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ABSTRACT: This study reports zircon U-Pb and Hf isotopes and whole-rock elemental data for grano-
diorites from the East Kunlun orogen. The zircon U-Pb dating defines their crystallization age of 235 
Ma. The rocks are characterized by high-K calc-alkaline, magnesian and metaluminous with 
(K2O+Na2O)=6.38 wt.%–7.01 wt.%, Mg#=42–50 [Mg#=100×molar Mg/(Mg+FeOT)], A/CNK=0.92–0.98, 
coupled with high εHf(t) values from -0.65 to -1.80. The rocks were derived from partial melting of a ju-
venile mafic crustal source within normal crust thickness. The juvenile lower crust was generated by 
mixing lithospheric mantle-derived melt (55%–60%) and supracrustal melt (40%–45%) during the 
seafloor subduction. Together with available data from the East Kunlun, it is proposed that the studied 
Middle Triassic granodiorites were formed in post-collisional extension setting, in which melting of the 
juvenile lower crust in response to the basaltic magma underplating resulted in the production of 
high-K granodioritic melts.  
KEY WORDS: East Kunlun, granodiorite, geochronology, Hf isotope, magmatism. 

 
0  INTRODUCTION 

Orogenic belts, widely distributed in the Qinghai-Tibet Pla-
teau, are the pivotal sites for better understanding of the theory of 
crustal growth and the orogenic evolution on the Earth, since 
they have experienced multiple episodic tectono-magmatic 
cycles during the eastern Tethyan orogeny (Xiong et al., 2014; 
Xu et al., 2014; Bouilhol et al., 2013; Mo et al., 2009; Yang et al., 
2009). As the most typical product of orogeny, granitoids can 
provide valuable geodynamic information on the crustal growth 
and the tectonic evolution, because their geochemical and iso-
topic compositions can constrain the nature of source and the 
conditions of magma origin (Bellos et al., 2015; Bergemann et al., 
2014; Gong et al., 2014; Ostendorf et al., 2014).  

In this study, we focus on the granitoids in the East Kun-
lun orogenic belt (EKOB), which is the typical Tethyan oro-
genic belt in the Qinghai-Tibet Plateau. The granitoids in the 
EKOB mostly comprise Triassic high-K calc-alkaline rocks 
(Chen et al., 2015; Xiong et al., 2014; Zhang et al., 2012), 
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which are typical but genetic complex rocks in the Earth. The 
high-K calc-alkaline granitoids generally show arc-related 
geochemical imprints, which are however not necessarily ex-
plained as they were generated in subduction zone (Castro, 
2014; Pitcher, 1987), collisional or extensional settings are also 
reasonable alternatives (Honarmand et al., 2015; Eyal et al., 
2010; Ajaji et al., 1998). The AFC (assimilation-fractional 
crystallization) processes of basaltic magmas, partial melting of 
mafic to intermediate igneous sources and crust-mantle interac-
tion are possibilities to produce such magmas (Simon et al., 
2014; Cocherie et al., 1994; Rapp et al., 1991). Obviously, 
rationally determining the petrogenesis and tectonic implica-
tions of high-K calc-alkaline granitoids is the key to under-
standing the crustal growth and tectonic evolution of the EKOB. 
In this study, new zircon U-Pb and Hf isotopes and whole-rock 
elemental data for the Triassic granodiorites are used to quan-
tify the origin of the studied rocks, with the purpose of provid-
ing additional insights into mantle-crust interactions and the 
petrogenesis of high-K calc-alkaline felsic magmas. 
 
1  GEOLOGICAL SETTING 

The EKOB makes up the north part of the Qinghai-Tibetan 
Plateau (Fig. 1a), which is located between the Qaidam Basin 
to the north and the Bayan Har terrane to the south (Fig. 1a). It 
is widely accepted that the EKOB represents the boundary 
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between the Gondwana land and Laurasia domains after the 
subduction of the Paleo-Tethyan Ocean (Yang et al., 2009, 
1996). Subduction of the oceanic plate and subsequent conti-
nental collision resulted in the occurrence of large-scale granit-
ic magmatism in the EKOB during Late Permian to Late Trias-
sic (Fig. 1b) (Xiong et al., 2014, 2013; Zhang et al., 2012).  

The basement rocks of the studied area are the Proterozoic 
Xiaomiao Formation, consisting of two parts, i.e., the lower 
part of marble, amphibolite and biotite-hornblende gneiss, and 
the upper part of mica quartz schist, marble and metagrey-
wacke. Unconformably overlying the Xiaomiao Formation are 
Ordovician marine clastic and carbonate formation. Silurian– 
Middle Devonian strata are missing because the terrane uplifted 
at that time, but Late Devonian strata are present consisting of 
continental volcanic rocks. During Early Carboniferous to 
Permian, the area mainly consisted of shallow marine and pa-
ralic clastic formations (Bian et al., 2004). Oceanic subduction 
and continental collision took place during the Early Triassic, 
which led to the occurrence of widespread fold-thrust deforma-
tion and granitic magmatism in the EKOB (Xiong et al., 2014, 

2012; Xu et al., 2001). 
The studied granitic pluton, showing sharp contacts with 

their wall-rocks, intrudes into the Mesozoic strata (Fig. 1b) and 
is located in the eastern section of EKOB. 
 
2  SAMPLING AND PETROGRAPHY 

The samples for dating and geochemistry analyses are 
shown in Fig. 1c. The main lithology of the pluton is granodi-
orite, with small amount of porphyritic granodiorite (Fig. 2). 
The granitic pluton intrudes into the Early Triassic strata, and is 
characterized by development of joints (Fig. 2a). 

The granodiorites are medium-grained, massive, and equi-
granular (Fig. 2b), consisting of plagioclase (40 vol.%–45 
vol.%), quartz (20 vol.%–25 vol.%), K-feldspar (10 vol.%–15 
vol.%), hornblende (5 vol.%–10 vol.%) and biotite (~5 vol.%). 
The accessory minerals are titanite, apatite, zircon, epidote and 
opaques. The local visible porphyritic granodiorites are   
medium-grained and porphyraceous (Fig. 2c) with large phe-
nocrysts (length up to 5 mm) of plagioclase (5 vol.%–10 vol.%) 
and minor amounts of K-feldspar. The groundmass is fine- 

 

 

Figure 1. (a) Tectonic outline of the Tibetan Plateau showing the location of the EKOB (modified from Roger et al., 2003); (b) simplified geological map 

showing the distribution of granitoids in the EKOB (after Xiong et al., 2014); (c) simplified geological map of the studied granodioritic pluton. 
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Figure 2. Field and thin section photographs showing the studied granodiorites in the East Kunlun orogen. (a) and (b) the granodiorites show joint structure and 

equigranular texture; (c) the local visible porphyritic granodiorites showing porphyritic texture; (d) the granodiorites exhibiting equigranular texture dominated 

by plagioclase, quartz, potassium feldspar, amphibole and biotite. 

 
grained, consisting of plagioclase (40 vol.%–45 vol.%), quartz 
(20 vol.%–25 vol.%), K-feldspar (10 vol.%–15 vol.%), 
hornblende (~5 vol.%) and biotite (~5 vol.%). 
 
3  ANALYTICAL METHODS 

The samples collected from fresh outcrops were separated 
for zircons by heavy-liquid and magnetic methods. Zircon 
grains were photographed with an optical microscope, and their 
internal structure was checked by cathodoluminescence (CL). 
The U-Pb dating was done by laser ablation-inductively 
coupled plasma-mass spectrometry (LA-ICP-MS) at the State 
Key Laboratory of Geological Processes and Mineral Re-
sources (GPMR), China University of Geosciences, Wuhan. 
Zircon 91500 was used as external standard for U-Pb dating, 
and was analyzed twice every 5 analyses, the laser beam spot 
was 32 μm. Laser sampling was performed using a GeoLas 
2005. An Agilent 7500a ICP-MS instrument was used to ac-
quire ion-signal intensities. Helium was applied as carrier gas. 
Argon was used as the make-up gas and mixed with the carrier 
gas via a T-connector before entering the ICP. Nitrogen was 
added into the central gas flow (Ar+He) of the Ar plasma to 

lower the detection limit and improve precision. Concordia 
diagrams and weighted mean calculations were made using 
Isoplot/Ex_ver3 (Ludwig, 2003). Data were processed by 
ICPMSDataCal (Liu et al., 2010). Detailed operating condi-
tions for the laser ablation system and the ICP-MS instrument 
are the same as described by Liu et al. (2010). 

Whole rock samples were crushed in a corundum jaw 
crusher (to 60 meshes). About 60 g was powdered in an agate 
ring mill to less than 200 meshes for whole rock geochemistry 
analysis. Whole rock major element analyses were conducted 
by a Rigaku 3080E1-type spectrometer XRF at the Bureau of 
Geology and Mineral Resources, Hubei Province, China, with 
analytical precision better than 5%. Trace elements were ana-
lyzed with an Agilent 7500a ICP-MS at GPMR Laboratory, 
China University of Geosciences, Wuhan. The detailed sample- 
digesting procedure for ICP-MS analyses, analytical precision 
and accuracy for trace elements are the same as described by 
Liu et al. (2010).  

In-situ Hf isotope ratio analysis of zircon was conducted 
on the dated zircon grains using a Neptune Plus MC-ICP-MS 
(Thermo Fisher Scientific, Germany) in combination with a 
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Geolas 2005 excimer ArF laser ablation system (Lambda Phy-
sik, Göttingen, Germany) that was hosted at the GPMR, China 
University of Geosciences in Wuhan. All data were acquired on 
zircon in single spot ablation mode at a spot size of 44 μm. 
Detailed operating conditions for the laser ablation system and 
the MC-ICP-MS instrument and analytical method are the same 
as described by Hu et al. (2012). Off-line selection and integra-
tion of analytical signals, and mass bias calibrations were per-
formed using ICPMSDataCal (Liu et al., 2010). 
 
4  RESULTS 
4.1  LA-ICP-MS U-Pb Zircon Dating 

Zircon U-Pb data are presented in Table 1. Zircons from 
granodiorites are 200 to 300 µm in the longest dimension, 
with width/length ratios of about 1 : 2 to 1 : 5. All the zircons 
are transparent or pale yellow, euhedral columnar crystals, 
without inclusions and very limpid. Zircons from samples 
XH23-1 and XH03-1 exhibit typical oscillatory zoning (Fig. 
3). The zircons have high concentrations of Th and U (Table 1) 
and large Th/U ratios (0.48–0.85 and 0.27–0.58, respectively), 
indicative of magmatic origin (Corfu et al., 2003; Hoskin and 
Schaltegger, 2003).  

Zircons from Sample XH23-1 have high Th and U con-
tents (Th=366 ppm–1 059 ppm, U=598 ppm–1 805 ppm) and 
high ratios of Th/U (average=0.59). Twenty spots were ana-

lyzed, which yield concordant 206Pb/238U ages ranging from 
231 to 239 Ma (Table 1). The analyses give a weighted mean 
age of 235.4±1.5 Ma (MSWD=0.21, 1σ for errors), which is 
identical to the concordant age (235.5±1.6 Ma, Fig. 3).  

Zircons from Sample XH03-1 have similar contents of Th 
and U to those from Sample XH23-1 (Th=219 ppm–1 174 ppm, 
U=809 ppm–2 441 ppm, Table 1) and similar ratios of Th/U 
(average=0.48). Twenty spots were analyzed, and the zircons 
yield similar 206Pb/238U ages ranging from 228 to 243 Ma, and 
give a weighted mean of 234.5±1.9 Ma (MSWD=1.8, 1σ for 
errors), which is similar, within error, to their concordant age 
(232.2±1.8 Ma, Fig. 3). Thus, the best estimate for the crystal-
lization age of the granodiorite may be ca. 235 Ma, which 
represents the granitic magmatism occurred at Middle Triassic.  

 
4.2  Whole-Rock Geochemistry 

Selected chemical analysis of representative samples are 
listed in Table 2. The granodiorites span a narrow range of SiO2 
content (63.60 wt.%–67.00 wt.%), and define a subalkaline 
trend in the total alkali-silica (TAS) diagram (Fig. 4a). The 
granodiorites have moderate concentations of FeOT (3.24 
wt.%–4.66 wt.%) and MgO (1.67 wt.%–2.39 wt.%), with high 
values of Mg# [Mg#=100×molar Mg/(Mg+ FeOT); 42–50], 
showing characteristics of magnesian granitoids (Fig. 4b). The 
granodiorites have high contents of K2O+Na2O (6.38 wt.%– 
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Figure 3. Representative CL images of zircons and Zircon U-Pb concordia diagrams for the studied granodiorites in the East Kunlun. 
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7.01 wt.%), moderate contents of CaO (3.63 wt.%–4.24 wt.%), 
showing calc-alkaline trend (Fig. 4c). All the rocks are metalu-
minous (A/CNK=0.92–0.98; Fig. 4d), resembling typical I-type 
granitoids (Chappell and White, 2001; Chappell, 1999).  

In the chondrite-normalized REE diagrams (Fig. 5a), the 
granodiorites exhibit enrichment of light rare earth elements 
(LREE) with (La/Yb)N of 9.05–21.90, and show moderate neg-
ative Eu anomalies (δEu=0.68–0.84), as well as higher diffe-
rentiation of LREEs [(La/Sm)N=4.15–5.07] than those of heavy 
rare earth elements (HREE) [(Gd/Yb)N=1.52–2.73; Fig. 5a]. All 
the rocks are characterized by depletion of Nb, Ta, P, and Ti, 
and strong enrichment of large ion lithophile elements (LILE) 
in the primitive mantle-normalized trace element spider dia-
gram (Fig. 5b).  
 
4.3  Zircon Lu-Hf Isotopic Compositions 

Zircons from the granodiorite (XH23-1) with 206Pb/238U 
age of 235 Ma have high initial 176Hf/177Hf values 
[(176Hf/177Hf)i=0.282 577–0.282 610, Table 3], and display 
homogeneous isotopic compositions with εHf(t) values ranging 
from -1.80 to -0.65. Two-stage model ages (T2DM) are calcu-
lated by assuming a mean 176Lu/177Hf value of 0.015 for an 
average continental crust (Griffin et al., 2002), and the zircons 
from the studied rocks have similar two-stage Hf model ages of 
1.31–1.38 Ga.  
 
5  DISCUSSION 
5.1  Petrogenesis of the Granodiorites 
5.1.1  Source type and magmatic processes 

Several models have been proposed to account for the 
generation of calc-alkaline granodioritic magmas. Two large 
model categories are distinguished depending on the locus of 
magma generation: (1) those invoking fractional crystalliza-

tion of a mantle-derived basaltic parent magma (Castro, 2013; 
Soesoo, 2000), which may further assimilate crustal materials 
to account for their trace elements and isotopic enrichment 
(Depaolo, 1981), and (2) those invoking remelting of a lower 
crust basaltic protolith (Jagoutz et al., 2013; Jung et al., 2009). 
Contemporaneous basaltic magma in the EKOB is alkaline 
and has Hf-Nd isotopes identical to the OIB (Hu et al., 2015; 
Xiong et al., 2013), arguing against the studied granodioritic 
magma was formed by extensive fractionation of basaltic 
magma. The absence of gabbro-diorite-granodiorite suites in 
the studied area also argues against the fractionation of basal-
tic magma, because fractionation of basaltic magma would 
produce dioritic, tonalitic, granodioritic, and granitic melts 
which constrain the liquid line of descent (Bucholz et al., 
2014; Castro, 2013). 

Instead we favour a model invoking partial melting of a 
mafic protolith in the post-collisional setting, to generate the 
granodioritic magma. The studied granodiorites have low SiO2 
(63.6 wt.%–67.0 wt.%), suggesting one mafic source such as 
amphibolite. Hydrous melting of a mafic source generally ge-
nerates a peraluminous melt (Beard et al., 2004). The studied 
granodiorites are metaluminous with A/CNK values of 
0.92–0.99 (Table 2), indicating water-unsaturated partial melt-
ing. Dehydration melting experiments of mafic protolith at 
lower crustal temperatures (800–1 000 ºC) and pressure (6.9 
kbar) generates metaluminous granodioritic to trondhjemitic 
melts (Rapp and Watson, 1995; Beard and Lofgren, 1991) sim-
ilar to the studied rocks. The potassium contents of the silicic 
melts generated by dehydration melting of mafic protolith are 
chiefly controlled by the initial potassium contents of their 
sources (Sisson et al., 2004). Thus, the average composition of 
the mafic lower crust would have a high-K composition appro-
priate for the source of the granodioritic magma.  

 
Table 2  Whole-rock geochemical compositions of the studied granodiorites in East Kunlun orogenic belt 

Samples XH03-1 XH17-1 XH17-2 XH20-1 XH23-1 XH25-1 XH25-3 

Major element (wt.%) 

SiO2 63.60 65.76 64.66 67.00 65.98 66.13 66.52 

TiO2 0.55 0.63 0.61 0.53 0.57 0.52 0.55 

Al2O3 15.80 15.42 15.53 15.75 15.44 15.55 15.10 

Fe2O3 0.62 1.20 1.25 0.62 1.56 1.20 1.69 

FeO 4.10 2.92 3.10 2.68 2.85 3.03 2.80 

MnO 0.05 0.07 0.07 0.06 0.08 0.08 0.09 

MgO 2.29 2.06 2.39 1.67 1.74 1.77 1.76 

CaO 4.24 3.82 4.12 3.77 3.80 3.78 3.63 

Na2O 2.33 3.46 3.41 3.76 3.74 3.79 3.67 

K2O 4.05 3.55 3.52 2.82 2.98 2.99 3.09 

P2O5 0.13 0.14 0.13 0.12 0.12 0.10 0.12 

LOI 1.73 0.47 0.66 0.68 0.61 0.49 0.52 

Total 99.49 99.50 99.45 99.46 99.47 99.43 99.54 

FeOT 4.66 4.00 4.22 3.24 4.25 4.11 4.32 

Mg# 47 48 50 48 42 43 42 



Geochronology and Petrogenesis of Triassic High-K Calc-Alkaline Granodiorites in the East Kunlun Orogen  481 

 

Table 2  Continued 

Samples XH03-1 XH17-1 XH17-2 XH20-1 XH23-1 XH25-1 XH25-3 

Trace element (ppm) 

V 55.8 62.2 69.8 51.3 67.8 67.1 67.3 

Sc 9.36 8.85 9.92 6.65 9.38 10.1 10.1 

Cr 45.7 28.5 33.9 23.8 9.69 11.4 10.6 

Co 9.77 10.2 11.2 7.54 9.88 10.4 10.3 

Ni 15.1 11.5 12.7 6.27 4.72 4.90 4.58 

Zn 91.4 57.3 56.2 54.9 59.4 59.9 59.6 

Cu 96.9 6.16 8.60 1.56 3.63 4.08 3.21 

Ga 18.6 18.8 18.0 19.6 18.0 18.3 18.0 

Rb 164 153 141 82.1 106 120 121 

Sr 403 373 367 523 315 307 278 

Y 15.9 20.4 21.5 13.1 22.4 23.8 24.7 

Zr 156 210 207 154 132 177 222 

Nb 11.1 12.6 11.7 9.70 11.2 10.7 12.0 

Cs 4.85 6.10 5.77 2.07 3.29 3.98 4.66 

Ba 757 775 827 923 863 834 830 

Hf 4.38 5.64 5.66 4.29 3.89 4.86 6.12 

Ta 0.94 1.11 0.99 0.88 0.76 0.85 0.93 

Pb 7.90 22.4 19.5 15.3 14.9 16.7 17.3 

Th 13.4 23.2 19.6 10.7 11.9 15.7 14.9 

U 3.67 2.43 2.45 2.29 1.17 2.19 1.59 

La 34.4 41.9 38.7 34.1 29.0 38.2 34.3 

Ce 63.4 81.4 78.1 63.3 53.4 70.8 63.6 

Pr 7.01 8.66 8.35 7.00 6.05 7.68 6.95 

Nd 24.7 31.1 29.9 25.2 22.6 27.1 25.7 

Sm 4.27 5.27 5.40 4.33 4.40 4.97 4.84 

Eu 1.11 1.13 1.10 1.08 1.11 1.11 1.07 

Gd 3.63 4.55 4.58 3.54 4.12 4.39 4.60 

Tb 0.54 0.67 0.68 0.48 0.64 0.68 0.72 

Dy 2.86 3.69 3.70 2.60 3.93 3.98 4.16 

Ho 0.55 0.70 0.75 0.46 0.79 0.83 0.85 

Er 1.51 1.96 2.10 1.22 2.18 2.40 2.44 

Tm 0.23 0.28 0.33 0.18 0.35 0.36 0.38 

Yb 1.39 1.86 1.94 1.05 2.16 2.35 2.41 

Lu 0.23 0.28 0.32 0.17 0.33 0.39 0.39 

∑REE 162 204 198 158 153 189 177 

(La/Yb)N 16.7 15.2 13.5 21.9 9.05 11.0 9.63 

(Gd/Yb)N 2.11 1.98 1.91 2.73 1.55 1.52 1.55 

δEu 0.84 0.69 0.66 0.82 0.79 0.71 0.68 

Note: Total Fe as FeOT; Mg#=100×molar MgO/(MgO+FeOT). 
 

Besides, the major-element geochemical variation also 
further indicates that the magma was generated from the water 
undersaturated source at a low pressure condition (Fig. 6) (Ca-
stro, 2013). The inference of low pressure source is in agree-
ment with the REE patterns of the studied granodiorites. The 
experimental studies show that garnet would be major residual 

phases at a high pressure (8–11 kbar) (Wyllie and Wolf, 1993). 
If garnet is a residual phase in the source, the resultant magmas 
would show strong HREE depletion. Thus, the possibility of a 
high pressure magma source can be excluded because of the 
studied rocks show flat HREE patterns and high HREE   
concentrations (Fig. 5a). If amphibole is a residual phase,  
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it will induce concave-upward REE patterns between the mid-
dle and heavy REE because of its high partition coefficients 
for these elements in intermediate to felsic melts (Martin, 2007; 
Tiepolo et al., 2007). The samples show a progressive de-
crease in middle and heavy REE with increasing atomic num-
ber (Fig. 5a), suggesting breakdown of amphibole during re-
melting. The breakdown of amphibole plays a key role in de-
hydration melting, which always supplies initial water to gen-
erate melt at the initial stage of melting (Rapp, 1995; Wolf and 
Wyllie, 1994). In a water-unsaturated source at the lower crust 
(<8 kbar), an extremely high temperature (thermal gra-

dient >35 ºC/km) would be required for the breakdown of 
amphibole (Wolf and Wyllie, 1994; Wyllie and Wolf, 1993). 
Therefore, we infer that the studied graniodiorites were gener-
ated through partial melting of a mafic crustal source with 
normal continental crust thickness at a relatively high thermal 
gradient (>35 ºC/km). 

Most of the studied samples fall on the cotectic lines of the 
F-An-Or pseudoternary projection (Castro, 2013), which shows 
that the magma was mainly controlled by the fractionation 
without any assimilation or mixing (Fig. 6). The minerals that 
are dominated by the fractional crystallization have been 
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Figure 4. Chemical classifications of the studied granodiorites. (a) Rock classification plots of SiO2 vs. (Na2O+K2O) (Middlemost, 1994); (b) 

FeOT/(FeOT+MgO) vs. SiO2 diagram (Frost et al., 2001); (c) SiO2 vs. Na2O+K2O-CaO diagram (Frost et al., 2001); (d) A/NK vs. A/CNK diagram (Maniar and 

Piccoli, 1989; Chappell and White, 1974).  
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Figure 5. Chondrite-normalized REE patterns and primitive mantle-normalized element spider diagrams for the studied rocks. Chondrite REE abundances are 

after Taylor and McLennan (1985), trace element abundances for the primitive mantle are after Sun and Mcdonough (1989). 
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Figure 7. Variations in Cr vs. Ni and (La/Yb)N vs. La for the studied granodiorites showing the fractional crystallization. 

 
discussed herein. A positive correlation between Cr and Ni 
strongly suggests biotite and clinopyroxene fractionation (Fig. 
7a). Weakly negative Eu anomalies and the correlations be-
tween Sr and Eu/Eu* observed in the granodiorites are indica-
tive of small amount of plagioclase fractionation. Accessory 
minerals are extremely important in controlling the contents of 
REEs (Gerdes et al., 2009), and the positive correlation be-
tween (La/Yb)N and La suggests that the monazite and allanite 
are the important fractionated minerals (Fig. 7b). 
 
5.1.2  Source characteristics and its origin 

The above discussion has proposed that the felsic melts 
were generated in lower crust level (LCC), but there are two 
different types of lower crust in orogenic belts, i.e., ancient 
basement and juvenile crust. We futher propose that the studied  
granodioritic melts are partial melts of one juvenile crust, and 
this juvenile source is the mixing product between mantle- and 
crust-derived melts during the Paleo-Tethyan subduction. This 
interpretation is supported by the following evidences. 

(1) The zircon U-Pb chronology indicates that the base-
ment rocks (i.e., Xiaomiao Formation) in the EKOB are formed 

in Paleoproterozoic to Early Mesoproterozoic (1.4–2.5 Ga; 
Chen et al., 2011; Wang et al., 2004), which is much older than 
Hf model ages of the studied rocks (~1.3 Ga), as shown in Fig. 
9. Such differences imply that the source contains a certain 
amount of crustal materials younger than the basement. 

(2) The studied granodiorites are isotopically more dep-
leted than the ancient basement with higher εHf(t) values (-1.80 
to -0.65), displaying overlapping Lu-Hf isotopic compositions 
with the mantle-derived gabbroic rocks (Fig. 9) (Xiong et al., 
2014; Chen et al., 2007a), which suggests that the magma 
source was closely related to the mantle material, either by the 
direct input of mantle-derived mafic melts or by remelting of a 
juvenile mantle-derived mafic lower crust.  

No mafic or quartz diorite enclaves were found in the 
granodiorite, precluding an origin of magma mixing between 
mafic and felsic magmas (Xia et al., 2014; Xiong et al., 2014; 
Barbarin and Didier, 1992), which is consistent with the dia-
gram of F-An-Or (Fig. 6). Thus, since the possibility of frac-
tional crystallization of basaltic magma has been ruled out, 
we attribute their mantle imprintings to juvenile mafic lower 
crust. 
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Figure 10. Isotopic modeling showing the studied granodiorites plot along 

an apparent ‘mixing’ trend between Paleo-Tethyan MORB and terrestrial 

sediments (Shaliuhe gneiss). 

 
The juvenile materials were formed by crust-mantle inte-

raction, as evidenced by the ratios of incompatible elements 
and Hf isotopes of the studied rocks. Incompatible element 
ratios are strictly controlled by the source, which is not influ-
enced by the processes of fractional crystallization and partial 
melting (Hu et al., 2015; Pearce and Norry, 1979). The studied 
felsic rocks show average ratios of Zr/Y (9.12) and Sm/Nd 
(0.18) resemble the the upper crust (UCC) (Zr/Y=9.19, 
Sm/Nd=0.17 [UCC] vs. Zr/Y=4.25, Sm/Nd=0.26 [LCC]) 
(Rudnick and Gao, 2003). In the diagram of Ta* vs. Nb* (Fig. 
8), the granodiorites show also closely ratios resemble the UCC, 
which suggests the upper crustal materials have significant 
contribution to the generation of the juvenile lower crust. 

The supracrustal signature of incompatible element ratios 
and the enriched mantle signature of Hf isotopes might reflect 
the juvenile lower crust was formed by a hybrid source con-
sisting of the lithospheric mantle and ancient supracrustal crust. 
The addition of the ancient supracrustal materials will lead to 
the juvenile lower crust has old modal age (~1.3 Ga).  

Owing to the intensive basaltic magma underplating and 
crust-mantle interaction during the Late Permian–Early Triassic 
(Liu et al., 2014; Xiong et al., 2013, 2012), one juvenile lower 
crust formed by magma mixing lithospheric mantle and supra-
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crustal melts (Ding et al., 2014; Xiong et al., 2012; Zhang et al., 
2012). Partial melting of such juvenile lower crust would pro-
duce felsic melts parental to the studied granodiorites in the 
EKOB. We attempt to estimate the relative proportions of crust 
and mantle contributions to the juvenile lower crust in terms of 
trace elements and isotopes (Fig. 10). We choose two end 
members: (1) MORB-like basalts from the Buqingshan Paleo- 
Tethyan ophiolite as representing the contemporary Paleo- 
Tethyan mantle component (Bian et al., 2004); (2) Shaliuhe 
gneiss forming the major component of the supracrustal rocks 
in the EKOB as representing the crustal component (Chen et al., 
2007b; Harris et al., 1988). Our modeling calculation shows 
that at least 40%–45% supracrustal materials contributed to the 
mantle-derived mafic melts (Fig. 10). 
 
5.2  Geological Implications 

The low pressure environment of the felsic melt (0.7–1 
GPa; Fig. 6) indicates that the magma was derived from lower 
crust with normal crustal thickness. Thus, according to the 
normal temperature gradient (~25 ºC/km), the temperature will 

not exceed 750 ºC, which is much lower than the apatite satura-
tion temperature of the studied pluton (1 123–1 163 ºC; calcu-
lated by the formula of Harrison and Watson, 1984). Therefore, 
the external high temperature heat source is required, and this 
conclusion is consistent with the above discussion, i.e., the 
studied high-K calc-alkaline granitoid rocks (~234 Ma) were 
probably derived from partial melting of juvenile lower crust at 
a high thermal gradient (>35 ºC/km). 

High temperature gradient in normal continental crust 
level is most likely to occur in the post-collisional extension 
setting. During the extension of the lithosphere, basaltic 
magma underplating would cause significant temperature 
elevation at the lower crustal level. The joint effect of heating 
and decompression may have triggered partial melting of the 
lower crust in the EKOB. Thus, melting of the juvenile lower 
crust in the EKOB is mainly attributed to the post-collisional 
extension. 

The proposal of post-collisional extension is consistent 
with the type and characteristics of the Late Paleozoic–Early 
Mesozoic magmatism in the EKOB. As shown in Fig. 11, the 
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Figure 11. The diagram of magma-tectonic evolution cycle showing the volcanism, plutonism and mafic dykes during the Paleo-Tethyan orogeny in the East 
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Late Carboniferous MORB in the A’nyemaqen suture zone 
marks the spreading of the Paleo-Tethyan Ocean (Yang et al., 
2009), the Early Permian tholeiitic mafic dyke swarms suggests 
the initial subduction of the ocean basin (Liu et al., 2014), and 
the Late Permian to Early Triassic large scale calc-alkaline 
magmatism constitutes the giant magma arc in the EKOB (Li et 
al., 2015; Xiong et al., 2014, 2012). More importantly, large 
amount of extension-related magmatism occured since the late 
stage of Middle Triassic, such as the alkaline mafic dyke 
swarm, A-type granitoids, adakite-like granitoids, high Nb-Ta 
rhyolites and the bimodal volcanic rocks (Hu et al., 2015; Xia 
et al., 2014; Xiong et al., 2014; Ding et al., 2011; Zhu et al., 
2003), which indicates that the post-collisional extension could 
occur as early as 235 Ma in the EKOB. 

This study shows the relationship between the origin of 
high-K calc-alkaline granodiorite, and the growth and evolution 
of continental crust through magmatism during orogeny. For a 
long time, there is a general consensus about the contribution of 
high-K calc-alkaline granodioritic batholiths to the growth and 
evolution of the continent crust since Late Archean (Condie, 
2014; Hawkesworth et al., 2010). This study proposes that 
high-K calc-alkaline granodiorities could be derived from 
melting of the juvenile lower crustal during post-collisional 
extension, but the juvenile source was formed earlier by 
crust-mantle interaction during the slab subduction. 
 
6  CONCLUSIONS 

Based on zircon U-Pb dating and Hf isotopic analysis, as 
well as whole-rock geochemical analysis of the granodiorites in 
the eastern section of EKOB, the following conclusions can be 
drawn. 

(1) The studied granodiorites yield zircon U-Pb ages of 
235 Ma, and their geochemical compositions show that they are 
typical high-K calc-alkaline, magnesian, metaluminous I-type 
granitoids. 

(2) The granodiorites exhibit enrichment of LREE with 
flat HREE patterns [(Gd/Yb)N=1.52–2.73], coupled with high 
Mg# (42–50) and high εHf(t) values from -0.65 to -1.80, indi-
cating that they were derived from partial melting of a juvenile 
mafic crustal source within normal crust thickness. 

(3) The supracrustal signature of incompatible element ra-
tios and the enriched mantle signature of Hf isotopes might 
reflect the juvenile lower crust was formed by mixing between 
lithospheric mantle-derived melt and supracrustal melt 
(40%–45%) during the seafloor subduction.  

(4) The petrogenesis of Middle Triassic granitoids in the 
EKOB was probably related to the post-collisional extension 
that caused the basaltic magma underplating, which triggered 
partial melting of the juvenile lower crust. 
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