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This is overlain by 1.5 m thick interbedded sequence of micritic 
limestone, shale and grey chert, which contains Middle Triassic 
radiolarians (Otsuki et al., 1989). This sequence is succeeded 
by a 3 m thick bed of volcanic conglomerate which contains 
abundant sub-rounded fragments of amygdaloidal basalt, ig-
nimbrite and minor limestone in a grayish-green tuffaceous 
groundmass. The lower contact of the volcanic conglomerate 
sequence is with an intercalated sequence of micritic limestone, 
silicious shale and grey chert with Middle Triassic (Ladinian) 
radiolarian (Otsuki et al., 1989). A 5 cm thick sequence of inter-

calated shale and limestone unconformably overlies the conglo-
merate sequence, which is followed by a 40 cm thick greyish 
green tuff bed. This tuff bed is again followed by about 10 m 
thick sequence of thin bedded limestone and flaky shale. The 
presence of Middle Triassic (Ladinian) radiolarian chert (Otsuki 
et al., 1989) within the conglomerate sequence, and within the 
underlying intercalated sequence of limestone shale and chert, 
suggests that the basaltic lava flows were erupted in the Middle 
Triassic and were subsequently eroded and re-deposited as vol-
canic conglomerate shortly thereafter. 

 

 
Figure 1. Geological map of Muslim Bagh area showing the location of the Wulgai volcaniclastic rocks and the generalized stratigraphic sequence in the Wul-

gai area, Balochistan, Pakistan (modified after Kakar et al., 2012; Siddiqui et al., 2011). 

 

 
Figure 2. Field views of the Wulgai volcaniclastic rocks. (a) A view showing amygdaloidal basalt at the base, micritic limestone interbedded with shale and 

grey chert in the middle, while the volcanic conglomerate with tuffs at top; (b) a close view of the amygdaloidal basalt. 

 

2  PETROGRAPHY 

Most of the basalt samples collected from the Wulgai Sec-
tion are amygdaloidal and intensely altered (chloritised). Clino-
pyroxene and other ferromagnesian phenocrysts are completely 
altered and occur as chlorite pseudomorphs. Plagioclase is less 
affected by alteration and occurs as microlites and small crystals 
in the groundmass, but rarely also as phenocrysts. Petrographic 
study of the least altered ignimbrites shows that the fragments 
comprise several textural and mineralogical varieties, with nu-

merous fragments of porphyritic, glomerophyric, intersertal and 
vitrophyric basalts and large fragments of devitrified volcanic 
glass, augite, olivine and plagioclase. The main minerals identi-
fied are augite, olivine, plagioclase (An35–78) leucite and nosean, 
which occur as phenocrysts as well as in the groundmass. Apatite 
ilmenite, magnetite and hematite occur as accessory minerals, 
whereas chlorite, zeolites, chalcedony antigorite and calcite are 
found as secondary minerals. 
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3  GEOCHEMISTRY   
3.1  Analytical Methods  

Ten rock samples were analysed from the Wulgai area of 
Bagh complex for major and trace elements in the Geoscience 
Laboratory, Geological Survey of Pakistan, Islamabad (Table 1). 
For major elements, the sample powder (<200 mesh) was thor-
oughly mixed with lithium tetraborate (flux) with a 1 : 5 sample 
flux ratio and fused to form glass beads that were analysed by 
XRF. For trace elements powdered pellets of all the samples were 
analysed by XRF (X-ray fluorescence spectrophotometer, RI-
GAKU XRF-3370E). The accuracy and precision of the instru-
ment was assessed using international reference material JA-3 
(Govindaraju, 1989).  

3.2  Geochemical Results 
3.2.1  Hydrothermal alteration and elements mobility 

The petrographic data, higher values of LOI and CaO and 
lower values of SiO2 of the Wulgai volcaniclastic rocks indicate 
that these rocks have undergone a substantial degree of hydro-
thermal alteration and although these processes may have mobi-
lized the large-ion lithophile (LIL) elements (Pb, Ba, Rb and K), 
we note that on Fig. 4 Ba and Rb contents do not display signifi-
cantly more scattered than other elements usually regarded to be 
less-mobile (e.g., Nb, Zr and Y). However, that shows, we have 
avoided the use of LIL elements for the purpose of classification 
and discrimination, consequently, our discussion on the data is in 
favour of elements generally regarded to be relatively immobile; 

high field strength (HFS) elements under the hydrothermal con-
ditions experienced by these rocks (e.g., Hastie et al., 2007; 
Pearce, 1996; Winchester and Floyd, 1977). 

 
3.2.2  Classification 

To classify the samples they were plotted on a Zr/TiO2 vs. 
Nb/Y diagram (Fig. 3) which is less-susceptible to the effects of 
alteration. This immobile element classification diagram con-
firms that all the volcanic rocks are alkali basalts. 

 

 

Figure 3. Zr/TiO2 versus Nb/Y classification plot of the Wulgai volcaniclastic 

rocks from Balochistan, Pakistan (after Winchester and Floyd, 1977). 

Table 1  Bulk Chemistry of volcaniclastic rocks from the Wulgai area, Balochistan, Pakistan  

Sample W1 W2 W3 W4 W5 W6 W-7 W-8 W-9 W-10 W-11 W-12 W-13 

SiO2  27.1 25.91 26.9 46.28 41.83 41.07 39.82 40.47 33.31 30.36 41.5 28.39 36.23 

TiO2 1.99 1.65 1.81 2.27 2.33 2.32 2.37 2.52 1.74 1.94 2.60 1.74 1.62 

Al2O3 11.21 9.33 9.62 13.19 14.14 13.58 13.51 13.39 11.38 10.9 14.21 10.0 11.84 

Fe2O3 9.35 6.87 7.72 10.6 7.87 7.13 9.08 7.5 7.47 8.02 10.00 6.48 6.37 

MnO 0.43 0.21 0.22 0.12 0.12 0.13 0.14 0.14 0.21 0.19 0.13 0.19 0.16 

MgO 4.75 2.92 2.90 6.46 3.98 3.78 3.77 3.9 3.56 3.88 4.21 3.26 3.04 

CaO 22.18 27.29 25.74 7.55 12.39 13.76 13.41 14.35 20.36 21.84 11.0 25.11 19.2 

Na2O 2.47 3.43 3.68 2.67 4.98 4.78 4.71 4.55 3.87 3.29 4.96 3.16 4.43 

K2O 0.68 0.25 0.23 1.17 0.41 0.48 0.47 0.35 0.10 0.08 0.48 0.07 0.31 

P2O5 0.34 0.6 0.56 0.29 0.53 0.63 0.74 0.61 0.95 0.56 0.72 0.46 0.74 

LOI 19.5 21.54 20.62 9.4 11.4 12.33 11.97 12.55 17.6 18.93 10.23 21.23 16.06 

Total 100 100 100 100 99.98 99.99 99.99 100.33 100.55 99.99 100.04 100 100 

FeOT/MgO 1.75 2.09 2.37 1.46 1.76 1.68 2.14 1.71 1.84 2.11 1.77 1.86 1.85 

Mg# 50 46 43 55 50 51 45 51 49 49 45 50 49 

Ba 8 27 11 88 67 36 63 47 542 140 99 32 34 

Rb 20 10 8 35 15 17 17 14 6 5 18 5 14 

Sr 527 509 460 188 406 434 554 429 679 513 458 450 544 

Y 26 19 18 22 24 27 26 25 21 18 26 16 24 

Zr 166 134 140 176 241 236 246 235 161 159 265 143 202 

Nb 32 27 29 35 50 50 51 49 30 33 56 30 41 

Ni 18 8 7 35 9 10 13 11 14 12 21 12 55 

V 183 172 192 222 197 180 239 178 177 208 251 179 161 

Cr 64 0.2 1 74 7  1 11 1 1 54 8 56 

Co 63 52 46 39 38 18 19 18 19 20 21 18 41 

Ti 14 820 12 607 13 669 15 020 15 767 15 862 16 140 15 080 12 646 14 347 17 359 13 242 11 638

K 7 012 2 645 2 405 10 720 3 842 4 544 4 432 3 322 1 001 819 4438 738 3 065 

P 193 350 323 146 274 334 390 324 524 316 367 267 409 

SiO2-P2O5 are in wt. %, Ba-P are in ppm, Mg#=100×Mg /(Mg+Fe2+), FeOT = total Fe as FeO 
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3.2.3  Major element characteristics 
    In the Wulgai volcaniclastic rocks, Na2O content in some 
samples reaches up to 6.4 wt. %, possibly due to albitization. The 
CaO content is also highly variable as some of the samples con-
tain up to 26.9 wt. % due to partial replacement of some minerals 
by calcite and its presence in vesicles. Similarly, the original 
contents of SiO2, Al2O3 and other major elements may have been 
changed maybe due to the alteration processes and infillings of 
certain minerals like chlorite, chalcedony and zeolites in the 
vesicles. The Wulgai volcaniclastic rocks show a narrow range in 

TiO2 (1.9 wt. %–2.9 wt. %) a wider range for MgO (3.6 wt. %–1 
wt. %) and low abundances (13.5 wt. %–16.0 wt.%) of Al2O3. 
The P2O5 concentrations are highly variable (0.3 wt. %–1.2 
wt. %) in these volcaniclastic rocks. The major elements of the 
Wulgai alkali basalt show enrichment in K2O, Na2O, CaO, TiO2, 
MnO and P2O5 and depletion in MgO, Fe2O3, Al2O3 and SiO2 
relative to N-MORB (Table 2) and although the rocks are rela-
tively altered these overall trends are consistent with the reported 
values in alkaline rocks (e.g., Baker, 1987; Weaver et al., 1987). 

 

Table 2  Major (wt.%) and trace elements (ppm) and their ratios in average basalts from Wulgai, Bibai, N & E-MORBS,                                 

Oceanic islands, Hawaii, Reunion hotspot and Mount Kenya 

Sample Wulgai1 Bibai N-MORB E-MORB OIB Reunion Hawaii Mount Kenya 

SiO2 41.67 48.06 50.40 51.18 / 47.03 46.40 41.43 

TiO2 2.44 2.54 1.36 1.69 3.35 2.78 2.40 3.64 

Al2O3 14.21 16.47 15.19 16.01 / 14.38 14.18 11.87 

Fe2O3 9.55 11.08 10.01 9.40 / 12.81 14.99 15.57 

MnO 0.22 0.16 0.18 0.16 / 0.19 0.19 0.23 

MgO 4.6 5.98 8.96 6.90 / 8.10 9.47 10.52 

CaO 21.53 10.25 11.43 11.49 / 10.96 10.33 11.1 

Na2O 4.63 3.3 2.30 2.74 / 2.60 2.85 2.33 

K2O 0.48 1.75 0.09 0.43 1.12 0.92 0.93 1.48 

P2O5 0.67 0.42 0.14 0.15 / 0.36 0.28 0.94 

Ba 54.33 616 6.3 57 350 210 300 622 

Rb 14.83 37 0.56 5.04 31 19 22 52 

Sr 456 1 003 90 155 660 429 500 1230 

Y 22.58 28 28 22 29 29 21 26 

Zr 195.25 189 74 73 280 209 160 197 

Nb 40.25 47 2.33 8.3 48 25 16 59 

Ti 14 629.25 15 227 7 607 6 007 17 200 16 666 14 388 21 821 

K 3 998.5 14 528 598 2 092 1 200 7 637 7 720 12 286 

P 307.75 1 833 510 624 2 700 1 571 1 222 4 102 

V 196.83 / / / / / / / 

Values in columns: 1 is after Siddiqui et al. 2010; 2, 3 and 4 are from Sun and McDonough (1989); 5 is from 

Fisk et al. (1988); 6 is from Schilling et al. (1985); and 7 is from Price et al. (1985). The major elements in 

column 2 & 3 are from Humphris et al. 1985. /. Unmeasured. 

 

3.2.4  Trace element characteristics 
The Wulgai volcaniclastic rocks are enriched in the whole 

range of LIL elements including Rb, Sr and Ba and HFS ele-
ments including Nb, Zr and Ti except Y relative to average 
N-MORB (Sun and McDonough, 1989). Despite the fact the LIL 
elements have probably been modified by alteration these 
amounts are consistent with reported values of basaltic alkaline 
rocks (Tables 1 and 2). Multi-element diagrams are generally 
used to study the behaviour of incompatible trace elements in the 
rocks and to constrain their source regions, with reference to 
N-MORB, primordial mantle or any other tectonically important 
composition. 

The incompatible trace element patterns of the Wulgai vol-
caniclastic rocks exhibit variable enrichment in a range of trace 
elements (including LIL and HFS) relative to N-MORB and 
primordial mantle; however they have lower Y than the 
N-MORB (Fig. 4a). The patterns exhibit marked positive anoma-

lies on Nb, which further confirms derivation from an enriched 
mantle source (Kerr et al., 2010; Pearce, 1982). 

When normalized to Oceanic Island Basalt (OIB) the Wul-
gai volcaniclastic rocks samples show a slight depletion in LIL 
elements, while HFS elements remain almost parallel to OIB 
suggesting a source identical to OIB (Fig. 4b). These volcaniclas-
tic is much more similar to those of the Bibai volcanics found in 
Cretaceous Parh Group of the Indian Platform sediments (e.g., 
Mahoney et al., 2002). Compatible elements in these rocks are 
generally variable and low in Cr (0–248 ppm), Ni (9 ppm–77 
ppm) and Co (18 ppm–41 ppm) (Table 1). 
 
4  DISCUSSION  
4.1  Magma Chamber Processes 

The rocks contain 2.9 wt.%–4.8 wt.% MgO and so they can 
be classed as relatively low-MgO basalts and as such they have 
doubtless undergone a considerable degree of fractionation in  
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Figure 4. Multi-element diagrams of the Wulgai volcaniclastic rocks from Balochistan, Pakistan. (a) Primordial mantle-normalized; (b) Oceanic islands-normalized. 

Average N-MORB and normalization values are after Sun and McDonough (1989). 

 
magma chambers en route to the surface. Low Ni and Cr con-
tents (7 ppm–55 ppm and 0.2 ppm–63 ppm, respectively) indi-
cate that significant amounts of olivine and Cr-spinel have 
fractionated from the Wulgai magmas. The slight negative 
anomalies for Sr and, to a lesser extent, Ti on primitive mantle- 
and chondrite-normalised diagrams (Fig. 4) indicate that pla-
gioclase and Fe-Ti oxide have also fractionated from the mag-
mas, but to a much lesser extent than olivine. Clinopyroxene is 
also likely to have crystallised from these magmas, although 
based on the moderately high V contents (161 ppm–222 ppm) it 
was like plagioclase and Fe-Ti oxide not a major fractionating 
phase.  

The lack of any negative Nb anomaly indicates that these 
magmas are unlikely to have been contaminated with continen-
tal crust en route to the surface. Similarly, the fact that Ba and 
Rb are not noticeably more enriched than other incompatible 
trace elements supports the contention that the magmas respon-
sible for the Wulgai volcaniclastic rocks may have very little 
input from continental crust. 
 
4.2  Nature of Parent Magma and the Source Region 

As demonstrated earlier by Zr/TiO2 versus Nb/Y plot (Fig. 
3), the Wulgai volcaniclstic rocks are alkali basalts. The alka-
line extrusive and intrusive rocks from the Indian Continent 
margin (Triassic–Cretaceous) sediments have already been 
reported by earlier investigators (e.g., Kerr et al., 2010; Maho-
ney et al., 2002; Ahmed et al., 1990). 

The criteria generally used in support of basaltic rocks 
being primary melts of a mantle peridotite source rather than a 
product of fractionated liquids are: (a) the presence of mantle 
peridotite (lherzolite) xenoliths, (b) high magnesium number 
(Mg#=100×Mg/(Mg+Fe2+)), (c) high contents of compatible 
elements (Ni, Cr and Co). 

Basaltic magma derived from up and to 30% partially 
melted mantle peridotite source will have Mg# in the range of 
68–75 (Frey et al. 1978; Green 1976; Hanson and Langmuir 
1978). Gill (1981) has suggested an Mg#=67, whereas Tatsumi 
and Eggins (1995) have documented Mg#>70 for primary basal-
tic magmas. Basalts with 250 ppm–300 ppm Ni and 500 
ppm–600 ppm Cr contents are considered to be derived from a 
primary mantle source (Wilkinson and Le Maitre, 1987; Perfit et 

al., 1980). Likewise the Co contents in primary basaltic magma 
usually range from 27 ppm–80 ppm (Frey et al., 1978). 

No mantle lherzolite xenoliths have been reported from 
any fragment of the Wulgai volcaniclastic rocks assemblage.  
The Mg# (45–55), Ni (9 ppm–77 ppm), Cr (0–248 ppm) and Co 
(18 ppm–41 ppm) contents in the basaltic rocks of the volca-
niclastics are well below those of putative primary mantle melts. 
It is therefore highly likely that the parent magma of these 
rocks was not directly derived from a primary mantle source 
but fractionated in en-route to eruption.  

The marked positive Nb anomalies in the multi-element 
diagram (Fig. 4a) can be explained by the addition of this ele-
ment in the magma source from the mantle plume (e.g., Areva-
lo and McDonough, 2010; Pearce, 1982). These volcaniclastic 
rocks have low Zr/Nb, Y/Nb and Ti/Zr ratios as compared to 
N-MORB (Tables 1 and 2) and these values are consistent with 
an enriched mantle source (lherzolite). The very low values 
Y/Nb ratios (0.46–0.70) suggest the presence of garnet in the 
source (e.g., Luo et al., 2016; Xiong et al., 2016; Ansari et al., 
2011). This implies that garnet-lherzolite was the parent source 
of magma of these volcaniclastics.   

In Table 2, average trace element chemistry of the Wulgai 
volcaniclastic rocks is compared with average N-MORB, 
E-MORB, OIB, Reunion hotspot, Bibai, Hawaiin and continental 
rift basalts from the Mount Kenya. The Wulgai volcaniclastic 
rocks are very similar to Bibai, Reunion, Hawaii and Mount 
Kenya basalts. Source diagnostic ratios (Floyd, 1991) including 
Zr/Y, Ti/Zr, and of Wulgai volcaniclastic rocks, Bibai, Reunion, 
Hawaii and Mount Kenya basalts are more or less similar (Table 2) 
and there is little evidence show that the magmas from which the 
Wulgai volcaniclastic rocks were derived were affected by crustal 
contamination en-route to eruption.  

The Zr versus Zr/Y diagram (Fig. 5) provides useful in-
formation about the nature of source, degree of partial melting 
and fractionation and suggests that the parent magma of the 
Wulgai volcaniclastic rocks was generated by 10%–15% partial 
melting of an enriched source. The 0–2 Ma Reunion hotspot 
alkali basalts (e.g., Fisk et al., 1988) also plotted in the same 
field, suggesting not only a similar degree of partial melting of 
a similarly enriched mantle source but also a similar degree of 
fractionation for both the volcanic groups. 
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Figure 5. Zr versus Zr/Y plot (after Pearce and Norry, 1979) for the Middle 

Triassic volcaniclastic rocks from Wulgai. The basalts from Reunion hotspot 

(0–2 Ma in age) are also shown (Fisk et al. 1989). 

 

4.3  Tectonic Setting  
A number of plots and tectono-magmatic discrimination 

diagrams based on (HFS) elements are designed to study the 
parent magma and tectonic setting of the volcanic rocks. The 
plots of samples from the Wulgai volcaniclastic rocks on vari-
ous tectono-magmatic discrimination diagrams (Fig. 6a: after 
Fitton et al., 1997, Fig. 6b: after Pearce and Cann, 1973, Fig. 6c: 
after Pearce, 1982, Fig. 6d: after Pearce and Gale, 1997, Fig. 6e: 
after Meschede, 1986 and Fig. 6f: after Verma et al., 2006) 

strongly confirm their within plate alkaline nature and oceanic 
island basalt (OIB) affinities. The presence of radiolarian chert 
and shales in the Wulgai succession are suggestive of a 
deep-water environment and perhaps indicate that the juvenile 
ocean basin was reasonably well-developed when these igneous 
rocks were erupted. Accordingly, the Wulgai volcaniclastic 
rocks may have formed part of a seamount in the opening  
Ceno-Tethys Ocean. The alkaline and enriched nature of the 
rocks rules out an oceanic plateau origin for these rocks, since 
oceanic plateaus are predominantly tholeiitic in composition 
(see review and discriminating characteristics in Kerr et al., 
2014). 

During Late Paleozoic to Early Mesozoic many continen-
tal blocks (micro-continents) were separated from the northern 
and northeastern passive margin of Gondwana. These conti-
nental blocks drifted towards north and accreted to the southern 
active margin of Eurasia (Metcalfe, 1995; Brookfield, 1993; 
Kazmin, 1991; Sengör et al., 1988). A network of ophiolitic 
sutures, mark the collision zones between these blocks and 
Gondwana. The Tethys Ocean that once existed between the 
Gondwana in south and Eurasia in north is further divided into 
three ocean systems, named; Paleo-Tethys, Meso-Tethys and 
Ceno-Tethys (Metcalfe, 1995; Brookfield, 1993). These three 
ocean systems are equivalent to Tethys-1, Tethys-2 and    
Tethys-3 of Boulin (1981), whereas Meso Tethys and Ceno 
Tethys correspond to Neo-Tethys of Sengör (1979). 

 

 

Figure 6. Various tectono-magmatic discrimination diagrams for the Wulgai volcaniclastic rocks from Balochistan, Pakistan. (a) Nb/Y–Zr/Y (after Fitten et al., 

1997); (b) Zr–Ti (100)–Y×3 (after Pearce and Cann, 1973); (c) Ti/Y–Nb/Y (after Pearce, 1982); (d) Zr/Y–Ti/Y (after Pearce and Gale, 1977); (e) Zr/4–Nb×2–Y 

(after Meschede, 1986); (f) DF2–DF1 (after Verma et al., 2006). Key: In Fig. a, A=Island arc tholeiite, B=MORB+Island arc tholeiite, C=calc-alkaline basalts, 

D=within plate basalt. In Fig. e, AI=within plate alkalic, AII=within plate alkalic+within plate tholeiite, B=PMORB, C=volcanic arc basalt+NMORB+within 

plate tholeiite, D=volcanic arc basalt+NMORB. 
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Three main collages of continental blocks separated from 
the northern margin of Gondwana during Late Devonian to 
Late Jurassic and accreted with the southern margin of Eurasia 
during Permian to Eocene (Metcalfe, 1995; Brookfield, 1993). 
Separation, northward drifting and accretion of each collage of 
continental block were accompanied by opening and closing of 
these three successive oceans (Paleo-, Meso- and Ceno Tethys: 
Fig. 7). This complex network of accreted continents is known 
as Tethysides, which is further divided into Cimmirides and 
Alpides produced by Paleo and Neo-Tethys respectively 
(Sengör et al. 1988). The Alpides are also known as      
Alpine-Himalayan orogenic belt (Gansser, 1979). Triassic rift-
ing of Alpide collage of micro continental blocks (Afghan, Iran, 
Karakoram and Lhasa) from the northern margin of the Gond-
wana, led to the opening of Ceno-Tethys (Fig. 7). It is sug-
gested that the Middle Triassic intra-plate volcanism, reported 
in this paper and elsewhere) may represent the earliest mantle 
plume activity related to this Late Triassic rifting (Brookfield, 
1993; Metcalfe, 1995) from the northern margin of the Gond-
wana (Fig. 8). 

The Middle Triassic to Eocene history of Ceno-Tethys 
ocean floor, Indian Continent and Indian Ocean floor is illu-
strated in Fig. 8 which is based on the earlier research by Bou-
lin (1990, 1988), Sengör et al. (1988), Stöcklin (1989), Treloar 
and Christopher (1993), Brookfield (1993), Metcalfe (1995), 

Zaman and Torii (1999), Siddiqui et al. (2012) and Rehman et 
al. (2011). Figure 8a proposes that Middle Triassic Wulgai 
volcanism was accompanied by early rifting of the Afghan 
Block (a part of the Alpides) from the northern margin of 
Gondwana and subduction of Paleo-Tethys below Eurasia (Tu-
ran Block). This was followed by Late Triassic rifting of the 
Afghan Block, closure of Paleo-Tethys and suturing of Farah 
Block with Eurasia (Turan), (Zaman and Torii, 1999; Metcalfe, 
1995; Brookfield, 1993; Boulin, 1990, 1988; Stocklin, 1989; 
Sengör et al., 1988; Fig. 8b). Initial rifting of India from 
Gondwana and inception of intra-oceanic convergence in the 
Ceno-Tethys occurred in the Mid-Jurassic (Fig. 8c). The rifting 
of India from Gondwana continued into the Early Cretaceous, 
along with suturing of the Afghan Block with Eurasia, in-
tra-oceanic convergence in Ceno-Tethys and subduction of 
Ceno-Tethys below the Afghan Block (Fig. 8d). Obduction of 
the Muslim Bagh Ophiolite and associated mélange zone along 
with slivers of Ceno-Tethys Ocean floor and allochthonous 
blocks of Wulgai volcaniclastic rocks on to the north-western 
margin of the Indian Plate commenced in the Late Cretaceous 
(Fig. 8e). Finally, the north-western margin of the Indian Plate 
(on which was accreted the Wulgai volcaniclastic rocks) col-
lided with the Afghan Block in 50–35 Ma (e.g., Green et al., 
2008; Aitchison et al., 2007; Naka et al., 1996; Fig. 8f). 

 

 

Figure 7. Schematic diagram showing the tectonic history of South Asia (modified after Siddiqui et al., 2012; Naka et al., 1996). The separation and accretion 

ages of the continents are after Brookfield (1993) and Metcalfe (1995). 
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Figure 8. Tectonic reconstructions showing the Middle Triassic to Pliocene history of Ceno-Tethys Ocean floor, Indian continent and Indian Ocean floor (based 

on the data from Siddiqui et al., 2016, 2012; Rehman et al., 2011; Zaman and Torii, 1999; Metcalfe, 1995; Brookfield, 1993; Treloar et al., 1993; Boulin, 1990, 

1988; Stöcklin, 1989; Sengör et al., 1988).  
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5  CONCLUSIONS  
The petrogenetic study of the Middle Triassic volcaniclas-

tic rocks strongly suggests that these rocks belong to mildly to 
strongly alkaline intra-plate volcanic rock series.  

The parent magma of these rock suites was generated by 
about 10%–15% partial melting of an enriched mantle source. 
Their low Mg# and low Cr, Ni and Co contents suggest that the 
parent magma of these volcaniclastic rocks were not primary 
mantle melts but fractionated in an upper crustal magma 
chamber, en-route to eruption.  

It is suggested that this Middle Triassic intra-plate vol-
canism may represent mantle plume activity related to the Late 
Triassic rifting of micro-continental blocks including Afghan, 
Iran, Karakorum and Lhasa from the northern margin of the 
Gondwana. 
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