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ABSTRACT: The Longmenshan Range is a tectonically composite intracontinental orogen. Its structure, 

deformation and spatial evolution reflect multiple kinematic eposides and variable dynamics especially 

during Post-Middle to Post-Late Triassic time. Field work, lower-temperature thermochronological data 

and U-Pb detrital zircon ages indicate document down-dip zonation and along-strike segmentation dem-

onstrated by significant differences in geological structure, intensity of deformation and deformation-    

involved strata, uplift and cooling processes. Low-temperature thermochronology and U-Pb detrital zir-

con ages reveal a period of tectono-thermal quiescence with slow uplift and cooling during post Early 

Norian to Rhaetian orogeny, followed by rapid cooling and uplift during the Late Cenozoic accompanied 

by coeval southeastward thrusting and southwestward propagation of defromation. The Longmenshan 

Range formed by S-N striking compression exerted by the Qinling orogen, E-W striking compression by 

the Tibetan Plateau and SE-striking compression by the Yangtze Plate. We propose a southwestward 

propagation model for the Longmenshan Range based our observations of zonation, segmentation and 

composite evolutional processes during the Late Triassic superimposed by development of the differen-

tial uplift and cooling processes that shows southern segments of the Longmenshan Range during 

Post-Jurassic times. 
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Longmenshan, Tibetan Plateau. 
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INTRODUCTION 

Structure, deformation and dynamic evolution 
along plate boundaries and within continents provide 
important evidence about plate tectonics (Aitken, 
2011; Spotila et al., 2007; Yin and Harrison, 2000; 
Molnar, 1988). If the long-term tectonic evolution of 
an orogen is significantly influenced by geodynamic 
processes operating on different scales in different 
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blocks at different periods, then the dynamic evolution 
of the orogen and the superimposed present-day 
framework should reflect such composite kinematics 
and therefore deciphering patterns of structure and 
evolution processes of orogens is a worthwhile subject 
for studies of continental tectonics. 

The Longmenshan Mountain Range (“shan” 
means “mountain” in Chinese) separates the eastern 
margin of the Tibetan Plateau from the western mar-
gin of the Yangtze continental plate (or South China 
Block). It has been the focus of geological study for 
nearly a century (e.g., Heim, 1934) due to its location 
and distinctive structures. One of the reasons is that 
the Longmenshan Range lies at the boundary between 
the West Pacific tectonic domain and the 
Tethys-Himalaya domain and has been affected by 
collision of the South China Block and North China 
Block in the Triassic Indo-Chinese Epoch and the 
Cenozoic Indian-Asian collision. The dynamics of its 
orogenic evolution are a key to understanding inter-
continental structures in the eastern Tibetan Plateau 
during Mid-Cenozoic times (Yan et al., 2011; Royden 
et al., 2008; Harrowfield and Wilson, 2005; Worley 
and Wilson, 1996; Burchfiel et al., 1995; Chen et al., 
1995; Luo, 1994). The Longmenshan Range and the 
Western Sichuan Basin in western China together 
constitute a typical thrust belt and foreland basin sys-
tem (Fig. 1). Their structural features and evolutionary 
processes are a crucial guide to successful petroleum 
exploration in the western Sichuan Basin (Deng et al., 
2012a; Jia et al., 2006; Meng et al., 2005; Li et al., 
2003; Guo et al., 1996). Longmenshan is also a geo-
morphological boundary and gravity gradient zone 
between eastern and western China. The dynamic 
evolution of the Longmenshan Range is associated 
with the eastward growth of the Tibetan Plateau 
(Wang et al., 2012; Wilson and Fowler, 2011; Godard 
et al., 2009; Royden et al., 2008; Densmore et al., 
2007; Kirby et al., 2002) and finally the relationship 
between structure and neotectonics has received sig-
nificant attention since the “5.12” Wenchuan Earth-
quake in 2008 (Zhang et al., 2010; Hubbard and Shaw, 
2009; Burchfiel et al., 2008).  

In this article we systematically discuss different 
structures and evolutionary processes of the Long-
menshan Range both along strike and down dip, based 

on field work, low-temperature thermochronological 
data and U-Pb detrital zircon ages. We propose a new 
tectonic model involving southwestward propagation 
of deformation to understand the continental dynamics 
of Longmenshan and adjacent areas. 

 
GEOLOGICAL SETTING 

The Longmenshan Mountain Range is 500 km 
long and 30 km wide, trends NE-SW (Fig. 1), and is 
located between the eastern margin of the Tibetan 
Plateau and the western boundary of the Sichuan Ba-
sin, extending from Guangyuan at the northern end to 
Ya’an, Sichuan Province at the southern end. It ad-
joins the Qinling Orogen to the north and the Kang-
dian Orogen to the south, is bounded by the    
Maoxian-Wenchuan fault to the northwest and sepa-
rated from the Sichuan Basin by the Anxian-Guanxian 
fault in the southeast (Fig. 1). Structurally, Longmen-
shan Range is dominantly composed of a series of 
NE-SW thrust faults and klippen. It can be divided 
into two tectonic belts with contrasting stratigraphy, 
petrology, structure and metamorphism, separated by 
the NW-dipping Beichuan-Yingxiu fault; a western 
thrust belt and an eastern detachment belt. It can be 
further subdivided into northern, central and southern 
segments from the Anxian area at the north to the 
Huaiyuan area in the south (Fig. 1).  

After the consolidation of its Archean and Pro-
terozoic basement, the geological evolution of the 
Longmenshan area can be divided into two major 
stages. The first is a passive margin craton stage from 
Sinian to Middle Triassic times, dominated by con-
struction of a carbonate platform. The second is 
bracketed by a stage of Post-Late Triassic orogenic 
movement characterized by thrusting, strike-slip 
faulting and foreland basin formation in a compres-
sion tectonic setting. During the Late Paleozoic, a 
number of extensional events attenuated the western 
passive margin of the South China Block (Guo et al., 
1996; Liu, 1993; Long, 1991; Luo et al., 1988) and led 
to the formation of NE-trending syn-depositional 
normal faults, such as the Maoxian-Wenchuan and 
Beichuan-Yingxiu faults, and the deposition of sedi-
mentary strata up to 6 000 m thick in the Longmen-
shan area and adjacent regions (Wang, 1996; Long, 
1991). The peak of the extensional stage occurred  
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Figure 1. (a) Tectonic map of the Longmenshan Range and Sichuan Basin showing the location of major 
tectonic blocks (plates) and suture zones; (b) structural map of the Longmenshan Range and the western 
Sichuan foreland basin distinguishing three segments from NE to SW and two belts from NW to SE.  

 
during the Late Permian when the Emeishan basalts 
were erupted in the southern part of the area, espe-
cially in the Panxi rift (He et al., 2007; Xu et al., 2001; 
Luo et al., 1988), and had a profound influence on the 
regional tectonic evolution. Pre-existing 
syn-depositional normal faults facilitated structural 

inversion and became thrust faults under a Late Trias-
sic compressional regime. The less competent clastic 
sediments of the syn-extensional successions (e.g., the 
Silurian Maoxian Group and Devonian Weiguan 
Group) were deformed and metamorphosed during 
this orogenic phase. Since the Late Triassic, strong 
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south-directed crustal deformation and associated 
metamorphism occurred at the eastern margin of the 
Tibetan Plateau, which resulted in the formation of 
transpressional thrusts and sinistral strike-slip defor-
mation (Yan et al., 2011; Deng et al., 2010; Liu et al., 
2009a; Harrowfield and Wilson, 2005; Meng et al., 
2005; Worley and Wilson, 1996; Chen et al., 1995; 
Liu, 1993). The western Sichuan foreland basin 
formed at the same time in response to the 
thrust-imposed loads (Deng et al., 2012a; Meng et al., 
2005; Li et al., 2003; Guo et al., 1996; Liu, 1993). 

Tectonic deformation in the Longmenshan Range 
was initiated during the Paleo-Tethys Ocean closure 
represented by the Late Triassic orogeny (Liu et al., 
2009a; Harrowfield and Wilson, 2005; Meng et al., 
2005; Worley and Wilson, 1996; Chen et al., 1995). It 
probably occurred during Late Triassic to Early Juras-
sic across the western margin of the Yangtze Plate, 
followed by subsequent slow cooling and tectonic 
quiescence during the Early Jurassic to Cretaceous 
(Deng et al., 2012b; Zhang et al., 2006; Roger et al., 
2004). There was subsequent reactivation during Ce-
nozoic times as a distant result of the India-Asia con-
tinental collision (Wallis et al., 2003; Arne et al., 1997; 
Guo et al., 1996; Burchfiel et al., 1995). Some of the 
faults which formed at that time have remained active 
to the Present, most famously the “5.12” Wenchuan 
Earthquake of 2008, particularly in the southern and 
central segments of the Longmenshan Range 
(Densmore et al., 2007; Kirby et al., 2000). 
 
STRUCTURAL FEATURES 
NW to SE Dip Zonation  

The Longmenshan Range is characterized by 
different structures and deformation features from 
NW to SE, separated by several NE striking faults 
(Fig. 1). The four main faults from NW to SE are: the 
Maoxian-Wenchuan fault (F1), Beichuan-Yingxiu 
fault (F2), Anxian-Guanxian fault (F3) and     
Guangyuan-Dayi fault (F4), which differ in structure, 
geometry, deformational intensity and time of origin 
(Table 1) (Li et al., 2008; Lin et al., 1996; Chen and 
Wilson, 1996; Luo, 1994; Dirks et al., 1994; Liu, 
1993). These faults have had a significant partitioning 
effect on the strata and structural elements on either 
side, causing orogenic zonation in dip from NW to SE 

(Lin et al., 1996; Burchfiel et al., 1995; Chen et al., 
1995; Dirks et al., 1994; Liu, 1993; Long, 1991). On 
this basis the Longmenshan Range can be divided into 
three belts separated by the four main faults men-
tioned above: namely the western part of the thrust 
belt, the eastern part of the detachment belt and the 
frontal extended belt (Table 1; Fig. 2). They display a 
progressive change in deformation mechanism (from 
ductile to brittle) from NW to SE, in deformation 
structures (from basement-involved structure to de-
tachment imbricated thrust structure or thin-skin tec-
tonic structure) and in deformed strata (from Precam-
brian to Quaternary). 

The Longmenshan thrust belt between the 
Maoxian-Wenchuan and Beichuan-Yingxiu faults is 
mainly formed by a Pre-Sinian complex (e.g., the 
Pengguan massif) and Sinian-Devonian metamorphic 
rocks (Figs. 1 and 2) and characterized by basement- 
involved deformation and syn-fold cleavage with few 
faults. The detachment belt between the Beichuan- 
Yingxiu and Anxian-Guanxian fault is comprised by 
Silurian clastic rocks, Devonian–Middle Triassic car-
bonates and Upper Triassic Xujiahe Formation clastic 
rocks, particularly within the Baoxing complex in the 
southern segment (Fig. 2c). Its deformation is charac-
terized by concentric folds and imbricate thrusts with 
numerous brittle faults and minor folds, indicating a 
weaker intensity in deformation than in the thrust belt. 
The detachment belt is particularly characterized by 
imbricate thrusts and klippen (Fig. 2). 

The extended belt between the Anxian-Guanxian 
fault and the blind Guangyuan-Dayi fault is mainly 
comprised of Jurassic–Paleogene continental red-beds 
(Figs. 1 and 2). Its deformation is clearly weaker than 
that in the northwest, with dominant open-to-gentle 
folds and/or monoclinal structures. Southeastward 
thrusting throughout the Longmenshan Range is indi-
cated by strata showing characteristic deformation 
(Table 1; Fig. 2). 
 
Segmentation along Strike from NE to SW 

Our field studies revealed a variety of different 
geologic features in basement properties, basement, 
strata ages, evolution history, deformation, subsidence 
and uplift and neotectonics along the strike of the 
Longmenshan Range (Table 2) dividing it into north-
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ern, central and southern segments from NE to SW 
(Fig. 1). 

We have recognized several east-verging,  
basement-involved structures on different scales in the 
Longmenshan thrust belt, such as the Baoxing com-
plex and the Jiaoziding complex. They have distinct 
magnetic and gravity properties that reflect differ-
ences in structure (Jin et al., 2009; Liu, 1993). 
Multi-level detachment layers occur throughout the 
Longmenshan Range, including a Cambro–      
Ordovician detachment layer and a Middle-to-Upper 
Triassic detachment zone. The Silurian detachment 
layer is widespread in the northern segment. The de-
formation styles in each of the segments of the Long-
manshan show different intensities of deformation.  

Even though there are many klippen in the de-
tachment belt, their sizes and displacements are very 
variable. There is a single extremely large klippe in the 
northern segment, the Tangwanzai klippe (Fig. 1). But 
it has a much smaller displacement than the klippen in 
the central and southern segments. There are also some 
klippen in the extended belt of the southern segments 
that provide evidence that the age of the deformation- 
involved strata decreases from NE to SW (Figs. 1 and 
2). 

Eocene strata were deformed during the Ceno-
zoic orogeny in the southern segment, representing a 
much younger event than the Lower Cretaceous de-
formation in the extended belt of the central and 
northern segments. Much stronger deformation indi-
cated by fault-related folds, triangle zones and pop-up 
structures occurred in the extended belt of the south-
ern segment compared with the northern segment. 
This resulted in differences in topography and gradi-
ents between the southern segment and the northern 
segment, probably reflecting different deformation 
and uplift in Cenozoic times. 
 
DIFFERENTIAL UPLIFT AND COOLING 

Uplift and cooling processes along transpres-
sional boundary faults can be significantly different in 
space and time, especially under the control of 
multi-scale geodynamics asserted by different blocks. 
They can be further influenced by local structural 
complexity, crustal anisotropy, and heterogeneous 
strain. Although details of these phenomena have been 
well studied in the Longmenshan Range (Li et al., 
2012; Wang et al., 2012; Godard et al., 2009; Clark et 
al., 2005; Kirby et al., 2002; Xu and Kamp, 2000; 

 
Table 1  Comparison of the structural features in different zones of the Longmenshan 

Segments Southern seg-

ment 

Central segment Northern segment Deformation-involved strata 

Zones Thrust belt Basement-involved 

thrust deformation, 

many folds with fewer 

faults, dominantly 

ductile deformation. 

Pre-Devonian 

Detachment 

belt 

Thick- and 

thin-skinned tectonic 

structure-imbricate 

thrusts, klippen, shal-

lower brittle deforma-

tions 

Thin-skinned tec-

tonic structures- 

imbricate thrusts, 

klippen, shallower 

brittle deformations 

Thin-skinned tec-

tonic structures- 

concentric folds 

and imbricate 

thrusts, mid-deep 

deformations with 

ductility 

Silurian to Upper 

Triassic Xujiahe 

Formation 

Extended belt Dominantly brittle 

deformations, open-to- 

gentle folds partially 

with fault in the core 

Weak deformations 

with monocline 

strata, thrust faults 

on the surface 

Weak deformations, 

with dominant 

monocline strata 

Jurassic to Early 

Cretaceous 
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Table 2  Comparison of the structural feature of the segments in the Longmenshan 

Segments Southern segment Central segment Northern segment 

Differential features Baoxing complex, klippen Pengguan complex, klippen Jiaoziding complex, 

Tangwangzai syncline 

(sliding structure) 

Tectonic setting Primarily controlled by the 

India-Asia collision in the 

Cenozoic 

Controlled by both the colli-

sion of South China and 

North China blocks in Late 

Triassic and the India-Asia 

collision in the Cenozoic 

Primarily controlled by 

collision of South China 

and North China blocks in 

Late Triassic and by the 

evolution of the Qinling 

orogen 

Foreland features Late Cretaceous to Palaeo-

gene subsidence center, 

widespread J3–Q conglom-

erates 

Late Triassic subsidence cen-

ter with widespread T3x–Q 

conglomerates 

Late Jurassic to Early 

Cretaceous subsidence 

center, T3x–J1, and J3–K1 

conglomerates 

Deformation history Relatively late, deformation 

from Late Cretaceous, by the 

Himalayan build-up 

Relatively early, Yanshanian 

build-up and Himalayan re-

construction  

Relatively Early, Late 

Triassic build-up with 

weak Himalayan recon-

struction 

Klippen (nappes) Widespread klippen with 

larger sliding distance 

Widespread klippen with a 

larger sliding distance 

Few klippen with shorter 

sliding distance 

Uplift and geomor-

phology  

Late Cenozoic rapid uplift 

and cooling, great topog-

raphic slope and clear 

boundary between basin and 

mountains 

Rapid uplift and cooling in 

Meso-Cenozoic, great topog-

raphic slope and clear bound-

ary between basin and moun-

tains 

Rapid uplift and cooling in 

Mesozoic and slow in the 

Cenozoic, small topog-

raphic slope and obscured 

boundary between basins 

and mountains 

Neotectonics Relatively strong, coseismic 

fractures e.g., “5.12” Wen-

chuan earthquake extending 

from SW to NE along the 

strike 

Relatively weak, coseismic fractures extend from SW to 

NE sub-parallel strike 

 
Arne et al., 1997; Liu, 1993) a systematic analysis of 
uplift and cooling process along the entire Longmen-
shan Range has not yet been carried out. 

Low-temperature thermochronological data re-
veal that there were multiple rapid cooling and uplift 
events in the region (Fig. 3) during the Mesozoic– 
Cenozoic, e.g., during the Indo-Chinese Epoch (~200 
Ma), Late Cretaceous (~100 Ma), Early Cenozoic 
(65–30 Ma) and Late Miocene Epoch (15–9 Ma) (Li 
et al., 2012; Godard et al., 2009; Clark et al., 2005; 
Kirby et al., 2002; Xu and Kamp, 2000; Arne et al., 
1997; Liu et al., 1996). In general, very slow cooling 

and uplift occurred from the Mesozoic to the Early 
Cenozoic in the Longmenshan, with rates of <0.1 
mm/a, known as the Yanshanian tectono-thermal qui-
escence (“Yanshanian” means “Jurassic-to-     
Cretaceous”). It was followed by rapid cooling and 
increase in uplift to rates of 0.15–0.3 mm/a (locally 
0.9 mm/a) during the Late Cenozoic (15–9 Ma) (Fig. 
3), assuming a geothermal gradient of ~25–30 ℃/km 
and a surface temperature of ~10 ℃. 

There is a distinctly progressive change along 
strike from NE to SW in fission track and (U-Th)/He 
ages (Fig. 4). Later ages in the northern segment of 
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Longmenshan are of the Late Mesozoic to Cenozoic 
period, older than those in the central and southern 
segments which are concentrated in the Late Cenozoic, 
as documented by apatite fission track ages (AFT) (Li 
et al., 2012; Arne et al., 1997; Liu et al., 1996). This 
indicates nonsynchronous segmental uplift and cool-
ing processes in different segments of the Longmen-
shan, or perhaps the data can be interpreted as indi-
cating relatively quicker uplift and cooling in the cen-
tral and southern segments compared with the north-
ern segment during the Late Cenozoic.  

Down the dip of the Longmenshan Range from 
NW to SE, the data show a high diversity of fission 
track ages and (U-Th)/He ages (Fig. 4), particularly in 
the central segment. In the northern segment, apatite 
fission track ages of the thrust belt and its western part 
show a subtly younger age from NW to SE, indicative 
of SE propagating cooling in the Cenozoic. Early Ce-
nozoic AFT ages in the detachment belt are signifi-
cantly younger than the Pre-Late-Cretaceous AFT 
ages in the western Sichuan Basin and the extended 
belt which include detrital age components with AFT 
ages higher than ~90 Ma.  

There are similarly decreasing (U-Th)/He and 
fission track ages from NW to SE between the thrust 
belt and its western part in the central segment of 

Longmenshan. Apatite (U-Th)/He and fission track 
ages show a distinct decrease from the NW to SE in 
the detachment belt indicating southeastward propa-
gating uplift and cooling in the Cenozoic. (U-Th)/He 
zircon ages are mostly less than ~40 Ma, thought to be 
a result of two-phase growth of the Longmenshan at 
30–25 and 15–10 Ma, respectively (Wang et al., 
2012). 

 
EVOLUTION PROCESSES  

The formation and tectonic evolution of the 
Longmenshan Range show southeastward-thrusting 
down dip from NW to SE and progressive propagation 
of compressive deformation along strike from NE to 
SW.  
 
Late Triassic Orogenesis and Its Southwestward 
Propagation 

During the Late Triassic, the Longmenshan ex-
perienced its most important tectonic change from an 
early passive continental margin to a foreland basin 
(Deng et al., 2012a; Meng et al., 2005; Li et al., 2003; 
Guo et al., 1996; Wang, 1996). During the same pe-
riod, there were two major changes of depositional 
setting from marine carbonate to marine clastics, and 
from marine clastics to continental clastics (Liu et al., 
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Figure 3. Cooling history of the central Longmenshan Range inferred from thermochronologic data (modi-
fied after Li et al., 2012). 
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Figure 4. FT and (U-Th)/He ages along strike and down dip in the Longmenshan Range (Data from Wang 
et al., 2012; Tan et al., 2012; Li et al., 2011; Godard et al., 2009; Kriby et al., 2002; Arne et al., 1997; Liu et 
al., 1996). 
 
2009b) but the timing and style of these transitions are 
not well constrained.  

U-Pb detrital zircon ages (n=1 447) from sand-
stone of the Upper Triassic Xujiahe Formation in the 
western Sichuan foreland basin demonstrate strati-
graphic compositional variability with different age 
peaks reflecting sediments sourced from different 
provenances, suggesting that dynamic uplift and ex-
humation process took place in Early Norian to 
Rhaetian times (Fig. 5). Early Norian sediments in the 
Xiaotangzi Formation in the western Sichuan foreland 
basin show a U-Pb age peak of 700–1 000 Ma indi-
cating a source from the South China Block. But de-
posits of the Xinduqiao Formation deposited in the 
Songpan-Ganzi area lack this age peak, indicating that 
the Longmenshan was slightly uplifted in the Early to 
Late Norian, separating different provenances in the 
Sichuan Basin and Songpan-Ganzi area. This was 
followed by a significant uplift and cooling event in 
the Rhaetian which resulted in the formation of a uni-
fied provenance throughout the western Sichuan Basin 
indicated by the presence of the metamorphic rock 

detritus in the upper part of the Xujiahe Formation (Li 
et al., 1995; Cui et al., 1991). Paleoflow directions in 
the Xujiahe Formation conglomerates show a major 
change from NW in the Norian to the north to NE in 
the Rhaetian (Luo and Long, 1992; Cui et al., 1991). 
Furthermore, the Late Triassic conglomerates (T3x) 
show a southwestward propagating distribution and 
decrease in angle of unconformable contacts with 
Lower Jurassic strata (Deng et al., 2012a; Liu et al., 
2009a; Deng, 2007), indicative of a southwestward 
propagation of Longmenshan orogenesis. The first 
conglomerate in the northern segment of the Sichuan 
Basin including the Longmenshan extended belt crops 
out locally in T3x2, the first conglomerate in the cen-
tral segment is in T3x4 and the first conglomerate in 
the southern segment is in J1b, demonstrating 
along-strike propagation to the Dujianyan area, and 
later southwestward as far as the Baoxing area. The 
contact of the Late Triassic (T3x) and Early Jurassic 
(J1b) sedimentary sequences are locally angular un-
conformities or disconformities, specifically in the 
central and northern segments of the extended belt. 
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Farther southwest along strike, the angularity at the 
unconformity decreases as the contact gradually 
changes to conformable. We therefore suggest that 
thrusting and uplift of the thrust belt and detachment 
belt began during Early Norian time with deposition 
of the Xiaotangzi Formation or the first section of the 

Xujiahe Formation, and was followed by significant 
thrusting and uplift during the Rhaetian, with south-
westward propagating orogensis accompanied by 
deposition of the fourth part of the Xujiahe Formation. 
This process reflects sinistral transpressional deforma-
tion during the Late Triassic Period (Harrowfield and 
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Wilson, 2005; Worley and Wilson, 1996; Chen et al., 
1995; Dirks et al., 1994; Liu, 1993). The ages of the 
strata affected by deformation (Table 1) suggests that 
both the thrust belt and detachment belt in the north-
ern and southern segments formed during this time 
period. 
 
Yanshanian Tectonic-Thermal Quiescence 

From Late Triassic to Middle Jurassic times, the 
Longmenshan Range experienced a period of thermal 
and tectonic quiescence accompanied by weak tec-
tonic activity (Deng et al., 2012b; Li et al., 2012; 
Roger et al., 2010, 2004). In the western Songpan- 
Ganzi fold belt, Jurassic–Cretaceous strata are hori-
zontal or have low dips and unconformably overly 
strongly folded Triassic to Paleozoic strata. Wide-
spread Late Triassic to Early Jurassic igneous rocks 
have mostly been interpreted as post-orogenic (Yuan 
et al., 2010; Zhang et al., 2006; Roger et al., 2004). In 
contrast, a Jurassic sedimentary succession character-
ized by the deposition of continental clastics in the 
Western Sichuan foreland Basin is very similar 
throughout the region, indicating a relatively stable 
tectonic background (Wang and Xu, 2001; Guo et al., 
1996) although conglomerates outcropping in the cen-
tral and southern segments of the Longmenshan (Gou, 
2001) suggested that thrusting and exhumation did 
take place there. The Longmenshan Range was sub-
sequently rejuvenated during the Late Jurassic. The 
subsidence center migrated from the front of the cen-
tral segment in the Late Triassic to the front of the 
northern segment during Late Jurassic to Early Creta-
ceous (Fig. 6) with deposition of >1 000 m of alluvial 
fan conglomerates (Meng et al., 2005; Guo et al., 
1996; Cui et al., 1991). 
 
Late Cretaceous Tectonic Changes and Orogenesis 

A significant tectonic change occurred at the 
western margin of the Yangtze Plate and eastern mar-
gin of the Tibetan Plateau in the Mid-to-Late Creta-
ceous. Large-scale thrusting and folding occurred in 
the central and southern segments of the Longmen-
shan Range as long-distance effects of the collision of 
the Qiangtang and Lhasa plates. The onset is probably 
reflected by muscovite 40Ar/39Ar ages of 120–123 Ma 
from the Maoxian fault (Xu et al., 2008; Arne et al., 

1997; Liu et al., 1996) and by widespread igneous 
intrusion in the Songpan-Ganzi flysch at ~100 Ma 
(Roger et al., 2010; Reid et al., 2005). At the same 
time the Sichuan Basin shrank due to the build-up of 
much of the E-W striking Yanshanian uplift (Li et al., 
2011; Guo et al., 1996).  

Since the Late Cretaceous a new subsidence 
center formed on the front of the southern segment 
of the Longmenshan Range where >2 000 m coarse 
clastic sediments accumulated (Fig. 6). There is an 
important change in Late Cretaceous and Neogene 
depositional contacts along and around Longmen-
shan. The contact between Upper and Lower Creta-
ceous strata changes from a disconformity in the 
north (e.g., at Banbianjie and Dayi) to conformity in 
the south while the contact between the Upper Cre-
taceous and Neogene strata shows northward de-
creasing angularity (Deng et al., 2012b). This may 
indicate that the western margin of the Yangtze Plate 
experienced an important tectonic transfer from the 
Paleo-Tethyan to Neo-Tethyan tectonic regime in 
Late Cretaceous times. Under the control of the dis-
tant effects of the collision of the Qiangtang and 
Lhasa plates, the Longmenshan Range is dominated 
by right-lateral transpressional thrust movements 
(Zhang et al., 2010; Burchfiel et al., 1995; Liu, 1993), 
indicating a northeastward propagation of stress field 
and deformation. At the same time strata in the 
Longmenshan extended belt and western Sichuan 
Basin Cenozoic including overlying unconformities 
were folded during Cenozoic Himalayan movements 
(Fig. 2c) suggesting that they formed during the Hi-
malayan Epoch. 
 
DISCUSSION 

The formation and evolution of the Longmen- 
shan Range is the result of southeastward thrusting in 
the dip direction and of progressive southwestward 
propagation of mountain-building along strike. In the 
dip direction from NW to SE deformation changed in 
character from ductile to brittle (Jin et al., 2009; Li et 
al., 2008; Chen and Wilson, 1996; Chen et al., 1995; 
Dirks et al., 1994; Liu, 1993). Along strike from NE 
to SW, the Longmenshan Range is characterized by 
southwestward weakening of ductility, increasing 
brittleness and a younger phase of deformation. 
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Changes in the distribution of Late Triassic conglom-
erates and a decrease in the angularity at the uncon-
formity between Late Triassic (T3x) and Early Jurassic 
(J1b) strata are segmental features that indicate south-
westward propagation of mountain development along 
strike.  

Segmentation along strike, zonality in dip, con-
glomerate depositional patterns and changing charac-
ter of unconformities are all results of tectonic move-
ment in the Longmenshan Range that allow us to de-
cipher the dynamic evolution of this mountain range. 
Because of the southeastward thrusting sequence and 
southwestward propagation of mountain building in 
space and time, and considering the presence of con-
glomerates and unconformities, we propose a south-
westward propagating model of dynamic evolution 
(Fig. 7). The first southwestward propagation of 
mountain-building along strike occurred during the 
Late Triassic Indo-Chinese Epoch when the Long-
menshan Range was characterized by transpressional 

thrusting and sinistral strike-slip with segmental fea-
tures, deformation and deposition. In general, the 
thrust belt and the detachment belt in the northern and 
central segments formed at this time, primarily con-
trolled by the collision of the South China and North 
China Blocks and subsequent intracontinental tectonic 
movements. 

The Longmenshan Range subsequently experi-
enced long-term tectono-thermal quiescence with little 
activity during the Jurassic-to-Cretaceous Yanshanian 
Epoch, followed by a significant tectonic regime 
change from Paleo-Tethyan to the Neo-Tethyan char-
acterized by transpressional thrusting, dextral 
strike-slip and rapid uplift and cooling during Ceno-
zoic time resulting in intensive deformation in the 
southern segment and its periphery. This indicates that 
construction of the thrust belt and detachment belt in 
the southern segment and extended belts of the 
Longmenshan Range (Fig. 7) as far as the eastern 
margin of the Tibetan Plateau and the western margin  
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Figure 7. Conceptual model of the southwestward propagating evolution of the Longmenshan Range. 
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of the Yangtze Plate were primarily controlled by the 
collision of the Indian and Asian continental plates 
during Cenozoic time. 
 
CONCLUSION 

The Longmenshan Range is an intracontinental 
composite orogen controlled by multi-scale geody-
namics. Forces included a SE stress applied by the 
Yangtze continental plate drifting northwestward, a 
NS stress applied by the Qinling orogen and an EW 
stress exerted by the Tibetan Plateau. The structures 
and tectonics of Longmenshan displays zonality of dip 
and segmentation along strike. The zonality of the 
Longmenshan from NW to SE is indicated by three 
tectonic belts separated by boundary faults with dif-
ferent structural features, intensity of deformation and 
strata involved in deformation. The belts can be fur-
ther subdivided into three segments from NE to SW, 
displaying differences in deformation, uplift processes, 
and neotectonic activity.  

Low-temperature thermochronology and U-Pb 
detrital zircon ages reveal a long-term period of   
tectono-thermal quiescence accompanied by slow up-
lift and cooling from Mesozoic to Early Cenozoic 
times following Early Norian to Rhaetian orogeny that 
was followed by rapid cooling and uplift which began 
in the Late Cenozoic. Most low-temperature thermo-
chronology shows southeastward younger ages in the 
thrust and detachment belts down dip from NW to SE 
indicative of progressive southeastward uplift and 
thrusting. Along strike from NE to SW, there are 
southwestward decreasing low-temperature thermo-
chronological ages reflecting southwestward propaga-
tion of uplift and cooling processes with a coeval 
sedimentary response. 

We propose a southwestward propagation model 
of evolution of the Longmenshan Range based on our 
observations of dip zonality and segmentation along 
strike (Fig. 7), resulting from Post-Late Triassic 
multi-scale geodynamics. Our model portrays the de-
velopment of the central and northern segments of the 
Longmenshan Range as mainly controlled by the 
Qinling orogen during Late Triassic time accompa-
nied by superposed buildup of the southern segment. 
The evolution of the whole range was mainly con-
trolled by the Tibetan Plateau during Cenozoic.  
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