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Hypotonicity-induced cell swelling activates TRPA1
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Abstract Hypotonic solutions can cause painful sensations

in nasal and ocular mucosa through molecular mechanisms

that are not entirely understood. We clarified the ability of

human TRPA1 (hTRPA1) to respond to physical stimulus,

and evaluated the response of hTRPA1 to cell swelling

under hypotonic conditions. Using a Ca2?-imaging

method, we found that modulation of AITC-induced

hTRPA1 activity occurred under hypotonic conditions.

Moreover, cell swelling in hypotonic conditions evoked

single-channel activation of hTRPA1 in a cell-attached

mode when the patch pipette was attached after cell

swelling under hypotonic conditions, but not before

swelling. Single-channel currents activated by cell swelling

were also inhibited by a known hTRPA1 blocker. Since

pre-application of thapsigargin or pretreatment with the

calcium chelator BAPTA did not affect the single-channel

activation induced by cell swelling, changes in intracellular

calcium concentrations are likely not related to hTRPA1

activation induced by physical stimuli.

Keywords TRPA1 � Hypotonic solution � Cell swelling �
Cell-attached patch clamp

Introduction

Hypotonic conditions are known as triggers of various

physiological responses, including regulatory volume

decreases in human corneal epithelial cells [1] and local-

ized pain in nasal and ocular mucosa [2]. For example,

decreases in net transepithelial osmolyte-coupled fluid flux

from the cell stroma into tears, which lead to inadequate

fluid uptake and subsequent thickening of the stroma, can

result in corneal swelling and opacification following

injury or infection [3]. In addition, the probability of gen-

eralized seizures is increased by water intoxication [4].

Water is also a known irritant in peripheral tissues in

tropical immersion foot [5] or aquadynia [6] patients.

Activation of several transient receptor potential (TRP)

channels contributes to sensory transduction to produce

responses to a wide variety of stimuli, including tempera-

ture, nociceptive stimuli, touch, osmolality and pher-

omones. In particular, the involvement of TRP channels in

nociception has been extensively studied following the

cloning of the capsaicin receptor TRPV1 [7, 8]. Among

thermosensitive TRP channels, TRPV1 [7–9], TRPV2

[10, 11], TRPV4 [12–17], TRPM7 [18, 19] and TRPA1
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[20–24] are reported to function as osmo- and

mechanosensors that are also activated by temperature and

certain chemicals. In a Ca2?-imaging experiment,

HEK293T cells transiently expressing rat TRPV1 show

responses to hypertonic solution [9]. In addition, mouse

TRPV2 can detect membrane stretch caused by hypotonic

stimulus in mouse aortic myocytes [10]. In rats, pain-re-

lated behaviors were induced by application of a hypotonic

solution on skin areas that were previously sensitized by

PGE2, and these pain-related behaviors were reduced fol-

lowing the intrathecal administration of Trpv4 antisense

RNA [12], although the role of TRPV4 in nociception is

still a matter of debate. On the other hand, TRPM8 [25, 26]

is activated by increases in osmolality over physiological

levels and inhibited by reduced osmolality in mice, sug-

gesting that TRPM8 may be involved in regulating eye

blinking in response to various peripheral osmolalities [27].

TRPA1 is thought to be involved in detecting a variety

of chemical stimuli, including allyl isothiocyanate (AITC),

a main component of mustard oil [20, 28–31]. We also

previously identified TRPA1 as a receptor for skin irritants

such as parabens [32] and alcohols [33], as well as for pain-

producing alkaline pH [34]. In addition, TRPA1 agonists

induce secretion of disease-associated mucins in human

nasal passages in vivo [35]. Thus, TRPA1 is accepted as an

ion channel that is related to acute nociception and

inflammatory pain, and is considered to be a promising

target for the development of analgesic agents. Indeed,

many human TRPA1 (hTRPA1) antagonists have been

developed or isolated from natural compounds, including

HC-030031, CMP1 and 1,8-cineole, as well as camphor

and its analogues [36–41]. On the other hand, a role for

TRPA1 in sensing noxious cold stimuli and somatic

mechanosensation in vivo remains unsettled, especially in

mammals [21, 30–38]. A recent report shows the possi-

bility that human and mouse TRPA1 contribute to sensing

warmth and uncomfortable heat in addition to noxious cold

[42]. TRPA1 was reported to play a role in mechanical

hyperalgesia [20], and hyperosmotic stimulation directly

activated rat TRPA1 in both transfected cells and native

sensory neurons at a single-channel level [22]. In addition,

mouse TRPA1 reportedly modulates mechanotransduction

via a cell-autonomous mechanism in nociceptor termini

[21]. Recent studies involving human and rat odontoblasts

showed that a known TRPA1 blocker inhibited currents

induced by hypotonic solutions, raising the possibility that

hTRPA1 can respond to hypotonic solutions [23, 24].

However, the role of this channel in mechanosensation and

in sensing hypotonic conditions is not well defined.

We found that hypotonic solutions induced and

enhanced hTRPA1 activation in an intracellular calcium-

independent manner when heterologously expressed in

human embryonic kidney-derived 293T (HEK293T) cells.

Moreover, we determined the correlation between increa-

ses in cell volume and TRPA1 activation under hypotonic

conditions using a cell-attached patch-clamp technique.

Materials and methods

Cell cultures

HEK293T cells were maintained in DMEM (WAKO Pure

Chemical Industries, Ltd., Osaka, Japan) supplemented

with 10% FBS (Biowest SAS, Caille, France), 100 units/ml

penicillin (Thermo Fisher Scientific Inc., Carlsbad, CA,

USA), 100 lg/ml streptomycin (Thermo Fisher Scientific

Inc.) and 2 mM L-glutamine (GlutaMAX, Thermo Fisher

Scientific Inc.) at 37 �C in 5% CO2. For Ca2?-imaging,

1 lg pcDNA3.1 plasmid DNA carrying human TRPA1

(obtained from Life Technologies, Carlsbad, CA, USA) in

OPTI-MEM medium (Thermo Fisher Scientific Inc.) was

transfected into HEK293T cells using Lipofectamine Plus

Reagent (Thermo Fisher Scientific Inc.). After incubating

for 3–4 h, the cells were reseeded on cover slips and further

incubated at 37 �C in 5% CO2.

Ca212 imaging

HEK293T cells on cover slips were mounted in an open

chamber and superfused with standard bath solution

(140 mM NaCl, 5 mM KCl, 2 mM MgCl2, 2 mM CaCl2,

10 mM HEPES, 10 mM glucose, pH 7.4). Several minutes

before the experiments, the standard bath solution was

changed to ±0 mOsm isotonic solution (60 mM NaCl,

5 mM KCl, 2 mM MgCl2, 2 mM CaCl2, 10 mM HEPES,

160 mM mannitol, 10 mM glucose, pH 7.4). Hypotonic

solutions at various tonicities were adjusted by mannitol

with -160 mOsm hypotonic solution (60 mM NaCl,

5 mM KCl, 2 mM MgCl2, 2 mM CaCl2, 10 mM HEPES

and 10 mM glucose, pH 7.4). To make a Ca2?-free bath

solution, CaCl2 was omitted and 5 mM EGTA was added.

Osmolalities of the calcium-containing solutions defined as

0, -80, -120 and -160 mOsm were directly measured

with a osmometer (OM-815, Vogel Medizintechnik, Ger-

many), which yielded 300, 216, 176 and 135 mOsm,

respectively, whereas the osmolalities of the calcium-free

solution defined as 0 and -120 mOsm were measured as

306 and 184 mOsm, respectively. Because the calculated

osmolalities were close to the measured values, we used

the calculated values. Cytosolic free Ca2? concentration

([Ca2?]i) in HEK293T cells was measured by dual-wave-

length fura-2 (Thermo Fisher Scientific Inc.) microfluo-

rometry with excitation at 340/380 nm and emission at

510 nm. In time-lapse measurements, the cells were

maintained at each osmolality for 100 s with or without
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1 lM AITC. The ratio image was calculated and acquired

using the IP-Lab imaging processing system (Scanalytics

Inc., Fairfax, VA USA). To chelate intracellular Ca2?, cells

were treated with 10 lM BAPTA-AM (Dojindo, Kuma-

moto, Japan) for 1 h before Ca2?-imaging measurements.

Electrophysiology

Cell-attached patch-clamp recordings were performed 1 day

after transfection. The standard bath solution was the same as

that used in the Ca2?-imaging experiments. The pipette

solution contained 140 mM KCl, 5 mM EGTA and 10 mM

HEPES, pH 7.4 (adjusted with KOH), as previously reported

[10]. Data from cell-attached voltage-clamp recordings were

sampled at 10 kHz and filtered at 5 kHz with a low-pass filter

for analysis (Axon 200B amplifier with pCLAMP software).

The pipette potential was held at -60 mV. All experiments

were performed at room temperature. NPo values were cal-

culated from representative current traces 20–30 s after each

stimulus that lasted for 10 s by pCLAMP software (Axon

Instruments, Sunnyvale, CA, USA). The total number of

channels and total events in each analysis ranged from 1 to 7

and from 2 to 6653, respectively.

Cell volume measurement

Cell volume was estimated by measuring the maximal cross-

sectional area of cells (cA) captured by digital camera (P6000;

Nikon, Tokyo, Japan) in digitized images using Image J (U.S.

National Institutes of Health, Bethesda, MD, USA) and a pen

tablet (PTH-450;Wacom, Saitama, Japan) to define the cross-

sectional area.All cAvaluesweremeasuredduring the control

period at neutral tonicity and the subject period at various

hypotonic conditions. Area increase ratios were estimated by

the following equation: Ratio = cAhypotonic=cAcontrol.

Data analysis

Data are expressed as mean ± SEM. Statistical analyses

were performed by Student’s t-test or one-way analysis of

variance (ANOVA) followed by a two-tailed multiple t-test

with Bonferroni correction. p values less than 0.05 were

considered significant.

Results

Enhancement of TRPA1 activity under hypotonic

conditions

We first used a Ca2?-imaging method to examine whether

hypotonic solutions activate TRPA1 in HEK293T cells

expressing hTRPA1 (Fig. 1a, b). Treatment of cells with

hypotonic solutions at -120 and -160 mOsm below the

normal isotonic osmolality significantly increased [Ca2?]i
in cells expressing hTRPA1 (Fig. 1a, b). In addition,

increases in [Ca2?]i induced by application of 1 lM allyl

isothiocyanate (AITC) were significantly enhanced at

-120 and -160 mOsm in hTRPA1-expressing cells. These

results suggested that hTRPA1 activity was increased

under hypotonic conditions. Because a significant increase

in [Ca2?]i was detected under -160 mOsm hypotonic

conditions, even in the mock-transfected cells, we used

-120 mOsm hypotonic conditions for most of the subse-

quent experiments.

Since hypotonic conditions induce cell swelling to

produce an increase in membrane tension that could be a

mechanical stimulus for proteins localized in the extended

plasma membrane, we examined the hTRPA1 activity in

HEK293T cells with a patch-clamp method. Upon hypo-

tonic stimulation of HEK293T cells, swelling lasted for

several minutes before the onset of a regulatory volume

decrease (Fig. 2) [43, 44]. Therefore, we completed all

patch-clamp recordings within 5 min. We chose a cell-

attached configuration to preserve an intact cytosolic

environment. After making a cell-attached configuration,

we applied a hypotonic solution of -80 mOsm, which

alone did not cause [Ca2?]i increases in the cells (Fig. 1a,

b). As expected, the basal channel activities were similar

under both ±0 and -80 mOsm conditions. However, the

increases in channel activity following 5 lM AITC appli-

cation were significantly larger under -80 mOsm condi-

tions relative to isotonic conditions (Fig. 3a–c). It is noted

that hTRPA1-mediated single-channel currents were

observed even before application of AITC, as previously

reported [34]. These data indicated that the hypotonic

conditions enhance hTRPA1 channel activity.

Activation of TRPA1 by cell swelling

under hypotonic conditions

In theory, during cell-attached patch-clamp experiments,

the tension of the membrane patch should remain constant

as hypotonic solutions are applied to the patched cell. To

examine the membrane tension in the patch, we first

compared the single-channel activities using two methods.

In one method, cells were exposed to the -120 mOsm

hypotonic solution after making a cell-attached configura-

tion (a pre-attached method). In the other method, a patch

pipette was attached to the plasma membrane 1 min after

exposure to the -120 mOsm hypotonic solution (a post-

attached method, Fig. 4) when HEK293T cells were

swollen (Fig. 2a). NPo (open probability x open channel

number) values of the hTRPA1-mediated currents were

significantly larger in the post-attached method than in the

pre-attached method (Fig. 5a), suggesting that increases in
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membrane tension activated hTRPA1. In addition, we did

not observe any single-channel current activation with the

post-attached method in mock-transfected cells exposed to

the -120 mOsm hypotonic solution (N = 3, data not

shown). Accordingly, we used the post-attached method in

subsequent experiments. In these experiments, isotonic

Fig. 1 Hypotonic solutions induced an increase in cytosolic calcium

concentrations in cells expressing human TRPA1. a Changes in

cytosolic Ca2? concentrations with time. Data are presented as the

fura-2 ratio (340/380 nm) in HEK293T cells expressing human

TRPA1(A1) or cells transfected with pcDNA3.1 (Mock) (N = 72) in

the presence of extracellular Ca2? after 1 min exposure to hypotonic

solutions with (N = 93) or without (N = 93) 1 lM AITC.

b Hypotonic solutions increased cytosolic Ca2? concentrations.

Comparison of the fura-2 ratio changes at the end of each solution

application. §§p\ 0.01 vs ±0 mOsm in the mock-transfected cells.

*p\ 0.05; **p\ 0.01 vs 0 mOsm in hTRPA1-transfected cells

without 1 lM AITC. ��p\ 0.01 vs 0 mOsm in hTRPA1-transfected
cells with 1 lM AITC

Fig. 2 Cross-sectional area

(cA) changes in HEK293T cells

induced by hypotonic stimuli.

a Average cell cA changes by

-120 mOsm (N = 10)

hypotonic and ?120 mOsm

(N = 10) hypertonic stimuli.

b Representative images of cell

swelling by -160 mOsm

hypotonic stimulation for 1 min.

c Comparison of cA increase

ratio for cells exposed to

hypotonic solutions with

different osmolalities

(±0 mOsm, N = 5;

-80 mOsm, N = 7;

-120 mOsm, N = 5;

-160 mOsm, N = 8)

**p\ 0.01
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solution (±0 mOsm) did not induce cell swelling (average

cA increase ratio was 0.99) while -80, -120 and

-160 mOsm hypotonic solutions induced cell swelling in a

hypotonicity-dependent manner (average cA increase ratios

were 1.11, 1.22 and 1.24, respectively, Fig. 2b, c). Single-

channel currents were increased by hypotonic stimulus in a

hypotonicity-dependent manner with statistical significance

at osmolalities B -120 mOsm (Fig. 5b, c); this pattern

was similar to that seen for changes in cell cA (Fig. 2b, c).

In addition, the single-channel currents upon application of

1 lM AITC also became larger in a hypotonicity-depen-

dent manner, achieving statistical significance at osmolal-

ities B -120 mOsm (Fig. 5b, d). These results suggested

that hTRPA1 activity is not only enhanced but also induced

by the hypotonic conditions.

To better estimate the influence of cell swelling on

hTRPA1 activities under hypotonic conditions, we ana-

lyzed the correlation between increases in cell cA and

hTRPA1 activities. Positive correlations between cA

increase ratios and NPo values of hTRPA1-mediated

single-channel currents were observed with (R = 0.53) or

without (R = 0.49) 1 lM AITC (Fig. 5e), suggesting that

cell swelling under hypotonic conditions induced hTRPA1

activation. Relatively modest hypotonic stimulation is

known to result in unfolding of membrane invaginations

without producing mechano-stress [45–47]. To confirm

whether mechanical stress on the patch membrane evoked

by negative pressure causes hTRPA1-mediated current

responses, we performed cell-attached patch-clamp exper-

iments with negative pressure applied to the patch pipette

in cells expressing hTRPA1. Approximately 6.6 cmHg

negative pressure significantly increased NPo values of

hTRPA1 currents under isotonic conditions, whereas small

TRPA1 channel currents were observed before application

of negative pressure (Fig. 6a, b). Since obvious TRPA1

currents were not observed under negative pressure in

mock-transfected cells (Fig. 6c), the increased currents

under negative pressure were likely derived from hTRPA1

activation. These data support our hypothesis that hTRPA1

is activated by mechano-stress.

Fig. 3 Hypotonic solutions increased AITC-evoked currents. a A

representative trace of hTRPA1-mediated single-channel currents

activated by 5 lM AITC in ±0 mOsm isotonic bath solution in a cell

expressing hTRPA1. b A representative trace of hTRPA1-mediated

single-channel currents activated by 5 lM AITC in -80 mOsm

hypotonic solution in a cell expressing hTRPA1. c Comparison of

hTRPA1 currents activated by 5 lM AITC under ±0 mOsm isotonic

conditions (N = 6) and -80 mOsm hypotonic conditions (N = 6).
*p\ 0.05

Fig. 4 Schematic diagram of ‘‘a post-attached method’’. A patch pipette was attached to the plasma membrane after cell swelling induced by

exposure to hypotonic solutions
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Effects of hTRPA1 blockers and cytosolic calcium

on hypotonicity-activated single-channel hTRPA1

currents

Next we examined the effects of known general TRPA1

blockers [48] on hypotonicity-activated single-channel

currents to confirm that the observed channel activity is

attributable to TRPA1 expression in HEK293T cells. The

selective TRPA1 antagonist HC-030031 (30 lM) caused

almost complete inhibition of hypotonic solution

(-120 mOsm)-induced single-channel currents, and the

inhibition was reversed by washout (Fig. 6d, e). Mean-

while, the TRPA1 activator AITC (5 lM) increased the

channel activity similar to that shown in Fig. 5. However,

ruthenium red, a hydrophilic TRPA1 blocker, showed little

inhibition (N = 5, data not shown). These different inhi-

bitory effects of TRPA1 blockers suggested that blockers

must penetrate the plasma membrane and reach the cell-

attached patch membrane from the inside.

TRPA1 is activated directly by intracellular calcium via

binding to its putative EF-hand-like motif in the N-terminal

region [49, 50]. [Ca2?]i was previously shown to be

increased under hypotonic conditions even in HEK293T

cells without heterologous expression of any other channel

[51, 52]. We observed similar increases in [Ca2?]i although

it was smaller relative to those seen for cells expressing

hTRPA1 (Fig. 1a, b). To clarify whether hTRPA1 activa-

tion under hypotonic conditions was induced by increases

in intracellular Ca2? levels, we examined the effect of

thapsigargin, which is known to deplete intracellular Ca2?

levels by inhibiting SERCA, in the absence of extracellular

Ca2? with or without 10 lM BAPTA-AM treatment for

1 h. Small and transient [Ca2?]i increases were induced by

the application of 1 lM thapsigargin in the absence of

Fig. 5 Cell swelling induced by hypotonic solution activated

hTRPA1. a Comparison of NPo values for single-channel currents

activated by hypotonic stimulus in cells expressing hTRPA1 upon

establishing a cell-attached configuration before (N = 7) and after

(N = 11) exposure to -120 mOsm hypotonic solutions. *p\ 0.05.

b Representative traces of the single-channel currents activated by

hypotonic stimulus in cells expressing hTRPA1 without and with

AITC. c NPo values of single-channel currents in cells expressing

hTRPA1 that were exposed to hypotonic solutions of different

osmolalities (±0 mOsm, N = 8; -80 mOsm, N = 7; -120 mOsm,

N = 11; -160 mOsm, N = 9). *p\ 0.05 vs ±0 mOsm. d NPo

values of single-channel currents in cells expressing hTRPA1 that

were exposed to hypotonic solutions of different osmolalities

(±0 mOsm, N = 8; -80 mOsm, N = 7; -120 mOsm, N = 10;

-160 mOsm, N = 8) with 1 lM AITC. �p\ 0.05; ��p\ 0.01 vs

±0 mOsm. e Correlations between cA increase ratios and NPo values

in cells expressing hTRPA1 that were exposed to hypotonic solutions

(black circles without AITC, N = 24; black diamonds with AITC,

N = 24)
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extracellular Ca2?, which could be due to the block of

Ca2? uptake to the ER by SERCA (Fig. 7a). On the other

hand, in cells treated with BAPTA-AM hardly any change

in [Ca2?]i was observed upon thapsigargin application

(Fig. 7a). In cells pre-exposed to thapsigargin (1 lM) for

3 min, hTRPA1-mediated single-channel currents showed

NPo values that were similar to the control (Fig. 7b, d).

BAPTA-AM treatment also did not affect the current

activation under -120 mOsm hypotonic conditions

(Fig. 7c, d). These results indicated that changes in

cytosolic Ca2? concentrations are likely not involved in the

observed hTRPA1-mediated current activation following

exposure of cells to hypotonic conditions.

Discussion

In the present study, Ca2?-imaging and cell-attached patch-

clamp experiments clearly showed that hypotonic stimu-

lation induced TRPA1 activation and enhanced currents

activated by AITC. In addition, cell swelling promoted by

hypotonic conditions activated TRPA1 in a manner that

was independent of cytosolic calcium.

During the Vietnam War, the potential of water to be an

irritant in peripheral tissues was seen with so-called trop-

ical immersion foot that affected soldiers whose feet were

immersed in water for prolonged periods [5]. Water also

causes pruritus, paresthesia and pain in patients diagnosed

with aquadynia [6], although the molecular mechanisms

that cause these pain sensations remain unknown. Our

findings suggest the possibility that, in addition to its pre-

viously defined roles in mechano-sensation in various

organs, TRPA1 participates in nociception upon exposure

to hypotonic solutions such as water.

Our findings in this study suggest that hTRPA1 activity

was increased under hypotonic conditions, a result that was

inconsistent with previous data in which hypertonic, and

not hypotonic, stimuli caused TRPA1 activation in rat cells

[22]. This inconsistency might be partly due to species

differences. Indeed, human and rat TRPA1 exhibited

opposite responses to menthol [39] and protons [36].

Moreover, two studies [40, 42] that used rat and human

odontoblasts exposed to hypotonic solutions showed a

possible role for TRPA1 in detecting hypotonic conditions

in that the responses could be inhibited by known TRPA1

agonists. These findings could support our present results

and indicate that TRPA1 is indeed involved in hypotonic

responses. The post-attached method we utilized in which a

gigaohm seal for the cell-attached patch is introduced to

the cell membrane after exposure to the hypotonic solution

might also have caused different outcomes. If our method

more precisely reflects actual membrane conditions, this

Fig. 6 hTRPA1-mediated

single-channel currents

activated by negative pressure

to the pipette or a hypotonic

solution. a A representative

trace of hTRPA1-mediated

single-channel currents

activated by negative pressure,

which was adjusted to

approximately 6.6 cmHg with a

microliter #702 syringe

(HAMILTON Company Inc.,

Nevada, USA). b Comparison

of hTRPA1 currents with or

without negative pressure.

*p\ 0.05. c Representative

trace of the currents activated by

negative pressure applied to a

mock-transfected cell. d A

representative trace of hTRPA1-

mediated single-channel

currents in the presence of the

TRPA1 inhibitor HC-030031

(30 lM). e Inhibitory effects of

HC-030031 (N = 6) on

hTRPA1-mediated single-

channel currents induced by

hypotonic solution. *p\ 0.05
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approach could be helpful for future studies of mechano-

sensitive ion channels, including TRP channels.

In the cell-attached patch-clamp experiments, hTRPA1

single-channel currents were enhanced by 5 lM AITC

(Fig. 3a–c); however, data from Ca2?-imaging with AITC

showed small differences between isotonic and hypotonic

conditions (Fig. 1a, b). Although small intracellular Ca2?

increases were indeed induced by hypotonic stimulation,

such small intracellular Ca2? increases beneath the patch-

clamped membrane could be sufficient to cause large

synergistic activation of hTRPA1 with AITC. In addition,

there was slightly more tension in the cell-attached patch-

clamped membrane, which was required to achieve a

gigaohm seal. This tension might also promote TRPA1

activation.

TRPA1 expression in mouse inner ears and electro-

physiological data seemed to supply strong evidence that

TRPA1 has an obvious role as a mechano-receptor in

mechano-transduction [53]. On the other hand, results from

studies of TRPA1 knockout mice were inconsistent with

in vitro findings [54], while cold responses of mouse

TRPA1 have become more convincing [21, 37]. Therefore,

the roles of TRPA1 as a mechano-receptor still remain to

be clarified both in vitro and in vivo. However, our result

demonstrating single-channel hTRPA1 activation upon

hypotonic stimulus strongly supports a potential role for

TRPA1 as a mechano-receptor in vitro. The similarity

between the time course of cell cA changes (Fig. 2a) and

[Ca2?]i changes (Fig. 1a) supports the notion that TRPA1

activation occurs immediately following cell volume

changes that likely create membrane stretch.

In addition to TRPA1, several other TRP channels,

including TRPC1 [55], TRPM2 [56], TRPM7 [18, 19],

TRPV2 [10, 11] and TRPV4 [57], are reported to be acti-

vated by mechanical stimulus, although whether these TRP

channels are activated directly by mechanical stimulus or

via other intracellular components is not clearly under-

stood. Nevertheless, our finding that human TRPA1 shows

activation at a single-channel level with the post-attached

method but not in the pre-attached method could rule out

the involvement of intracellular components. Further study

will be required to confirm whether hypotonicity-depen-

dent hTRPA1 activation occurs independently of other

factors.
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Fig. 7 Effects of cytosolic

calcium on single-channel

currents activated by a

hypotonic solution. a Average

traces of fura-2 ratio changes in

hTRPA1-expressing cells pre-

loaded with BAPTA-AM or

treated with thapsigargin, and

the effects of hypotonic

stimulus (-120 mOsm) in the

absence of extracellular Ca2?.

Data are from cells with

(N = 47) or without (N = 116)

10 lM BAPTA-AM. b, c
Representative traces of

hTRPA1-mediated single-

channel currents in HEK293T

cells exposed to 1 lM
thapsigargin (3 min) before

hypotonic stimulus in the

absence of extracellular Ca2?

without (b) or with
(c) preloading with 10 lM
BAPTA-AM. d Comparison of

hTRPA1-mediated single-

channel currents activated by

hypotonic solutions with

(N = 11) or without (N = 17)

pre-exposure to 1 lM
thapsigargin and single-channel

currents in BAPTA-AM pre-

loaded cells (N = 11)
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