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Abstract The signaling molecule 50-AMP-activated pro-

tein kinase plays a pivotal role in metabolic adaptations.

Treatment with 5-aminoimidazole-4-carboxamide-1-b-D-

ribofranoside (AICAR) promotes the expression of meta-

bolic regulators and components involved in glucose

uptake, mitochondrial biogenesis, and fatty acid oxidation

in skeletal muscle cells. Our aim was to determine whether

AICAR-induced changes in metabolic regulators and

components were more prominent in white or red muscle.

Rats were treated with AICAR (1 mg/g body weight/day)

for 14 days, resulting in increased expression levels of

nicotinamide phosphoribosyltransferase (NAMPT), perox-

isome proliferator-activated receptor-c coactivator-1a
(PGC-1a), glucose transporter 4 proteins, and enhanced

mitochondrial biogenesis. These changes were more

prominent in white rather than red gastrocnemius muscle or

were only observed in the white gastrocnemius. Our results

suggest that AICAR induces the expression of metabolic

regulators and components, especially in type II (B) fibers.

Keywords AMP-activated protein kinase �Mitochondrial

biogenesis � Nicotinamide phosphoribosyltransferase �
SIRT1 � Skeletal muscle

Introduction

Skeletal muscle demonstrates a great degree of metabolic

plasticity, with its characteristics subjected to many studies

over several decades. Accumulating evidence suggests that

a large number of signaling molecules control the meta-

bolic properties of skeletal muscle. The signaling molecule

50-AMP-activated protein kinase (AMPK) has been shown

to play a pivotal role in skeletal muscle cells [1].

AMPK is a heterotrimer comprising catalytic a- and

regulatory b- and c-subunits [2]. Two isoforms exist for the

a-subunit (a1 and a2) and the b-subunit (b1 and b2), with

three isoforms for the c-subunit (c1, c2, and c3). The a-

subunit contains the serine/threonine kinase domain, which

has been shown to exhibit kinase activity when it is

phosphorylated by upstream kinases such as LKB1 and

CaMKK [3, 4]. The b-subunit contains a domain that

interacts with the a- and c-subunits and was previously

reported to mediate the assembly of the heterotrimeric

AMPK complex [5]. The b-subunit also contains a glyco-

gen-binding domain [6]. The c-subunit binds to AMP fol-

lowing the phosphorylation of threonine 172 in the a-

subunit and kinase activation [7]. AMPK is a central

energy-sensing master regulator of cellular metabolism and

is activated when the cellular AMP/ATP ratio increases [8].

This allosteric regulatory system further promotes the
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phosphorylation of threonine 172 in the a-subunit by

upstream kinases [9].

Skeletal muscle AMPK is known to be activated by

exercise [10, 11]; secretory factors including leptin [12],

adiponectin [13], interleukin-6 [14], and brain-derived

neurotrophic factor [15]; and antidiabetic drugs [16, 17]. It

is also activated by the adenosine analog 5-aminoimida-

zole-4-carboxamide-1-b-D-ribofranoside (AICAR); AI-

CAR activation of AMPK stimulates glucose uptake and

fatty acid oxidation in skeletal muscle cells [18]. AICAR

treatment has also been found to enhance the expression of

metabolic components, including glucose transporter 4

(GLUT4) and monocarboxylate transporters 1 and 4 pro-

teins; increase hexokinase activity; and stimulate mito-

chondrial biogenesis in skeletal muscle [19–22]. Activation

of AMPK has been linked to upregulated expression of

metabolic regulators, such as silent information regulator

of transcription 1 (SIRT1), peroxisome proliferator-acti-

vated receptor (PPAR)-c coactivator-1a (PGC-1a), and

nicotinamide phosphoribosyltransferase (NAMPT) [21, 23,

24]. It has been proposed that AMPK-induced metabolic

adaptations could be mediated, at least partially, by SIRT1

[1].

SIRT1 is an oxidized form of nicotinamide adenine

dinucleotide (NAD?)-dependent histone deacetylase. It

plays an important role in various biological processes via

its interactions with and deacetylation of many transcrip-

tional regulators, such as forkhead transcription factor

(FOXO) [25], p53 [26], nuclear factor-jB (NF-jB) [27],

and PGC-1a [28]. SIRT1 regulates mitochondrial biogen-

esis and fatty acid oxidation in skeletal muscle cells by

deacetylating and functionally activating PGC-1a [28, 29].

SIRT1 activity is controlled by NAMPT, also known as

pre-B cell colony-enhancing factor (PBEF) or visfatin.

NAMPT is the rate-limiting enzyme required for the syn-

thesis of NAD? from nicotinamide, an inhibitor of SIRT1.

NAMPT increases the NAD?/NADH ratio and decreases

nicotinamide concentrations: SIRT1 activity then alloster-

ically increases in skeletal muscle cells [30]. The metabolic

capacity of skeletal muscle is thought to be at least partially

controlled by the AMPK–NAMPT–SIRT1–PGC-1a axis.

The expression of NAMPT in skeletal muscle has been

shown to increase with endurance exercise training and

activation of AMPK [23, 31, 32]. NAMPT might play an

important role in exercise training-induced metabolic

adaptations in skeletal muscle [33].

Skeletal muscle fibers in rodents are categorized as

slow-twitch type I and fast-twitch type IIA, IIX and IIB

fibers, and express myosin heavy chains I, IIA, IIX, and

IIB, respectively [34]. The type I, IIA, and IIX fibers exist

in human skeletal muscle [34]. The rank order of maximum

contraction velocity in rat skeletal muscle fibers is

I \ IIA \ IIX \ IIB [35]; for oxidative capacity it is

IIB \ I \ IIX \ IIA [36] or IIB \ IIX \ I \ IIA [37].

Metabolic responses to some stimuli, such as exercise

training [38], detraining [39], and hindlimb suspension

[40], appear to differ among the various fiber types. Acute

exercise was reported to increase the AMPK phosphory-

lation in all fiber types, and type IIX fibers exhibited the

greatest increase in human skeletal muscle [41].

We previously showed that AICAR induces increases in

AMPK phosphorylation levels in type II fiber-rich extensor

digitorum longus (EDL) muscle. The extent of this increase

appeared to be greater than that in the type I fiber-rich

soleus muscle of rats [24]. In another study, it was shown

that a single AICAR injection resulted in a 5.5-fold

increase in AMPK activity in the white gastrocnemius

muscle, but only a 2.9-fold increase in the red gastrocne-

mius muscle [42]. Collectively, these findings suggested

that acute administration of AICAR increases phosphory-

lation levels of AMPK in type II(B) fibers to a great extent

than in type I fibers. Therefore, chronic AICAR treatment

might result in greater expression levels of metabolic reg-

ulators and components in type II(B) fiber-rich white

muscle compared with those in type I fiber-rich red mus-

cles. However, results from previous studies have not

clearly revealed the extent of chronic AICAR treatment-

induced metabolic adaptations between muscles types. We

hypothesized that chronic AICAR treatment would

enhance expression levels of metabolic regulators and

components. We also believe that these effects would be

more prominent in type II(B) fibers than in type I fibers.

Our aims were to determine whether AICAR-induced

changes in metabolic regulators, such as NAMPT, SIRT1,

and PGC-1a, and in metabolic components, such as

GLUT4 and mitochondrial oxidative enzymes, differed

between type I fiber-rich red gastrocnemius and type IIB

fiber-rich white gastrocnemius muscles.

Materials and methods

Animal studies

Male Wistar rats (5 weeks old, 136–148 g) from Kyudo

(Tosu, Saga, Japan) were used in this study. All rats were

handled daily for at least 5 days before the commencement

of experiments. Rats were housed in a temperature-

(22 ± 2 �C) and humidity-controlled (60 ± 5 %) room

with a 12-h light (07:00–19:00):12-h dark (19:00–07:00)

cycle; food and water were provided ad libitum. All

experimental procedures were strictly conducted in accor-

dance with the Nakamura Gakuen University guidelines for

the Care and Use of Laboratory Animals and were

approved by the University Animal Experiment

Committee.
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Rats were divided into control (n = 9) and AICAR

treatment (n = 7) groups. Rats in the control group were

given daily subcutaneous injections of saline, while those

in the AICAR group were given daily subcutaneous

injections of AICAR (1 mg/g body weight; Toronto

Research Chemicals, North York, ON, Canada). This dose

of AICAR was previously shown to enhance skeletal

muscle AMPK activity and the phosphorylation of threo-

nine 172 in the a-subunit at 60 and 120 min postinjection

[19, 24, 43, 44]. Procedures were performed between 08:00

and 10:00 for 14 successive days. Nonfasted rats were

intraperitoneally anesthetized with pentobarbital sodium

(60 mg/kg body weight) about 24 h after the last injection.

The gastrocnemius muscle was dissected, and the deep

(red) and superficial (white) portions of the lateral head of

the gastrocnemius muscle were isolated. Muscle tissues

were immediately frozen in liquid nitrogen and stored at -

80 �C until required. The abdominal fat pads (mesenteric,

epididymal and perirenal) were also excised and weighed.

Preparation of muscle samples

Frozen muscle samples were homogenized in ice-cold

homogenization buffer (1:10 w/v; 25 mM HEPES,

250 mM sucrose, 2 mM EDTA, 0.1 % Triton X-100, pH

7.4) supplemented with CompleteTM Protease Inhibitor

Cocktail Tablets (Roche Diagnostics, Tokyo, Japan) and

centrifuged (15,0009g, 4 �C, 25 min). The supernatant

was removed and the concentration of proteins determined

using a kit (Bio-Rad, Richmond, CA). This muscle

homogenate was used for enzymatic assays and in Western

blotting analyses. For the Western blotting analyses, the

muscle protein homogenate was solubilized in sample

loading buffer (50 mM Tris-HCl pH 6.8, 2 % sodium

dodecyl sulfate, 10 % glycerol, 5 % b-mercaptoethanol,

and 0.005 % bromophenol blue).

Western blotting

Proteins (20 lg) present in homogenates were separated by

sodium-dodecylsulfate-polyacrylamide gel electrophoresis

(SDS-PAGE) using 7.5 % (SIRT1 and PGC-1a), 10 %

(NAMPT and GLUT4), and 15 % (cytochrome C) resolv-

ing gels. Proteins separated by SDS-PAGE were electro-

phoretically transferred to polyvinylidene difluoride

membranes. These membranes were incubated with a

blocking buffer of casein solution (Vector Laboratories,

Burlingame, CA, USA) for 1 h at room temperature.

Membranes were incubated with rabbit polyclonal anti-

bodies against PBEF (1:500 dilution; Bethyl Laboratories,

Inc., Montgomery, TX, USA), Sir2 (1:1000; Upstate Bio-

technology, Lake Placid, NY, USA), PGC-1a (1:500;

AB3242, Chemicon International, Temecula, CA, USA), or

GLUT4 (1:8000; Chemicon International), or with a mouse

monoclonal antibody against cytochrome C (1:200; clone

7H8.2C12; Biosource, Camarillo, CA, USA) overnight at

4 �C. Membranes were then incubated with anti-rabbit/

mouse biotinylated IgG (1:1000; Vector Laboratories) for

30 min. Protein bands were visualized using the avidin and

biotinylated horseradish peroxidase macromolecular com-

plex technique (Vector Laboratories). Band densities were

determined using NIH Image, version 1.62 (National

Institute of Health, Bethesda, MD, USA).

Enzyme activity assays

Enzyme activities were measured spectrophotometrically

with assays conducted at 30 �C using saturating concen-

trations of substrates and cofactors, as previously deter-

mined. Citrate synthase (CS) activity was measured at

412 nm to detect the transfer of sulfhydryl groups to 5, 50-
dithiobis(2-nitrobenzonic acid) (DTNB). The extinction

coefficient for DTNB was 13.6. Hexokinase (HK), pyru-

vate kinase (PK), lactate dehydrogenase (LDH), malate

dehydrogenase (MDH), and b-hydroxyacyl-coenzyme A

dehydrogenase (bHAD) activities were measured at

340 nm by following the production or consumption of

NADH or NADPH over 3 min. The extinction coefficient

for NAD(P)H was 6.22. Further details and procedures

have been described previously [45].

Statistical analysis

Values are expressed as the mean ± SD. We used the

unpaired t test to compare data between groups with a

P value less than 0.05 considered statistically significant.

Results

Body composition

We summarized the body composition of rats (Table 1);

pre- and posttreatment body masses in the AICAR group

were not significantly different from those in the control

Table 1 Body composition of rats in the current study

Control (n = 9) AICAR (n = 7)

Pretreatment body weight (g) 140 ± 3 141 ± 3

Posttreatment body weight (g) 245 ± 13 238 ± 8

Mesenteric fat tissue weight (g) 3.19 ± 0.41 2.44 ± 0.52*

Epididymal fat tissue weight (g) 1.81 ± 0.16 1.32 ± 0.14*

Perirenal fat tissue weight (g) 0.39 ± 0.06 0.23 ± 0.07*

* P \ 0.05 vs. control group
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group. Mesenteric, epididymal, and perirenal fat tissue

masses in the AICAR group were significantly lower than

those in the control group.

Expression of metabolic regulators

NAMPT protein expression levels in red and white gas-

trocnemius muscles were significantly increased, by 22 and

77 %, respectively (P \ 0.01), following AICAR treatment

(Fig. 1). SIRT1 protein expression levels were unaltered by

AICAR treatment in red or white muscles (Fig. 2). PGC-1a
protein expression levels in the white gastrocnemius mus-

cle of rats in the AICAR group were significantly higher

than those in the control group (47 %, P \ 0.01); however,

a similar difference was not observed in red gastrocnemius

muscle (Fig. 3).

Expression of metabolic components

AICAR treatment significantly increased GLUT4 protein

expression levels by 96 % in white gastrocnemius muscle

(P \ 0.001), but not in red gastrocnemius muscle (Fig. 4).

Cytochrome C protein expression levels in the white gas-

trocnemius muscle were also increased by the AICAR

treatment (26 %, P \ 0.05). We did not observe any

changes in cytochrome C expression levels in red gas-

trocnemius muscle (Fig. 5).

Enzyme activities

HK activities in red and white gastrocnemius muscles were

significantly increased in the AICAR-treated group, by 52

and 132 %, respectively, compared to the control group
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Fig. 1 NAMPT protein expression levels in red and white gastroc-

nemius muscles of rats in the control (open columns) and AICAR

(filled columns) groups. Values are mean ± SD; n = 7–9 muscles per

group. *P \ 0.05 vs. the control group
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Fig. 2 SIRT1 protein expression levels in red and white gastrocne-

mius muscles of rats in the control (open columns) and AICAR (filled

columns) groups. Values are mean ± SD; n = 7–9 muscles per group
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nemius muscles of rats in the control (open columns) and AICAR
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nemius muscles of rats in the control (open columns) and AICAR

(filled columns) groups. Values are mean ± SD; n = 7–9 muscles per

group. *P \ 0.05 vs. the control group
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(Fig. 6a; P \ 0.0001). PK activity in white gastrocnemius

muscle was increased by 26 % because of AICAR treat-

ment (P \ 0.0001); however, PK activity was relatively

unchanged in red gastrocnemius muscle (Fig. 6b). AICAR

treatment did not affect LDH activity in either type of

muscle (Fig. 6c). CS activity in white gastrocnemius

muscle was significantly higher in the AICAR-treated

group compared with that in the control group (26 %,

P \ 0.0001). No significant differences were observed for

CS activity in red gastrocnemius muscle (Fig. 6d). MDH

activities in red and white gastrocnemius muscles were

significantly increased by 13 and 38 %, respectively, fol-

lowing AICAR treatment (P \ 0.05; Fig. 6e) compared

with those seen in the control group. AICAR treatment

resulted in a 31 % increase in bHAD activity in white

gastrocnemius muscle (P \ 0.01), with no increase

observed in red gastrocnemius muscle (Fig. 6f).

Comparison of AICAR effects in red and white muscles

We have illustrated the relative changes in protein

expression levels and metabolic enzyme activities induced

by AICAR treatment and compared them with those in the

control group (Fig. 7). AICAR induced changes for all

parameters relative to the control group, with the exception

of SIRT1 protein and LDH activity levels. These were

significantly higher in white gastrocnemius muscle com-

pared with that in red gastrocnemius muscle (P \ 0.05).

Discussion

AMPK has been implicated in several diseases such as

diabetes mellitus, hypertension, cardiac hypertrophy, can-

cer, dementia, and stroke [46]. The control of AMPK

activity represents a strategy for preventing these diseases

or improving therapies against them. In our current study,

we found that treating rats with AICAR over 14 successive

days significantly increased expression levels of NAMPT,

PGC-1a, and GLUT4 proteins and enhanced mitochondrial

biogenesis in rat skeletal muscle.

We designed our study so as to compare AICAR-

induced metabolic alterations in red and white muscles.
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Our results showed that the expression levels of metabolic

regulators, such as NAMPT and PGC-1a proteins, fol-

lowing the AICAR treatment were higher in the white

gastrocnemius muscle than in the red gastrocnemius mus-

cle. Furthermore, the expression of the GLUT4 and cyto-

chrome C proteins as well as CS, MDH, bHAD, HK, and

PK activities were higher in the white gastrocnemius

muscle than in the red gastrocnemius muscle following the

AICAR treatment. The red gastrocnemius muscle contains

*50 % type I fibers and less than 1 % type IIB fibers. The

white gastrocnemius muscle contains *90 % type IIB and

*10 % of type IIX fibers, with low levels but a minimal

amount of type I or IIA fibers in rats [37, 47]. Based on

these results, AICAR-induced metabolic improvements

were suggested to be more prominent in type II(B) fibers

than in type I fibers.

The fiber type-dependent effects of AICAR on muscle

metabolic profiles observed in our present study could be

partially associated with different AMPK phosphorylation

levels among fiber types following AICAR treatment. We

previously showed that acute AICAR treatment-induced

increases in AMPK phosphorylation levels appeared to be

greater in type II fiber-rich EDL muscle than in type I fiber-

rich soleus muscle [24]. Additionally, phosphorylation

levels of acetyl-coenzyme A carboxylase (ACC), a down-

stream target of AMPK, in the EDL muscle appeared to be

enhanced to a great extent than in the soleus muscle fol-

lowing AICAR treatment [24]. Previous results indicate

that a single AICAR injection resulted in a 5.5-fold

increase in AMPK activity in white gastrocnemius muscle,

but only a 2.9-fold increase in red gastrocnemius muscle

[42]. These fiber type-dependent effects of AICAR on the

phosphorylation of AMPK might be responsible for the

different results we observed in red and white muscles.

Another possible cause of these differences could be the

varying expression patterns of the AMPK c subunit iso-

forms among fiber types. In rodents, the AMPK c3 isoform

is primarily expressed in muscles that are rich in type IIB

fibers, but is rarely expressed in type I fiber-rich muscles

[48, 49]. The skeletal muscles of AMPK c3 mutant

(R225Q) transgenic mice exhibit enhanced mitochondrial

biogenesis, fatty acid oxidation, and glycogen synthesis as

well as increased expression levels of genes encoding the

corresponding regulatory proteins [48, 50, 51]. In contrast,

AMPK c3 isoform knockout mice have decreased gene

expression levels [50]. Cantó et al. [52] reported that

fasting-induced increases in the expression of NAMPT,

PGC-1a, and GLUT4 mRNA and exercise-induced

increases in NAMPT mRNA expression and PGC-1a
deacetylation were ameliorated in AMPK c3 knockout

mice. Incubating EDL muscle isolated from wild-type mice

with AICAR promoted the phosphorylation of the AMPK

downstream targets, such as ACC and the Akt substrate of

160 kDa (AS160); however, these changes were ablated in

EDL muscles isolated from AMPK c3 isoform knockout

mice [53]. The AMPK c3 isoform appears to be necessary

for AICAR-induced AMPK signaling in skeletal muscle

and controls AICAR-stimulated metabolic adaptations,

especially in type IIB fibers.

Consistent with our results, AICAR treatment for 28

successive days was previously shown to increase NAMPT

protein and mRNA expression levels in the skeletal muscle

of mice [23]. The effects of AICAR on the accumulation of

the NAMPT protein were not apparent in AMPK a2 kinase

dead (nonfunctional enzyme) mice, whereas NAMPT

mRNA levels were maintained [23]. The AICAR-induced

increases observed in the expression of the NAMPT protein

we observed can be attributed to regulation by AMPK

signaling at the posttranscriptional or translational level.

Results from a previous study demonstrated that AMPK

controlled intracellular NAD? concentrations and SIRT1

activity [54]. Collectively, these results suggest that AMPK

regulates SIRT1 activity by modulating the quantity of the

NAMPT protein, followed by PGC-1a deacetylation and

transcriptional activation.

The activated form of PGC-1a can interact with several

transcription factors, including myocyte enhancer factor 2

(MEF2), GLUT4 enhancer factor (GEF), cAMP response
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element binding protein (CREB), estrogen-related receptor

a (ERRa), PPARa and c, and nuclear respiratory factor 1

(NRF1). NRF promotes the expression of GLUT4 and

PGC-1a, and also promotes mitochondrial biogenesis [1].

The AMPK-NAMPT-SIRT1-PGC-1a axis possibly medi-

ates the AICAR-induced metabolic improvements we

observed in skeletal muscle.

In a previous study, it was reported that SIRT1 protein

expression levels were increased in EDL muscle following

administration of a single dose of AICAR to rats [24]. In

humans, one short period of intense activity promotes the

phosphorylation of AMPKa and SIRT1 protein expression

in the vastus lateralis muscle. The same level of activity

with glucose ingestion did not lead to an increase in either

AMPK phosphorylation or SIRT1 protein content [55].

Based of these findings, it appears likely that AMPK sig-

naling regulates the SIRT1 protein content in skeletal

muscle.

We demonstrated that 14 successive days of AICAR

treatment did not alter the expression of SIRT1 in either red

or white gastrocnemius muscle in rats. Chronic adminis-

tration of AICAR (30 days) to mdx mice also failed to

enhance the expression of SIRT1 mRNA [56]. Further-

more, 5 days of a successive AICAR treatment decreased

SIRT1 protein expression levels in rats [57]. These findings

suggest that the effects of AICAR treatment on SIRT1

expression in skeletal muscle in vivo differed depending on

duration of the treatment period. Although administration

of a single dose of AICAR was shown to promote AMPK

activity [22, 24], long-term (28 days) AICAR treatment

abolished the activation of AMPK in rat skeletal muscle

[22, 58]. These results indicate treatment period-specific

effects of AICAR that lead to the activation of AMPK and

inconsistent SIRT1 expression patterns.

Another possibility is that chronic AICAR administra-

tion results in an excess of nutrients in skeletal muscle

fibers. These are manifested as elevated glycogen stores

and inhibit accumulation of the SIRT1 protein, thus

masking the effects of AICAR. Caloric restriction was

previously reported to increase SIRT1 protein expression

levels in skeletal muscle [59], suggesting that the expres-

sion of the SIRT1 protein is inversely associated with

energy stores. The concentration of glycogen at 22–25 h

after a final AICAR injection in the skeletal muscle of rats

treated with AICAR over 4 weeks was higher than that in

saline-treated rats [22]. This finding suggests that long-

term administration of AICAR results in constantly ele-

vated glycogen concentrations in skeletal muscle that

might interfere with accumulation of SIRT1. Further

investigations are required to elucidate the mecha-

nism(s) responsible for varying different results obtained

between short- and long-term AICAR treatments with

respect to SIRT1 expression.

Although AICAR stimulates skeletal muscle metabo-

lism via the direct activation of AMPK [60], other indirect

mechanisms might also mediate metabolic adaptations. As

an example, AICAR can activate other AMP-sensing

enzymes [61, 62]. AICAR also controls the secretion or

production of hormones/cytokines that regulate metabo-

lism, including insulin [63], adiponectin [64], interleukin 6

(IL-6) [65], and tumor necrosis factor-a (TNF-a) [64].

Adiponectin and IL-6 are activators of AMPK [13, 14],

whereas TNF-a is an inhibitor of AMPK [66, 67]. There-

fore, in vivo AICAR treatment-induced metabolic modifi-

cations in skeletal muscle could be attributed to the direct

and indirect activation of AMPK and AMPK-independent

mechanisms. The administration of AICAR to mice over-

expressing a2 kinase-dead AMPK led to an increase in the

expression of NAMPT mRNA but not the corresponding

protein [23], suggesting that AICAR affects the expression

of NAMPT at the transcriptional level via an AMPK-

independent mechanism.

In this study, we demonstrated that chronic AICAR

treatment significantly decreased the mass of abdominal fat

pads with concomitant increases in the expression of

metabolic regulator proteins and mitochondrial compo-

nents. Although the reasons for such reductions currently

remain unclear, it is possible that increases in fatty acid

oxidation and oxidative capacity in skeletal muscle induced

by AICAR enhanced whole-body energy expenditure.

Alternatively, it is possible that treatment with AICAR

results in a slightly reduced food intake. However, slight

caloric restriction should not affect metabolic modifica-

tions caused by AICAR. We previously demonstrated that

caloric restriction of around 65 % in ad libitum-fed rats for

14 days did not affect expression of metabolic regulator

proteins or mitochondrial components in skeletal muscle

[45].

In conclusion, chronic AICAR treatment of rats for 14

successive days significantly increased NAMPT and

PGC-1a protein expression levels in red and white gas-

trocnemius muscles. GLUT4 protein expression levels

were also increased, and mitochondrial biogenesis was

enhanced in skeletal muscles following AICAR treatment.

These increases in the expression of metabolic regulators

and components in white gastrocnemius muscle were

more prominent than those in red gastrocnemius muscle,

suggesting that AICAR-induced metabolic adaptations

occurred, particulaly in type II(B) fibers. In contrast, long-

term administration of AICAR did not affect SIRT1

expression.
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52. Cantó C, Jiang LQ, Deshmukh AS, Mataki C, Coste A, Lagouge

M, Zierath JR, Auwerx J (2010) Interdependence of AMPK and

SIRT1 for metabolic adaptation to fasting and exercise in skeletal

muscle. Cell Metab 11:213–219

53. Treebak JT, Glund S, Deshmukh A, Klein DK, Long YC, Jensen

TE, Jørgensen SB, Viollet B, Andersson L, Neumann D, Walli-

mann T, Richter EA, Chibalin AV, Zierath JR, Wojtaszewski JF

(2006) AMPK-mediated AS160 phosphorylation in skeletal

muscle is dependent on AMPK catalytic and regulatory subunits.

Diabetes 55:2051–2058
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