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ABSTRACT: Sand waves on the northern South China Sea shelf had been considered as stable relict 

bed form. For the industry use of sea bed between stations LF13-2 and LF13-1, a new round of explora-

tions were conducted. The newly obtained data show that both spacings and amplitudes of sand waves 

are all systematically changing with water depth. Repeated observations since 2003 to 2004 showed that 

the sea bed is currently active. Due to strong erosion of surface sediment since Dongsha (东沙) uplifting, 

there are almost no modern sediments on the shelf of Dongsha area. Sand materials in the study area 

mainly originate from the erosion of the bed sediment formation. The water depth increment revealed 

by repeated echo sounder data is mainly due to erosion. Bottom currents are quite complex in the area 

of Dongsha underwater plateaus. At site 9MKII, the southward ebb current is stronger than the north-

ward flood current, while at site AEM-HR, the WNW-ward flood current is slightly stronger than the 

ESE-ward ebb current. At site 9MKII, the maximum bottom current speed is 48 cm/s, and 22% of the 

observed bottom current speeds are larger than 20 cm/s, which meet the minimum bottom current 

speed required for the creation of sand wave. This article points out that present-day oceanographic 

condition couples well with the sand-wave morphologies, and that the sand waves are to a great extent 

in equilibrium with the ongoing present-day oceanographic bottom current condition and active. 
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INTRODUCTION 

As we have known for a long time, the sea floor 
is not entirely flat. In many areas, various bed forms 
occur (Knaapen et al., 2001). Among them, barchan 
dune is the most basic and most actively studied 
bed-form type (Todd, 2005). In planview, a submarine 
barchan dune is crescent in shape with a convex stoss 
slope, a concave lee slope, and two horns bending to 
the lee side (Sauermann et al., 2000; Hesp and Hast-
ings, 1998) (Fig. 1). An idealized barchan dune shape 
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is symmetrical with the two horns, but asymmetrical 
shapes are commonly introduced by variation in flow 
direction, changes in sand supply, inclined bed sur-
faces, and so on (Landcaster, 1982). The long gentle 
stoss slope indicates the direction of the upstream, 
while the short steep lee slope indicates the direction 
of the downstream. Sediment is transported as bed 
load along the stoss slope until it reaches the crest, 
where it tumbles down and deposits at the lee slope 
(Harris and Collins, 1984; McCave and Langhorne, 
1982). In the case of symmetrical barchan dune, the 
flow direction coincides with the symmetrical axis and 
from the stoss side to the lee side. Water flow and 
sand supply are believed to be the key components for 
the formation and evolution of submarine barchan 
dune (Best, 2005; Venditti and Bauer, 2005; Best and 
Kostaschuk, 2002; Nelson et al., 1995). Empirical 
evidence suggests that as flow velocity increases, the 
barchan dune will ultimately alter its shape to sand 
ridge by enlarging its width and shortening its two 
horns, while as flow velocity decreases and the sand 
supply increases, the barchan dune will shorten its 
width, stretch and extend its horns, and ultimately al-
ter its shape to sand wave (Livingstone et al., 2007; 
Hersen et al., 2004). 
 

 

Figure 1. Schematic planview of the evolution of 
barchan dune, sand ridge, and sand wave (adapted 
from Sauemann et al., 2000; Hesp and Hastings, 
1998). 

 
Sand waves, not like isolated barchan dunes, are 

jointly rhythmic field features usually covering a large 
area on the sea floor. More than that, now, we know 
that sand waves are a dominant morphologic feature 
on most of the world continental shelf with water 
depth ranging from a few meters to several hundred 
meters (e.g., Dalrymple and Hoogendoorn, 1997; 
Trowbridge, 1995; McBride and Moslow, 1991; Swift 

and Field, 1981; Duane et al., 1972; Swift et al., 1972). 
Some of the sand waves are believed to be relic bed 
forms which were developed during the Last Glacial 
Maximum in a subaerial exposure environment or a 
coastal shallow water environment and emerged to its 
current depth after the transgression of rising sea level 
across the shelf (Todd, 2005), while some of the sand 
waves are active and in an equilibrium situation with 
the current hydrodynamic conditions (Todd, 2005). 
Active sand waves are very interesting from an engi-
neering point of view because their migrating nature 
and long spatial and temporal scales may interfere 
with offshore activities. For instance, migrating sand 
waves may cause erosion, free spans of pipelines, and 
movement of seabed structures, possibly resulting in 
breakage of them (Todd, 2005; Nemeth et al., 2002; 
Meijdam and Lapidaire, 1995; Staub and Bijker, 1990). 
As the offshore activities are getting increasingly busy 
from the oil and gas development, the sand wave 
study becomes the key component of the systematic 
sea floor management. However, the activity of the 
sand waves has occupied considerable discussion and 
debate in literature (Goff et al., 1999). 

 
GEOLOGICAL SETTING 

The northern South China Sea shelf is the main 
part of northern South China Sea continental margin, 
bounded to the west by Vietnam, to the north by 
southeastern China mainland, and to the east by Tai-
wan Island, with two islands, namely, Hainan Island 
and Dongsha Islands, developed on it (Fig. 2). 

Usually, the northern South China Sea shelf is 
referred to the part between Hainan and Taiwan, ex-
tending 900 km along the China mainland coast in the 
northeast direction and 300 km from Pearl River 
Mouth to the shelf break in the southeast direction, 
with Dongsha Islands as its outstanding feature in a 
generally flat and broad background. Dongsha Islands 
consist of two underwater plateaus. One of them is 
round in shape, situated at the shelf edge between 
300-m and 600-m isobath lines, with an atoll emerg-
ing only a few tens of meters above the sea level. The 
other is 100 km northwest apart of the first one, 
quasi-rhombohedral in shape, elongated in the NE-SW 
direction, with three underwater shoals, namely, 
Lufeng, Beiwei, and Nanwei, distributed in the 
NE-SW direction (Fig. 3). 
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Figure 2. Map of northern South China Sea shelf. 
 

 
Figure 3. Dongsha underwater plateaus and the study area. 

 
The water circulation pattern within the South 

China Sea is controlled by monsoons as well as by 
Kuroshio (Liang et al., 2003). During the summertime, 
the South China Sea warm current driven by the 
southwest monsoon flows northeastward along the 
shelf break of the northern South China Sea. During 
the wintertime, the South China Sea water masses, 
driven by northwest monsoon, flow southwestward 
(Wang et al., 1995; Shaw and Chao, 1994; Guan, 
1993). The Kuroshio flow northward year-round along 
the east coasts of the Philippines and Taiwan Island. 
Along its way, part of the flow enters the South China 
Sea through the Bashi Strait, where it splits into two 
branches, one flowing into the East China Sea through 
the Taiwan Strait and the other forming a counter-

clockwise current within the South China Sea. So the 
Kuroshio within South China Sea makes the summer 
current weaker and the winter current stronger. 

At present, the Pearl River discharges approxi-
mately 300×109 m3 of water and 90×106 t of sediment 
annually into the northern South China Sea shelf, and 
is considered as the main sediment source of the 
northern South China Sea shelf at present current re-
gime (Gu et al., 1990). Though there are some articles 
believing that Changjiang River and Taiwan can also 
be sediment sources of the northern South China Sea 
shelf region (Liu et al., 2004; Zhang et al., 2003), 
other sources like Dongsha Islands were seldom con-
sidered. 

The northern South China Sea shelf has been an 
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area of detailed investigations in the purpose of oil 
and gas exploration and production for many years. 
The results of marine geological work show that a 
large patch of fine sand exists in the middle shelf area 
between 50-m and 200-m isobath lines (Fig. 2). To the 
coastal area of southeastern China mainland, it 
changes to sandy clay and fine sandy clay, while to 
Dongsha Islands, it changes to coarse sand. Bed forms 
like sand wave had also been reported within the fine 
sand area. There was evidence that the South China 
Sea level had been down to 180 m during the Last 
Glacial Maximum and large part of its continental 
shelf exposed to the subaerial environment (Wang, 
1999). Considering the sea-level change and also the 
carbon dating age of surface sediment sample, the fine 
sand was believed to be relict, and the sand wave was 
formed in the coastal or subaerial environment during 
the Last Glacial Maximum (Feng and Li, 1994). 

For the industry use of sea bed between stations 
LF13-1 and LF13-2 (Fig. 3), a new round of geo-
physical, geological, and oceanographic explorations 
were conducted by Guangzhou Marine Geological 
Survey (GMGS) within the study area between 
LF13-2 and LF13-1 recently. In this article, we present 
the newly obtained geophysical and hydrodynamic 
data, and reexamine the activity and formation of the 
sand wave on the northern South China Sea shelf. 

 
METHODOLOGY  

The bed form data we used here were from two 
cruises. The first cruise was carried out on board of 
R/V Nanhai 503 from June 4, 2003 to July 4, 2003, 
hereafter called cruise 2003. The second cruise was 
carried out on board of R/V Fendou 4 from October 
31, 2004 to November 3, 2004, hereafter called cruise 
2004. The two cruises repeatedly surveyed the same 
area between LF31-2 and LF13-1. 

Multibeam and side scan sonar were conducted 
on a survey net 1 000 m by 1 000 m at spacing of 100 
m during cruise 2003. The SM-2000 system was used 
in the bathymetric mapping, while it was corrected by 
the compensator set near the transducer with an accu-
racy of ±10 cm. EG&G260 was used in the side scan 
sonar survey operating at a range of 150 m, with its 
tow fish kept at 80 m above seabed. The resolution of 
acquired side scan sonar data was around 30 cm. 

The surface sediments and core sediments were 
collected with box sampler and gravity sampler, re-
spectively, at sites B1, B2, B3, and B4 during cruise 
2003 (Fig. 4). 
 

 

Figure 4. Multibeam results between LF31-2 and 
LF13-1. 

 
During cruise 2004, multibeam and side scan so-

nar surveys were conducted with Simrad EM950 mul-
tibeam system and Klein 2000 side scan sonar, respec-
tively. Merlin software was used to Simrad EM950 for 
field quality control. The accuracy of acquired multi-
beam bathymetry data was around 40 cm. The Klein 
2000 side scan sonar was used with a maximum lat-
eral range of 100 m, with data accuracy around 30 cm. 

DGPS system was used during both cruise 2003 
and cruise 2004. One delta fix radio link was utilized 
to provide differential corrections, while a DGPS re-
ceiver provided the raw GPS positions. Raw GPS po-
sitions and differential corrections were passed to 
navigation software and processed to get accurate po-
sitioning data. The accuracy has proven to be better 
than ±3 m. 

The bottom current data we used here were from 
a summertime observation during July 28 to August 1, 
2003 and a wintertime observation during 24 January 
to 9 March 2005 at site AEM-HR and site 9MKII, re-
spectively (Fig. 4). The instruments were moored only 
a few meters above the sea floor to guarantee the bot-
tom current observation. 

Seismic data used in this article come from 973 
Cruise by South China Sea Institute of Oceanology, 
Chinese Academy of Sciences in 2001 (Fig. 2). Seis-
mic data were recorded at 2-ms sampling rate, 12-s 
record length by a 48-channel streamer with a group 
interval of 25 m. The energy source was an air-gun 
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array with a total volume of 0.02 m3, shooting at an 
interval of 50 m (Li et al., 2008). 

 
RESULTS 
Topography and Geomorphology  

Our primary observation derived from the multi-
beam results is that the morphology within the survey 
area can be divided into three distinct zones based on 
sand wave development and orientation. We identify 
these zones as, from LF13-2 to LF13-1, zones A, B, 
and C. From Zone A to Zone C, the water depth 
changes gently from 130 to 145 m (Fig. 4). 

 
Zone A 

Zone A is near to LF13-2 and at the northwest 
sector of the survey area. The sea floor is basically flat 
in this zone, with slope of about 0.1% and dipping 
slightly from northwest at 129.9 m towards southeast 
to 132.7 m. 

No distinct sand waves are observed in this zone. 
Locally pockmarks with dimensions of less than 10 m 
in diameter and 1 m in depth distribute randomly 
around LF13-2 (Fig. 4). 

 
Zone B 

Zone B is situated in the middle of Zone A and 
Zone C, with water depth between 132.7 and 140.1 m. 
The sea floor exhibits a flat topography with a very 
gentle regional slope of about 0.2% dipping from 
northwest to southeast.  

Sand waves occur almost uniformly throughout 
this zone, with amplitudes systematically changing 
from 0.5 m in the northwest to 1.5 m in the southeast, 
and spacings (or widths, normal to crest strike) also 
systematically changing from 65 m in the northwest to 
73 m in the southeast, and, again, its orientations (di-
rection along sand wave crest) systematically chang-
ing from 93° in the north to 87° in the south. 

Sand waves in this zone have straight or slightly 
straight crests, mainly showing as 2D bed forms. 
Along sand waves’ crests, various variabilities like 
sand wave disappearance, direction changing, and 
forking can be found. The length of the sand waves’ 
crests ranges from 800 m in the north to 1 350 m in 
the south. So there are more sand wave broken points 
in the northwest sector than in the southeast sector. 

Most of the sand waves show asymmetrical 
cross-sections, with lee slopes directing roughly to the 
south and stoss slopes directing roughly to the north. 
The dipping slope of the lee side is usually 6%–8%, 
and the stoss side is around 2%–4%; that is, the slope 
of the stoss side approximately gets half the value of 
lee side (Berne et al., 1993; Langhorne, 1973). 

 
Zone C 

Zone C is near to LF13-1 and at the southwest 
sector of the survey area, located in water depths of 
between 140.1 and 145.1 m. The sea floor is basically 
flat with a gradient of about 0.3% dipping from 
northwest to southeast. 

Sand waves occur throughout this zone, but with 
a more complex pattern. Two groups of sand waves 
can be found in this zone. Group 1 has its orientation 
roughly to the east, the same as that in Zone B. It’s 
hard for us to give out the sand wave amplitude and 
spacing value of group 1 due to the modification by 
group 2. Sand waves of group 2 superimpose upon 
group 1, with orientation of 40°–50°, amplitude of 1–3 
m, and spacing of 80–120 m. 

In the area around LF13-1, sand waves of group 
2 have also straight crests, mainly showing as 2D bed 
forms, and no sand wave broken points can be found. 
The length of the sand waves’ crests is longer than   
1 400 m. While in the area near to Zone B, where sand 
wave group 1 developed, sand wave group 2 mainly 
developed within the trough area between crests of 
sand wave group 1, showing 3D bed forms, with am-
plitude higher in the middle and narrowing and disap-
pearing to the crests of sand wave group 1. 

Sand wave group 2 also shows asymmetrical 
cross-sections, with lee slopes directing to the north-
west, while the stoss slopes directing roughly to the 
southeast. The dipping slope of the lee side is roughly 
8%, and the stoss side is around 3%; still, the slope of 
the stoss side approximately gets half the value of lee 
side (Berne et al., 1993; Langhorne, 1973). 

No depressions with larger than 10 m in diameter 
exist in Zone B and Zone C. 

There are some relationships between sand wave 
in Zone B and sand wave in Zone C. It seems that 
sand wave in Zone B did not disappear in Zone C, but 
was superimposed by another sand wave group in 
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Zone C and also evolved to it by gradually changing 
its orientation from 90° in Zone B to 45° in Zone C. 

The correlation between sand wave formation 
and water depth has already been reported elsewhere 
on the world continental shelves (e.g., Stubblefield et 
al., 1984; Figueiredo et al., 1981; Swift and Field, 
1981; Swift et al., 1972). Here in our study area, this 
correlation also exists clearly. Both amplitude and 
spacing of sand waves as described above increase 
with water depth from LF13-2 to LF13-1. 

 
Sedimentary Facies 

Sedimentary facies were investigated by surface 
and core sediments collection and combined by side  
scan sonar reflectivity. Surface and core sediments 
were collected at stations LF13-2, B1, B2, B3, B4, and 
LF13-1 by box sampler and gravity sampler, respec-
tively, while side scan sonar survey was conducted 
within the whole study area. 

Sediments at site LF13-2 are grayish green 
clayey silt, silty sand, and light greenish gray shelly 
sand. From LF13-2 through B1, B2, B3, B4, to 
LF13-1, the sedimentary types are various, mainly 
composed of clayey silt, sandy silt, silty sand with 
clay, silty sand, shelly sand, and gravel. Clay and silt 
contents of the sediments reduce from LF13-2 to 
LF13-1, while contents of sand and gravel of the 
sediments increase from LF13-2 down to LF13-1. The 
particle sizes of the sediments tend to change from 
fine at LF13-2 to medium at LF13-1, and the sedi-
ments become coarser from LF13-2 to LF13-1. The 
greenish color of the sediments is mainly due to con-
tent of organic matter. The organic matter contents are 
high in silty clay and clayey silt, and lower in sandy 
sediments. So, as the organic matter contents reduce 
from LF13-2 to LF13-1, the color of the sea floor 
sediments changes from grayish green to gray. 

Side scan sonar reflectivity is commonly used in 
the surficial sedimentary face identification in con-
junction with sea floor surface samples (Todd, 2005; 
Goff et al., 1999; Todd et al., 1999; Shaw et al., 1997; 
Mitchell and Hughes Clarke, 1994). A correspondence 
exists between side scan sonar reflectivity and surfi-
cial sediment roughness. Sea bed that constitutes 
mainly of clay and silt usually returns low reflectivity 
and is shown as white on the side scan sonar sono-

grams, while sea bed that constitutes of mainly sand 
returns high reflectivity and is shown as dark grey on 
the side scan sonar sonograms. 

The side scan sonar records in the study area in-
dicate that the sea bed is of generally uniform reflec-
tivity and shows characteristics of silty to sandy sedi-
ments. The color of the recorded sonogram gently be-
comes darker from LF13-2 to LF13-1 (Fig. 5), which 
suggests that the sea floor sediment gently changes 
from finer at LF13-2 to coarser at LF13-1, which 
agrees well with the surface sediment collection re-
sults. 
 

 

Figure 5. Side scan sonar sonogram of the study 
area. 

 
Fine-scale bed forms clearly show on our side  

scan sonar sonogram results. In the north part in Zone 
A and Zone B, it mainly shows as sand ripple which is 
in the same pattern as sand wave with the same orien-
tation but smaller amplitude and smaller spacing (Fig. 
5). In Zone C, it shows a complex cellular pattern (Fig. 
5), probably formed by two cross-cutting groups of 
sand ripples. All the fine-scale bed forms shown by 
the side scan sonar sonogram are superimposed on the 
sand waves shown by the multibeam results. 

 
Sand Wave Movements 

Echo sounder measurements had been conducted 
repeatedly between LF13-2 and LF13-1 during 2003 
summer cruise and 2004 winter cruise. The time span 
between the two cruises is about 16 months, which is 
more than one year. The South China Sea is primarily 
controlled by the East Asian monsoon, characterized 
by seasonal switches in wind direction, precipitation, 
and runoff (Shaw and Chao, 1994; Webster, 1987). In 
addition, South China Sea is also subject to frequent 
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passage of typhoons, which also happens annually 
(Liu et al., 1998). So the data sets from those two 
cruises are an ideal material to examine the bed form 
activity which, on the most part, will be driven by East 
Asian monsoon and by typhoons if it is currently ac-
tive. 

To check the sand wave activity, echo sounder 
data sets from those two cruises had been carefully 
analyzed by tide corrections, system error removing, 
and so on. On the final results (Fig. 6), we do find bed 
form changes since summertime 2003 to wintertime 
2004. First of all, the water depths systematically get 
deeper from LF31-2 to LF13-1 since summertime 
2003 to wintertime 2004. In Zone A, little or no 
change can be found, while in Zone B, the average 
water depth increment can be 0.22 m; in Zone C, the 

water depth increment reaches 0.29 m (Fig. 6). Be-
sides the water depth change, another obvious change 
is a newly born wave that appeared in Zone C at 
around 10.8 km from LF13-2 (Fig. 6). Sand wave 
movement can also be found. Around Zone B, the 
crests of sand waves of 2004 shift some time left hand 
and some time right hand, while they are all system-
atically getting lower than those of 2003. The offsets 
between crests of 2004 and 2003 are very small, usu-
ally within meters. Around Zone C, the crests of sand 
waves of 2004 shift left hand, while they are all sys-
tematically getting lower than those of 2003. That 
means the sand waves of 2004 had a northwestward 
movement as compared to those of 2003. The move-
ment distance judged from the crest of 2004 to the 
crest of 2003 is around 8–13 m in Zone C. 

 

 

Figure 6. Sand wave change between summer 2003 and winter 2004. 
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Bottom Currents 
To study the activity of submarine sand waves 

found on the northern South China Sea shelf, bottom 
current observation was carried out by Guangzhou 
Marine Geological Survey (GMGS) using an Under-
water Buoy Current Observation System (RCM 
9MKII Current Meter) in wintertime 2005. The RCM 
9MKII Current Meter was placed 0.5 m above sea bed 
at site named 9MKII (116°8′20.1″E, 21°35′6.3″N) 

from January 24, 2005 until March 9, 2005. Amounts 
of 43 d and 2 101 groups of data were acquired at a 
sampling interval of 30 min. 

The observed data are stable and smooth, and just 
have little saltation (unreasonable data). We eliminate 
those unreasonable data before analysis and replace 
them by the insert data. The observed bottom current 
speeds and directions are shown in Fig. 7. 
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Figure 7. Bottom current speed and direction at site 9MKII from 24 Jan. 2005 to 9 Mar. 2005. 
 
Among the 2 101 observed bottom current data, 

the maximum bottom current speed is 48 cm/s, and its 
direction is near to the south (190°), which happened 
at 11:00, Feb. 11, 2005, while the minimum bottom 
current speed is 0 cm/s, and its direction is near to the 
southwest (241°), which happened at 20:00, Feb. 14, 

2005. The average bottom current speed is 15 cm/s; 
the main direction is SSE (165°–170°). 465 (around 
22%) observed bottom current speeds are larger than 
20 cm/s, 79 (around 4%) observed bottom current 
speeds are larger than 30 cm/s (Table 1), while only 13 
(less than 1%) are larger than 40 cm/s. 
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Table 1  Observed bottom current data with speed larger than 30 cm/s from site 9MKII 

No. 
Date and time 

(y-m-d h:min) 

Speed 

(cm/s) 

Direction

(°) 
No.

Date and time 

(y-m-d h:min) 

Speed 

(cm/s) 

Direction 

(°) 

1 2005-2-11 11:00 48.10 190.22 41 2005-2-11 04:30 32.85 167.01 

2 2005-2-05 14:00 47.22 153.30 42 2005-3-01 18:30 32.85 18.99 

3 2005-2-20 04:30 46.93 180.37 43 2005-1-29 02:00 32.56 139.94 

4 2005-2-11 13:30 46.63 202.87 44 2005-2-11 04:00 32.56 161.03 

5 2005-2-05 14:30 46.34 156.11 45 2005-3-06 05:30 32.56 214.12 

6 2005-2-11 12:00 44.29 190.22 46 2005-1-29 22:00 32.26 326.28 

7 2005-2-20 04:00 42.53 178.26 47 2005-2-04 04:00 32.26 172.28 

8 2005-2-20 05:00 41.94 182.48 48 2005-2-20 14:30 32.26 165.96 

9 2005-2-05 05:30 41.65 166.31 49 2005-3-01 19:30 32.26 9.14 

10 2005-2-11 12:30 41.36 197.95 50 2005-1-29 02:30 31.97 148.02 

11 2005-2-06 05:30 40.48 166.66 51 2005-2-05 04:30 31.97 169.82 

12 2005-2-06 05:00 40.18 162.79 52 2005-2-05 15:30 31.97 166.66 

13 2005-2-11 10:30 40.18 190.22 53 2005-2-14 05:00 31.97 163.14 

14 2005-2-11 13:00 39.89 201.47 54 2005-2-20 06:30 31.97 203.93 

15 2005-2-20 03:30 39.30 176.15 55 2005-3-03 03:00 31.97 159.63 

16 2005-2-05 05:00 38.72 168.42 56 2005-3-03 23:30 31.97 349.14 

17 2005-2-20 05:30 38.42 188.81 57 2005-2-05 06:30 31.68 201.47 

18 2005-2-06 06:00 37.84 174.39 58 2005-2-18 01:00 31.68 168.77 

19 2005-3-04 06:00 37.54 167.36 59 2005-2-20 13:00 31.68 146.97 

20 2005-3-04 06:30 37.25 174.39 60 2005-2-17 00:30 31.38 164.20 

21 2005-2-18 01:30 36.96 173.34 61 2005-3-06 06:00 31.38 214.48 

22 2005-2-20 16:30 36.96 184.59 62 2005-2-14 06:00 31.09 155.76 

23 2005-2-18 02:00 36.66 169.12 63 2005-2-17 00:00 31.09 166.66 

24 2005-2-20 16:00 36.66 177.21 64 2005-2-20 06:00 31.09 203.22 

25 2005-3-04 05:30 36.08 164.55 65 2005-3-02 19:30 31.09 60.48 

26 2005-2-18 03:00 35.78 182.48 66 2005-1-26 13:00 30.80 160.68 

27 2005-2-05 15:00 35.20 157.52 67 2005-2-02 10:30 30.80 180.72 

28 2005-2-18 03:30 35.20 183.89 68 2005-2-14 04:00 30.80 131.50 

29 2005-2-05 13:30 34.90 151.54 69 2005-2-18 02:30 30.80 180.72 

30 2005-2-17 01:00 34.90 172.64 70 2005-2-19 03:00 30.80 184.59 

31 2005-3-04 07:00 34.61 178.96 71 2005-2-20 15:30 30.80 172.64 

32 2005-2-06 04:30 34.32 162.09 72 2005-3-04 17:30 30.80 165.96 

33 2005-3-04 05:00 34.32 161.38 73 2005-1-27 08:30 30.50 297.81 

34 2005-2-11 03:30 34.02 158.92 74 2005-2-04 04:30 30.50 170.53 

35 2005-2-11 10:00 34.02 199.36 75 2005-3-02 18:00 30.50 10.20 

36 2005-2-11 11:30 34.02 193.38 76 2005-2-04 12:00 30.21 123.06 

37 2005-2-04 13:00 33.73 146.62 77 2005-2-05 10:30 30.21 355.82 

38 2005-2-05 16:00 33.44 174.75 78 2005-2-11 09:30 30.21 195.84 

39 2005-2-20 09:30 33.14 300.27 79 2005-3-06 19:30 30.21 159.63 

40 2005-3-04 04:30 33.14 152.24     
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The directions of bottom current with speed lar-
ger than 30 cm/s are quite concentrated (Fig. 8). 
Among the 79 observed bottom current data listed in 
Table 1, only 9 of them have their directions to the 
north or near to the north; for the rest, 70 have their 
directions to the south or near to the south, mostly 
concentrating within 165°–195°. From the higher 
speed (>30 cm/s) bottom current direction distribu-
tions, we can say that at site 9MKII, the south or near 
to the south ebb current is stronger than the north or 
near to the north flood current. 

Based on the tidal current harmonic analysis, and 
according to the tidal current characteristics value, the 
 

 

Figure 8. Rose map for the bottom current data 
with speed larger than 30 cm/s from site 9MKII. 
 

current type in the investigated area belongs to irregu-
lar diurnal tidal current, and most of constituent cur-
rents rotate clockwise (Fig. 9). According to the tide 
observation, there are only one high water and one 
low water a day in most days, and there are two high 
waters and two low waters a day in a few days; a tide 
range of two high waters (or two low waters) is quite 
large. The tidal current changes along with tide quite 
well. 

Besides the wintertime bottom current observa-
tion, another short summertime bottom current obser-
vation was also carried out by GMGS in 2003 at a site 
about one thousand meters southeast to 9MKII. Dur-
ing this observation, AEM-HR Current Meter was 
used and placed about 5 m above sea bed at site 
named AME-HR (116°08′55.387″E, 21°34′42.729″N) 
from July 28, 2003 until August 1, 2003. About 5 d 
and 288 groups of data were acquired at a sampling 
interval of 20 min. 

The observed data are reasonable and reliable. 
Among the 288 observed bottom current data, the 
maximum bottom current speed is only 15 cm/s, 
which is much smaller as compared to that observed 
during the wintertime, and its direction is also 
changed from south (190°) to east (95°), while the 
minimum bottom current speed is 5 cm/s, and its

 

Figure 9. Bottom current observation results from site 9MKII. 
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Figure 10. Statistics on the occurrence frequencies 
of observed bottom current in different directions 
at site AME-HR during 2003 summertime. 
 
direction is near to the NNW (336°). The average bot-
tom current speed is only 10 cm/s, which is also 
smaller than that observed during the wintertime. 
From the statistical result on the occurrence frequen-
cies of observed bottom current in different directions 
(Fig. 10), we can say that, at site AME-HR during 
2003 summertime, the main bottom current direction 
is on the east-west direction: around 50% of the whole 
288 observed bottom currents direct to the east 
(70°–110°), and around 12% direct to the west 
(250°–280°), while the other directions averagely oc-
cupy 1%. 

Based on the tidal current harmonic analysis, and 
according to the tidal current characteristics value, the 
current type at site AME-HR belongs to irregular di-
urnal tidal current, and most of constituent currents 
rotate clockwise. Diurnal constituent currents are 
stronger, and ellipticities are larger. The most possible 
direction of maximum bottom current speeds is to the 
west. It is shown from the maximum possible tidal 
current and tidal current frequency distributions that 
the WNW-ward flood current is slightly stronger than 
the ESE-ward ebb current. 

 
DISCUSSION 

Based on the experimental results and theoretical 
modal, Wang et al. (1990) gave out minimum bottom 
current speed for the movement of fine sand (grain 
size>0.075 mm), medium-fine sand (grain size>0.163 
mm), and medium sand (grain size>0.25 mm) from 
sea bed as 19.8 cm/s, 29.2 cm/s, and 36.2 cm/s, re-
spectively, and the minimum bottom current speed for 

the creation of sand waves on the sea bed as 23.6 cm/s, 
34.7 cm/s, and 43.1 cm/s, respectively. Obviously, the 
northern South China Sea shelf present-day bottom 
currents, as shown by the observed results at stations 
9MKII and AEM-HR, fall within the range of bottom 
current speed required for sediment movement and 
sand wave formation. 

The northern South China Sea shelf is gently get-
ting deeper from inner, middle shelves, to outer shelf, 
and the bathymetric contour lines on this area are usu-
ally uniform, except the area around Dongsha under-
water plateaus (Fig. 3). Mainly due to the existence of 
Dongsha underwater plateaus, instead of uniform, 
parallel contour line distribution, the bathymetric 
contour lines in our study area are showing a complex 
pattern (Fig. 11), characterized by NE-paralleled con-
tour lines in the northwest corner and EW-paralleled 
contour lines in the middle south corner, and, again, 
NE-paralleled contour lines in the eastern part. There 
is a mound feature (Lufeng shoal, Fig. 3) on the south 
boundary and a ridge feature 500 m west to site 
9MKII (Fig. 11). The ridge feature stretches about   
5 000 m long in north-south direction, about 500 m 
wide in east-west direction, and only 1–2 m high. The 
sand waves’ distribution and arrangement in our study 
area present a good relationship with today’s bathy-
metric contour lines and bed features. North to the 
mound feature and west to the ridge feature, the direc-
tions of sand wave crests are in east-west, which are 
parallel to the bathymetric contour lines. East to the 
ridge feature, the directions of sand wave crests are in 
northeast-southwest, which are also parallel to the 
bathymetric contour lines. The ridge feature serves as 
a boundary for both the sand wave pattern and the 
bathymetric contour line pattern. At this boundary, 
both the sand wave crests and bathymetric contour 
line change their directions. 

Sand waves north to the Lufeng shoal, and west 
to the ridge feature, have their lee slopes directing 
roughly to the south and stoss slopes directing roughly 
to the north, while sand waves east to the ridge feature 
have their lee slopes directing roughly to the north-
west and stoss slopes directing roughly to the south-
east. The directions of lee slopes and stoss slopes of 
sand waves almost change oppositely while across the 
ridge feature from its west to its east. So the driven 
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flow patterns that created those sand wave asymme-
tries would definitely be different on each side of the 
ridge feature, considering the direct link between sand 
wave asymmetry and the driven flow (either wind for 
the subaerial environment or bottom current for the 
submarine environment) that created the sand wave 
(Ashley, 1990). If the sand waves in our study area 
were relict bed forms (Niino and Emery, 1961) created 
by wind due to subaerial exposure during the Last 
Glacial Maximum (Yim et al., 2006; Yim, 1999; Berry, 
1959), it is hard to imagine that there would be two 
different wind regimes (Wang et al., 1999; Tchernia, 
1980) existing over the study area, considering that 
the study area is only 10 km wide, and the ridge is 
only 1 m high. 
 

 

Figure 11. Relationship between sand wave direc-
tions and water depth contour lines. 

 
Though we have no bottom current observation 

station west of the ridge feature in our sand wave area 
nearby sediment sampling station B2 or B3, deducing 
from the observation result of station 9MKII, we be-
lieve that the bottom current type west of the ridge 
feature area should belong to irregular diurnal tidal 
current, with stronger tidal current mainly directing to 
the southward and weaker ebb current directing to the 
north. So the present-day oceanographic condition 
couples well with the sand wave morphology. East to 
the ridge feature, based on the bottom current obser-
vation result from station AEM-HR, its present-day 
oceanographic condition, though different from that of 
the west of the ridge feature, also couples well with its 
sand wave morphology. Therefore, the sand wave 
morphologies are, to a great extent, in equilibrium 
with the ongoing present-day oceanographic bottom 
current conditions (Ikehara and Kinoshita, 1994) and 
mainly due to ongoing present-day oceanographic 

bottom current conditions. 
Due to the uprising of Dongsha Islands, Dongsha 

underwater plateaus have a critical effect on the bot-
tom current. Here in the study area, for the flood bot-
tom current, it flows from the south and makes a left 
turn at the study area, and then flows to the north. 
While for the ebb bottom current, it flows from the 
north and again makes a left turn at the study area, and 
then to the south. Moreover, probably due to the water 
depth changing at the area of shelf break, gravity ef-
fect on the water column across the shelf break again 
makes the study area a critical position, allowing dif-
ferent oceanographic bottom current conditions coex-
ist within our study area at present day, resulting a 
southward lee slope of sand wave west of the ridge 
feature and a northwestward lee slope of sand wave 
east of the ridge feature. 

The coexistence of different oceanographic bot-
tom current conditions in our study area probably is 
the key factor that controls the development of the 
superimposed sand waves in Zone C. So the superim-
posed sand waves in Zone C are another evidence for 
the modern formation of the sand waves, as Belderson 
et al. (1982) and Amos and King (1984) had already 
pointed out that relict sand waves do not have super-
imposed bed forms. 

The sand wave spacings range from 65 to 130 m, 
less than two times water depth (292 m). According to 
Wang et al.’s (1990) bed-form classification, their 
formation environments should belong to deep water 
environment, other than coastal or subaerial environ-
ment. 

The other evidence for the modern formation of 
the sand waves would be the correlation between sand 
wave parameters and water depth. As mentioned 
above, the amplitudes and spacings of our sand waves 
systematically change with water depth, while as have 
already reported by an existing article, this kind of 
correlation seldom exists for the relict sand wave (e.g., 
Stubblefield et al., 1984; Figueiredo et al., 1981; Swift 
and Field, 1981; Bowler, 1976; Swift et al., 1972). 

The carbon dating ages of the surface sediment 
samples from stations around our study area belong to 
the Last Glacial Epoch (Feng and Li, 1994); for ex-
ample, the age of station A was 15 ka, and the age of 
station D was 13 ka (Fig. 12; the locations of stations 
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A and D are shown in Fig. 3), which was an important 
factor for scientists to consider the sand waves as rel-
ict bed forms formed during the Last Glacial Epoch at 
the end of Pleistocene in a subaerial environment 
(Feng and Li, 1994). However, we argued that there 
are no modern sediments on middle and outer shelves 
of the northern South China Sea shelf around our 
study area due to strong erosion of surface sediment 
since the Dongsha movement (Li et al., 2008; Yan et 
al., 2006; Ludmann et al., 2001; Ludmann and Wong, 
1999; Chen et al., 1987). Since the beginning of the 
Dongsha movement, magmatic intrusion had kept on 
uplifting and bending the sediment formations around 

the Dongsha area, causing a trough-like syncline 
structure north of Dongsha Islands with its hinge 
around the site LF13-1 (Fig. 12). So the sediment 
around the hinge of this syncline structure that is 
around LF13-1 should be the youngest around the 
Dongsha area. From the hinge to the south, the sedi-
ment will grow progressively older. A thin sheet of 
unsolidified sand coves on the solid bed, and it mainly 
originates from the erosion of the bed sediment for-
mation (Fig. 12); a hard bed is helpful for the forma-
tion of sand wave fields (Le Bot and Trentesaux, 2004; 
Smith, 1988; Allen, 1984; Belderson et al., 1982). 

 

 

Figure 12. Eroded sediments redistributed on the shelf area after Dongsha movement. 
 

CONCLUSIONS 
Sand waves revealed by our multibeam data in 

our study area have straight or slightly straight crests, 
mainly showing as 2D bed forms, with both spacings 
and amplitudes systematically getting larger from 
northwest to southeast, and again, with its orientations 
changing from around 90° in the northwest to around 
45° in the southeast. Sand waves in the northwest 
have their lee slopes directing roughly to the south, 
while sand waves in the southeast have their lee slopes 
directing to the northwest. They belong to two differ-
ent systems of sand waves which superimpose upon 

one another, while both of them show clear relation-
ship with water depth. 

Besides the systematic change of sand wave with 
water depth, from LF13-2 to LF13-1, the surface 
sediment also changes systematically from fine to 
coarse, with sedimentary facies changing from clayey 
silt to shelly sand and gravel, particle sizes from fine 
to medium, and the sediment color from grayish green 
to gray. 

Bed-form changing clearly exists since summer 
2003 to winter 2004. Besides newly born waves and 
sand wave movement, a systematic water depth in-
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crement also has been found. From LF13-2 to LF13-1, 
the year round increment can be as large as 0.29 m. 

Due to strong erosion of surface sediment since 
the Dongsha movement, there are almost no modern 
sediments on middle and outer shelves of the northern 
South China Sea shelf around our study area. Sand 
materials in the sand wave area mainly originate from 
the erosion of the bed sediment formation. Year-round 
water depth increment revealed by echo sounder data 
is mainly due to this erosion. 

Bottom currents are quite complex probably due 
to the development of Dongsha underwater plateaus. 
At site 9MKII, the southward ebb current is stronger 
than the northward flood current, while at site 
AEM-HR, the WNW-ward flood current is slightly 
stronger than the ESE-ward ebb current. At site 
9MKII, the maximum bottom current speed is 48 cm/s, 
and 22% of the observed bottom current speeds are 
larger than 20 cm/s, which are near to the minimum 
bottom current speed required for the creation of sand 
wave on the sea bed. Obviously, the present-day 
oceanographic condition couples well with the sand 
wave morphologies, and the sand waves are, to a great 
extent, in equilibrium with the ongoing present-day 
oceanographic bottom current condition, and mainly 
due to ongoing present-day oceanographic bottom 
current conditions, they are active. 
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