.596 5 0.050 6  0.000 7 0.392 1 0.031 8 0.056 3 0.004 8 318  4  336  27 

16 10  263  0.950 3 0.025 8  0.000 3 0.423 8 0.010 2 0.119 3 0.002 5 164  2  359  9 

17 30  194  0.846 7 0.143 4  0.001 4 1.336 3 0.026 0 0.067 6 0.001 3 864  8  862  17 

18 14  269  0.316 9 0.051 5  0.000 4 0.377 2 0.010 0 0.053 1 0.001 4 324  3  325  9 

 
Table 2  Analytical U-Pb zircon data of diorites (PM105-17TW2) from West Ujimqin 

Spot Content (ppm) 232Th/238U Isotope ratios Apprent ages (Ma) 

Pb U 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 206Pb/238U 1σ 207Pb/235U 1σ

1 3  67  0.125 9 0.051 5  0.005 0.377 3 0.027 3 0.053 2 0.003 9 323  3  325  24 

2 14  285  0.239 3 0.051 3  0.007 0.374 2 0.014 0 0.053 0 0.001 9 322  4  323  12 

4 14  272  0.436 3 0.050 7  0.005 0.368 6 0.007 7 0.052 7 0.001 1 319  3  319  7 

5 18  342  0.443 6 0.051 1  0.005 0.368 3 0.009 1 0.052 3 0.001 2 321  3  318  8 

6 7  140  0.261 2 0.050 8  0.005 0.372 1 0.014 5 0.053 1 0.002 1 320  3  321  12 

7 37  738  0.400 3 0.050 5  0.005 0.369 9 0.003 8 0.053 1 0.000 5 318  3  320  3 

8 79  1455  0.662 9   0.051 1  0.005 0.368 4 0.006 8 0.052 3 0.001 0 321  3  318  6 

9 17  351  0.314 4 0.050 8  0.004 0.371 1 0.005 8 0.053 0 0.000 8 319  3  320  5 

10 23  470  0.314 4 0.050 3  0.005 0.375 3 0.008 2 0.054 1 0.001 2 317  3  324  7 

11 19  381  0.300 3 0.050 6  0.005 0.365 3 0.005 6 0.052 3 0.000 8 318  3  316  5 

12 8  157  0.390 6 0.050 4  0.005 0.374 6 0.013 2 0.053 9 0.001 9 317  3  323  11 

13 16  322  0.403 0 0.050 4  0.005 0.366 1 0.010 6 0.052 7 0.001 5 317  3  317  9 

14 7  147  0.123 7 0.050 9  0.006 0.389 9 0.026 5 0.055 6 0.003 4 320  4  334  23 

15 12  251  0.280 4 0.050 7  0.004 0.371 2 0.021 6 0.053 0 0.003 1 319  3  321  19 

16 105  218  0.632 5 0.429 2  0.000 9.523 0 0.177 5 0.160 9 0.002 8 2302  22  2390  45 

17 44  848  0.568 8 0.050 9  0.005 0.369 0 0.006 4 0.052 5 0.000 9 320  3  319  5 

18 19  381  0.316 9 0.051 2  0.006 0.368 6 0.017 6 0.052 2 0.002 0 322  4  319  15 

 

3.2  Major and Trace Element Compositions 
The geochemical and analytical results of gabbro and dio-

rite are shown in Table 3. The coordinates of the gabbro sam-
ples (PM103-2YQ1, PM103-3YQ1, PM103-3YQ2) are, in 
order, (44°16′02″N, 117°55′09″E), (44°15′59″N, 117°54′55″E), 
(44°15′33″N, 117°55′15″E). The diorite samples 
(PM105-4YQ1, PM105-9YQ1, PM105-16YQ1) are located 
successively at (44°15′17″N, 117°41′18″E), (44°15′12″N, 
117°41′32″E) and (44°14′58″N, 117°42′23″E). 

 
3.2.1  Major elements 

The SiO2 contents of gabbro samples span a range of  
48.3% to 51%, and the gabbros were classified as mafic intru-

sive rocks. The TiO2 contents range from 0.45% to 0.99%, with 
an average of 0.66%. The Al2O3 contents range from 14.48% to 
16.98%, with an average of 15.62%. The gabbros have charac-
teristic of high alumina basalt. These samples are rich in Na but 
poor in K (Na2O/K2O＞4.9), with Na2O=2.26%–3.73% and 
K2O=0.11%–0.3%. The CaO contents span a range of 9.16% to 
11.27%. The gabbros have relatively high MgO 
(8.06%–9.33%), with Mg# values of 61.43 to 71.15, and SI 
values of 39.45 to 46.86. The Mg# and SI values are close to 
mantle-derived magma. In the TAS diagram (Fig. 6), all of the 
samples with σ values of 1.11 to 1.92 fell into the sub-alkaline 
gabbro field. In the AFM diagram (Fig. 7), two samples were 
classified as tholeiite series and one was classified as 
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calc-alkaline series. However, all samples have high loss on 
ignition (LOI) (2.42%–3.71%) and Na2O contents 
(2.26%–3.73%), indicating different degrees of alteration after 
diagenesis. 

The SiO2 contents of diorite samples span a range of  
54.23% to 59.33 %, and the diorites were thus classified as 
intermediate intrusive rocks. The TiO2 contents range from 
0.68% to 0.92%, with an average of 0.82%. The Al2O3 contents 
range from 15.34% to 17.36%, with an average of 16.15%. 
These samples are rich in Na but poor in K 
(Na2O/K2O=4.6–13.3), with Na2O=2.26%–3.73% and 
K2O=0.23%–0.51%. The CaO contents span a range of 6.13% 
to 9.18%. The diorites have relatively low MgO 
(2.78%–3.86%), with Mg# values of 35.76 to 45.63 and SI val-
ues of 19.13 to 21.97. In the TAS diagram (Fig. 6), all of the 
samples with σ values of 0.52 to 0.98 were plotted in the field 
of sub-alkaline gabbro diorite and diorite. In the AFM diagram 
(Fig. 7), two samples were classified as tholeiite series and one 
as calc-alkaline series. Similar to gabbros, all of the diorites 
underwent different degrees of alteration after diagenesis. 

 

 

Figure 6. TAS diagram (Wilson, 1989). 1. olive gabbro; 2. sub-alkaline 

gabbro; 3. gabbro diorite; 4. diorite; 5. granodiorite; 6. granite; 7. alkaline 

gabbro; 8. monzodiorite; 9. secondary feldspar gabbro; 10. syenite; 11. 

quartzmonzonite. 

 

 

Figure 7. AFM diagram (Pearce, 1996). 

 

3.2.2  Trace elements 
In the mid-ocean ridge basalt (MORB)-normalized trace 

element spider diagrams (Fig. 8a), the gabbros and diorites 
show moderate enrichment in LILE (e.g., Rb, Ba, K and Sr) 
and negative Nb and Ta anomalies. These features resemble 
volcanic arc basalt and indicate that the magma source proba-
bly experienced metasomatism by the subduction fluid (Wilson 
M., 1989; Jacks and White, 1972). In the primitive mantle- 
normalized trace element spider plots (Fig. 8b), these samples 
are enriched in LILE and depleted in HFSE (e.g., Th, Nb, Ta, Ti 
and P), especially showing distinctly negative Nb and Ta ano-
malies. The spider diagrams are similar to arc magmatic trace 
element distribution patterns (Sun and McDonough, 1989).  
 
3.2.3  Rare earth elements 

The rare earth element contents of the gabbros range from 
28.02 ppm to 45.66 ppm, and the (La/Yb)N ratios range from 
0.48 to 0.68, with LREE/HREE=0.48–0.55. They display mod-
erately to weakly positive Eu anomalies (δEu=1.32–1.57). The 
positive Eu anomalies are mainly caused by the accumulation 
of plagioclase in a magma chamber. The LREEs experienced 
moderate to weak fractional distillation ((La/Sm)N=0.52–0.66), 
whereas the HREE slack fractional distillation ((Gd/Yb)N= 
0.84–0.94). The abundances of rare earth elements of the dio-
rites range from 48.74 ppm to 83.52 ppm, which are relatively 
higher than those of the gabbros. Additionally, the (La/Yb)N 
ratios range from 0.6 to 1.43, with LREE/HREE=0.54–1.05. 
They display weakly negative Eu anomalies (δEu=0.95–1.26) 
indicating the accumulation of plagioclase. The LREEs under-
went moderate to weak fractional distillation ((La/Sm)N= 
0.61–1.05), whereas the HREEs lack fractional distillation 
((Gd/Yb)N=0.85–1.06). 

The chondrite-normalized REE distribution patterns (Fig. 
9) show that all gabbro and diorite samples display uniform 
REE patterns, exhibiting relatively depleted LREE similar to 
N-MORB (Sun and McDonough, 1989; Pearce, 1982), which 
indicates that the magma derived from a depleted mantle source 
similar to N-MORB. 

 
4  DISCUSSION 
4.1  Effects of Alteration on Elemental Mobility  

The gabbros and diorites aged ~321 Ma old must have 
been altered to various degrees after their emplacement, judg-
ing from petrographic observation and high contents of LOI 
(N2.4 wt.%, Table 3). High-field strength elements (e.g., Ti, Zr, 
Y, Th, Nb and REE) in rocks are relatively immobile under 
conditions of low-temperature alteration (Hofmann, 1997; Bi-
envenu et al., 1990; Condie, 1989; Winchester and Floyd, 1977; 
Pearce and Cann, 1973). The low-grade metamorphism is con-
sidered to have had an insignificant effect on REE and HFSE of 
the West Ujimqin gabbros and diorites. Furthermore, all the 
samples have uniform HFSE abundances, indicating that the 
gabbros and diorites still preserve their original HFSE signa-
tures. Therefore, HFSEs are used in the following discussion to 
characterize the samples with respect to their original composi-
tion and possible tectonic setting (Frey et al., 2002; Meschede, 
1986; Pearce and Cann, 1973). 
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Table 3  Major and trace element abundances of gabbros and diorites from West Ujimqin 

Sample No. PM103-2YQ1 PM103-3YQ1 PM103-3YQ2 PM105-4YQ1 PM105-9YQ1 PM105-16YQ1 

Gabbro Gabbro Gabbro Diorite Diorite Diorite 

Major elements (wt.%) 

SiO2 49.38 51.00 48.34 54.87 54.23 59.33 

Al2O3 16.98 14.48 15.41 15.34 15.76 17.36 

TiO2 0.54 0.45 0.99 0.92 0.87 0.68 

Fe2O3 2.72 3.28 3.10 6.81 4.85 2.99 

FeO 4.36 6.04 6.54 4.14 5.82 3.28 

CaO 9.16 10.99 11.27 9.18 7.84 6.13 

MgO 9.33 8.06 8.25 3.18 3.86 2.78 

K2O 0.3 0.17 0.11 0.23 0.51 0.28 

Na2O 3.2 2.88 2.32 2.26 2.53 3.73 

MnO 0.13 0.15 0.17 0.21 0.18 0.12 

P2O5 0.03 0.03 0.06 0.17 0.08 0.16 

LOI 3.71 2.42 3.40 2.62 3.41 3.10 

Total 99.86 99.94 99.93 99.92 99.93 99.94 

A/CNK 0.76 0.58 0.63 0.74 0.83 0.99 

σ 1.92 1.16 1.11 0.52 0.82 0.98 

Mg# 71.15 61.75 61.43 35.76 40.57 45.63 

SI 46.86 39.45 40.6 19.13 21.97 21.29 

Trace elements (ppm) 

V 149.5 177.2 255.2 207.8 299 112.9 

Cr 500 151.5 113.6 21.9 9.8 16.5 

Co 31.5 38.3 38.1 26.4 29.1 15.4 

Ni 84.3 53.9 49.9 11.6 8.8 9.2 

Cu 23.3 13.0 55.5 63.7 58.9 27.8 

Zn 39.0 49.9 55.2 106.6 92.9 74.3 

Ga 10.12 12.04 14.41 17.99 17.87 17.5 

Rb 5.0 2.8 1.8 4.3 11.0 5.3 

Sr 98.7 112.4 91.4 379.1 150 308.8 

Zr 38.8 32.6 56 67.9 56.3 87.9 

Nb 0.34 0.33 0.61 2.07 1.48 1.02 

Cs 0.43 0.27 0.35 0.61 0.34 1.41 

Ba 81.7 46.3 36.6 80.6 128.8 58.4 

Hf 1.49 1.17 1.94 3.54 3.67 5.86 

Ta 0.05 0.04 0.06 0.15 0.14 0.08 

Pb 0.9 0.9 1.0 4.1 3.3 2.6 

Th 0.13 0.11 0.11 0.74 0.5 0.58 

U 0.04 0.05 0.07 0.35 0.26 0.12 

Rare earth elements (ppm) 

La 1.08 0.97 2.00 6.11 2.91 3.01 

Ce 3.04 2.88 5.00 13.87 8.14 8.08 

Pr 0.53 0.51 0.96 2.33 1.49 1.39 
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Table 3  Continued 

Sample No. PM103-2YQ1 PM103-3YQ1 PM103-3YQ2 PM105-4YQ1 PM105-9YQ1 PM105-16YQ1 

Gabbro Gabbro Gabbro Diorite Diorite Diorite 

Nd 3.15 3.08 5.45 12.56 8.58 7.53 

Sm 1.17 1.18 1.91 3.66 2.98 2.3 

Eu 0.6 0.66 0.9 1.27 0.99 0.93 

Gd 1.41 1.43 2.23 3.8 3.44 2.22 

Tb 0.33 0.34 0.52 0.81 0.79 0.48 

Dy 2.28 2.28 3.55 5.11 5.24 3.02 

Ho 0.5 0.53 0.79 1.17 1.24 0.68 

Er 1.35 1.43 2.18 3.03 3.39 1.82 

Tm 0.25 0.27 0.41 0.61 0.67 0.36 

Yb 1.21 1.36 1.98 2.88 3.28 1.79 

Lu 0.18 0.20 0.30 0.40 0.48 0.26 

Y 10.96 11.50 17.47 25.93 27.95 14.88 

∑REE 28.02 28.63 45.66 83.52 71.59 48.74 

LREE/HREE 0.52 0.48 0.55 0.91 0.54 0.91 

(La/Yb)N 0.60 0.48 0.68 1.43 0.6 1.13 

δEu 1.43 1.57 1.32 1.04 0.95 1.26 

LaN/SmN 0.58 0.52 0.66 1.05 0.61 0.82 

GdN/YbN 0.94 0.84 0.91 1.06 0.85 1.00 

RbN/YbN 4.15 2.05 0.91 1.49 3.35 2.95 

Zr/Nb 114.12 98.79 91.8 32.8 38.04 86.18 

La/Nb 3.16 2.94 3.28 2.95 1.96 2.95 

La/Ta 21.50 24.23 33.38 40.70 20.77 37.68 

A/CNK=(Al2O3/102)/((CaO/56)+(K2O/94)+(Na2O/62)); Mg#=(MgO/40)/((MgO/40+FeO/72+Fe2O3×0.899 8/160)×100; 

SI=100×MgO/(MgO+FeO+Fe2O3+K2O+Na2O); σ=(K2O+Na2O)×(K2O+Na2O)/(SiO2-43); the subscript N represents chon-

drite-normalized, after Boynton (1984). 

 

 

Figure 8. (a) MORB-normalized trace element spider diagram (Pearce, 1982); (b) primitive mantle-normalized trace elements spider diagram (Sun and 

McDonough, 1989). 
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Figure 9. Chondrite-normalized REE pattern (Boynton, 1984) and the 

N-MORB parameter after Sun and McDonough (1989). 

 

 

Figure 10. Nb/Y-Zr/Y diagram (Zhu et al., 2008); the boundary of the mantle 

plume, N-MORB and ARC source regions are after Fitton et al. (1997); the 

parameters of OIB, N-MORB and PM are derived from Sun and McDonough 

(1989); K represents the Kerguelen mantle plume. 

 
4.2  Petrogenesis 

The gabbro and diorite plutons from West Ujimqin have 
low REE contents and display a slight LREE depletion on the 
chondrite-normalized REE diagrams. All of these features are 
similar to normal mid-ocean ridge basalt (N-MORB) (Sun and 
McDonough, 1989; Pearce, 1982). The Zr/Nb ratio of 
N-MORB is always greater than 30, and the ratios of the sam-
ples of this study are all greater than 30 (32.8–114.12, average 
of 77), suggesting that the magma was derived from a depleted 
mantle source area. Fitton et al. (1997) have successfully de-
veloped the robust ΔNb approach (excess or deficiency in Nb, 
ΔNb=1.74+log (Nb/Y)−1.92log (Zr/Y)) to identify the mantle 
source of mafic rocks. Mafic magmas derived from plume ex-
hibit ΔNb>0, whereas magmas derived from depleted mantle 
show ΔNb<0 (Baksi, 2001; Fitton et al., 1997). The ΔNb values 
for the gabbros and diorites of this researched area are less than 
0, suggesting that the magma is probably derived from a dep-
leted mantle. Furthermore, in the Nb/Y-Zr/Y diagram (Fig. 10), 
the samples are plotted in the N-MORB and ARC fields. In 
general, the average La/Nb and La/Ta ratios of the asthenos-
pheric (lithospheric) mantle are less (greater) than 1.5 and 22, 
respectively (Huang et al，2000). The La/Nb (1.96–3.28) and 
La/Ta (20.77–44.64) ratios of West Ujimqin gabbros and dio-
rites suggest that the magma was derived from the asthenos-
pheric mantle. Generally, crustal rocks have low TiO2 contents 

(average of 0.72%) (Rudnick and Gao, 2003); the TiO2 content 
of the asthenosphere is approximately 1.27% (Sun and McDo-
nough, 1989), and the TiO2 content of the deep mantle is al-
ways greater than 2% (Zhu et al., 2008). The low TiO2 content 
(0.45%–0.99%, averaging 0.74%) of West Ujimqin gabbros 
and diorites indicate that the magmatic source is mainly related 
to the shallow depleted mantle. 

Generally, with the increasing of partial melting of the 
spinel lherzolite, the residual mantle blocks and melts have 
similar Sm/Yb ratios, whereas the La/Sm ratio decreases (Al-
danmaz et al., 2000). Therefore, the partial melting of the spinel 
lherzolite results in a relatively horizontal melting trend (i.e., 
near the mantle). However, the Sm/Yb ratio will increase 
sharply if a mid-low degree of partial melting of the garnet 
lherzolite happens, the Sm/Yb ratio of the melt increases rapid-
ly. Thus, the melting trend of the garnet lherzolite obviously 
deviates from that of the mantle (Zhu et al., 2008; Aldanmaz et 
al., 2000). On the Sm/Yb vs. La/Sm diagram (Fig. 11a), the 
points lie parallel to the partial melting curve of the spinel 
lherzolite, which demonstrates that the magmas of the gabbros 
and diorites from West Ujimqin mainly derived from moderate 
(5%–20%) partial melting of the spinel lherzolite. 

On MORB-normalized and primitive mantle-normalized 
trace elements spider diagrams (Figs. 8 and 9), the gabbros and 
diorites both exhibit characteristics of enriched in LILE (e.g., 
Rb, Ba, K, Sr) but depleted in Nb, Ta and Ti. These features are 
similar to those of arc-related magma genesis (Kelemen et al., 
2003). Therefore, the shallow depleted mantle derived magma 
probably contaminated by subduction-related materials and 
underwent metasomatism. On the La/Nb vs. La/Ba diagram 
(Fig. 11b); the results may indicate the signatures of a subduc-
tion-modified mantle source. As shown in Fig. 12a, the samples 
are plotted in the field of sediments and subduction zone mag-
mas, indicating the source may have endured the influence of 
sediments before partial melting (Rottura et al., 1998). This 
conclusion is further supported by the result on Ta/La vs. Ce/Pb 
and Ba/Rb vs. Nb/La diagrams (Figs. 12b and 12c). The source 
was mainly affected by fluid metasomatism and contaminated 
by sediments (Oyhantcabal et al., 2007). Furthermore, on the 
Nb/Y vs. La/Nb diagram (Fig. 12d), all samples plots into the 
fluid-induced metasomatism field, showing that the depleted 
mantle source was mainly metasomatized by subducted 
slab-released fluids (Hoffer et al., 2008). 
 
4.3  Tectonic Significance  

Zircon LA-ICP-MSU-Pb ages of the gabbro and diorite 
from West Ujimqin indicate the plutons emplaced at 321±2.0 
and 319.4±1.5 Ma, respectively. The zircons were all crystal-
lized, and no inherited cores were observed in the CL images. 
Therefore, the zircon U-Pb ages can represent the formation 
time of the rocks. Quartz diorite pluton is unconformably cov-
ered by Upper Carboniferous Benbatu and Amushan Forma-
tions and it intrudes into the diorite pluton. This also verifies 
the accuracy of the isotopic ages. The gabbros and diorites have 
similar geochemical characteristics. All of the features afore-
mentioned indicate that the gabbros and diorites should be of 
synchronous magmatism occurred during the late Early Carbo-
niferous. 
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Figure 11. (a) Sm/Yb-La/Sm diagram after Zhu et al. (2008) and Aldanmaz et al. (2000); the parameters of PM, N-MORB and E-MORB are derived from Sun 

and McDonough (1989); (b) La/Ba-La/Nb diagram after Saunders (1992). 

 

 

Figure 12. (a) Ce/Pb-Ba/La diagram (Rottera et al. 1998); (b) Ce/Pb-Th/La diagram (Oyhantcabal et al. 2000); (c) Ba/Rb-Nb/La diagram (Oyhantcabal et al. 

2007); (d) La/Yb-Nb/Y diagram (Hoffer et al. 2008). 

 
The gabbros and diorites are plotted on a series of discri-

minant diagrams using incompatible immobile trace elements 
to interpret the tectonic setting in which they formed. 

On Nb×2-Zr/4-Y (Meschede, 1986) and Ti/100-Zr-Y×3 
(Pearce and Cann, 1973) diagrams (Figs. 13a and 13b), the 

gabbros and diorites are plotted in the field of volcanic arc 
basalt and N-MORB. Nb, Yb, Ti and Zr discrimination dia-
grams have also been used by previous workers to discriminate 
MORB (N-MORB, E-MORB), OIB and non-arc mantle array 
(Parlak, 2016; Dai et al., 2011; Pollock and Hibbard, 2010; 
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Pearce, 2008; Pearce and Peate, 1995). The gabbro and diorite 
samples from West Ujimqin mainly fall within the field of 
N-MORB on TiO2/Yb vs. Nb/Yb (Pearce, 2008) and Zr/Yb vs. 
Nb/Yb (Pearce and Peate, 1995) diagrams (Figs. 13c and 13d). 
The Hf/3-Th-Nb/16 plot (Wood, 1980) is used to distinguish 
island arc basalts (IAB), N-MORB, E-MORB and within plate 
alkaline basalts. Most samples are plotted (Fig. 13e) in the IAB 
field but near the field of N-MORB. Also they are displaced 
towards the Hf apex. The discrimination of magmas in this 
diagram results from the depleted mantle sources and high 
degrees of partial melting. In addition, on the Th/Yb-Nb/Yb 
(Pearce and Peate, 1995) diagram (Fig. 13f), all samples plot in 
the field of volcanic arc basalt but near the field of N-MORB.  

The results from tectonic setting discrimination diagrams 
discussed above reveal that the gabbros and diorites display 
both characteristics of volcanic arc basalt and MORB, which 
consistent with their geochemical characteristics. These 
attributes all indicate that a component from a depleted 
MORB-like mantle was involved in their generation. In view of 
the above, a depleted mantle-related magmatism associated to 
an expanding oceanic system should have been active where 
West Ujimqin gabbros sand diorites originated. However, very 
small volumes of such rocks are poorly recognized up to now 
suggesting that plume activity might have been limited. 

Basaltic rocks with both characteristics of arc-related ba-
salt and MORB can be generated under three kinds of tectonic 
settings as follows: (1) extensional mid-oceanic ridge related to 
the ridge subduction, e.g. tholeiitic basalt generated by the 
subduction of South Chile mid-oceanic ridge (Karsten, 1996); 
(2) extensional back-arc basin (Ma et al., 2015; Yan et al., 2015; 
Jeffrey et al., 2010); (3) immature juvenile oceanic basin (Chen 
et al., 2012). Previous researches have revealed that the   
Paleo-Asian Oceanic basin have closed before the Carbonifer-
ous, and then epicontinental sea and rifts developed in XMOB 
rather than mid-oceanic ridge and back-arc basin (Xu et al., 
2014; Shao et al., 2014, 1991; Bao et al., 2006; Su, 1996; Cao 
et al., 1986). The gabbros and diorites in the study area show 
geochemical characteristics of basaltic rocks from an immature 
newly-born oceanic basin.  

Intense rifting magmatic activities occurred in XMOB 
during the Carboniferous-Permian (Shao et al., 2014; Xu et al., 
2014; Tang, 1989). Published data show that there were wide-
spread mafic rocks, alkali granites, and bimodal volcanic rocks 
under the rift setting during this period (Cheng et al., 2014; 
Feng et al., 2014; Chen et al., 2012; Tang et al., 2011; Jahn et 
al., 2009; Yarmolyuk et al., 2008). All of these features are in 
accordance with the post-orogenic magmatism (Zhang et al., 
1999; Liegeois, 1998). Additionally, West Ujimqin Baiyingaole 
Carboniferous quartz diorite with age of 323 Ma was generated 
under an extensional tectonic setting after the collision between 
the North China and Siberian plates (Bao et al., 2007). In this 
study, the gabbros and diorites with ages of 321 and 319.4 Ma, 
respectively, are in accordance with the scope of the above age 
for Carboniferous quartz diorite (Bao et al., 2007). Furthermore, 
the Carboniferous–Permian strata in West Ujimqin are con-
temporaneous, but the heteropic strata in the sea trough formed 
under an intracontinental depression (possibly rift) setting (Li 

et al., 2015; Bao et al., 2006). 
The newly discovered ultrabasic and mafic rocks are sim-

ilar to the newly identified West Ujimqin Diyanmiao ophiolite 
(Li et al., 2013, 2012b,) in terms of geochemical characteristics 
(Dong, 2014). They probably represent the remnant ocean crust 
of this region. Bai (2013) reported a zircon LA-ICP-MS U-Pb 
age of 320 Ma for the gabbro from Diyanmiao ophiolite in 
West Ujimqin, in accordance with the zircon ages of the gab-
bros in this study, and with similar similar geochemical signa-
tures. This suggests that they originated from the same magma 
chamber and formed under the same tectonic setting. Accor-
dingly, the gabbros of this study may be a part of the ophiolite 
complex, so the age obtained in this study should represent the 
formation age of ophiolite in this area. Under an intense exten-
sional rift (Su, 1996), and a new ocean basin may have opened 
due to the thin continental crust or a deeper rift after further 
extension. The ophiolite complex in the study area probably 
developed in a deeper part of the rift, which further developed 
to an immature newly-born oceanic basin. The gabbros and 
diorites from West Ujimqin show geochemical characteristics 
both of N-MORB and subduction-related arc magmatic rocks 
with contamination and metasomatism. On the basis of com-
prehensive contrast analysis and combined with previous re-
searches, we deemed that the Early Carboniferous magmatism 
in West Ujimqin occurred under a new immature ocean basin. 

The mafic rocks from Mandula and Hegenshan formed in 
an extensional rift setting in the Early Permian, and the So-
lonker-Hegenshan belt probably had already developed into a 
new Red Sea-like oceanic basin after further development 
(Chen et al., 2012). The geochemical characteristics of the 
mafic rocks in this study are comparable to those of Mandula 
and Hegenshan mafic rocks, which indicate that a new incipient 
ocean basin opened in some parts of the Mandula-Hegenshan 
region under an intense extensional rift setting in the late Early 
Carboniferous. 
 
5  CONCLUSIONS 

The LA-ICP-MS zircon U-Pb age of the gabbros and dio-
rites from West Ujimqin are 321±2.0 and 319.4±1.5 Ma, re-
spectively, belonging to the late Early Carboniferous. 

The gabbros and diorites from West Ujimqin show slightly 
LREE-depleted chondrite-normalized REE patterns similar to 
N-MORB, with low TiO2 contents (average of 0.71%), 
La/Nb>1.5，La/Ta>22, indicating that the magma was derived 
from the shallow depleted lithospheric mantle. However, these 
samples are LILE (e.g., Rb, Ba and Sr) enriched and HFSE 
depleted, suggesting that the magmatic source probably under-
went subduction-related contamination and metasomatism. The 
magma generated from moderate (5%–20%) partial melting of 
the spinel lherzolite. 

On the basis of geochemical characteristics of the samples 
in this study, combined with regional geological data and pre-
vious researches, we believe that the Early Carboniferous gab-
bros and diorites from West Ujimqin formed under an intense 
extensional rift setting in the late Early Carboniferous, and a 
new limited incipient oceanic basin opened in West Ujimqin. 
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Figure 13. Tectonic discrimination diagrams (a) Nb×2-Zr/4-Y variation diagram (Meschede, 1986). AI. within-plate alkali basalts; AII. within-plate alkali basalts 

and within-plate tholeiites; B. E-type MORB; C. within-plate tholeiites and volcanic-arcbasalts; D. N-MORB and volcanic-arc basalts. (b) Ti/100-Zr-Y×3 dis-

crimination diagram (Pearce and Cann, 1973). A. island-arc tholeiites; B. MORB+island-arctholeiites+island-arc calc-alkali basalts; C. island-arc calc-alkali 

basalts; D. within-plate basalts. (c) TiO2/Yb-Nb/Yb diagram (Pearce, 2008). (d) Trace element plot of Zr/Yb vs Nb/Yb (Pearce and Peate, 1995). (e) 

Hf/3-Nb/16-Th plot (Wood, 1980). A. N-MORB; B. E-MORB; C. within plate alkaline basalts; D. island-arc tholeiites. (f) Th/Yb vs Nb/Yb diagram (Pearce and 

Peate, 1995) 
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