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Abstract Our previous work has shown that interleukin-6
(IL-6) implements its neuroprotective effect by inhibiting
the intracellular Ca>* overload in neurons. Here, we
examined whether regulation of L-type calcium channels
(LCCs) activities is involved in the neuroprotective action
of IL-6. In cultured cerebellar granule neurons (CGNSs),
patch-clamp recording showed that the whole-cell Ca®"
current and LCC current were significantly reduced by IL-6
pretreatment (120 ng/ml, for 24 h). Calcium imaging
data indicated that IL-6 significantly suppressed high
K" -induced intracellular Ca®* overload and LCC Ca®"
influx. Moreover, expression of the LCC subunit, Ca,1.2,
was remarkably downregulated by IL-6 in cultured CGNs.
These findings suggest that IL-6 exerts a neurotrophic
effect by preventing Ca>" overload, at least partly through
inhibition of LCC activity in cultured CGNs.
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Introduction

Interleukin-6 (IL-6), a member of pleiotropic cytokine
family, has complex effects on the central nervous system
(CNS) [1]. Under normal physiological conditions, the IL.-6
level in the CNS is low. In neural functional disorders, such
as brain diseases and injuries, IL-6 expression increases
greatly [2-7]. The increased IL-6 may reflect a harmful
process as an injurious mediator. For example, IL-6 is a
detrimental player in the CNS, contributing to pathogenesis
of neurodegenerative diseases, e.g., Alzheimer’s and Par-
kinson’s disease [8, 9]. However, the IL-6 increase may also
represent a compensative mechanism for neural repair. For
instance, IL-6 regulates neuronal function and development
in the innate response of the CNS to injury and diseases [10,
11], and exerts neurotrophic and neuroprotective effects on
glutamate- and N-methyl-p-aspartic acid (NMDA)-induced
neuronal damage [12-15]. Hereby, further exploration is
needed to understand the roles of IL-6 in brain physiology
and pathology.

It is well known that Ca*" is not only an important sig-
naling molecule in neurons, but also a mediator leading to
neuronal injury and death when it accumulates in the cytosol
of cells, termed Ca’t overload. Neuronal Ca®t overload
mainly involves three mechanisms: Ca®' influx through
ligand-gated channels, Ca*" influx through voltage-gated
Ca”" channels (VGCCs) activated by membrane depolar-
ization, and Ca>* release from intracellular store induced by
an increase in cytosolic Ca*™ [16]. By means of confocal
laser scanning microscope (CLSM), we previously found
that IL-6 suppressed neuronal intracellular Ca®>" overload
induced by glutamate or NMDA, and exerted a neuropro-
tective effect [13, 15]. However, the mechanism underlying
the IL-6 suppression of intracellular Ca** overload is not
clear. We hypothesized that IL-6 exerts its neuroprotective
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function by suppressing the expression of VGCCs in cere-
bellar granule neurons (CGNs).

VGCCs are expressed in neurons and have multiple
types, such as L-, N-, P/Q-, R-, and T-type Ca®* channels
[17-21]. Among these various types of VGCCs, L-type
calcium channels (LCCs) are widely distributed on the cell
body of neurons in mammalian CNS, including CGNs
[22-24]. Calcium influx through LCCs in response to mem-
brane depolarization serves essential functions in the regulation
of intracellular Ca*" homeostasis and neuronal excitability
[25, 26]. Excessive Ca®" influx through LCCs results in intra-
cellular Ca** overload, which has been implicated in the
pathogenesis of neurodegenerative disorders resulting from
brain ischemia [16, 27, 28]. Therefore, in the present study, we
firstly focused on LCCs to clarify the mechanism of the neu-
roprotective effect of IL-6 on LCCs by means of whole-cell
patch clamp methods and calcium imaging.

Materials and methods
Isolation and culture of rat CGNs

Primary cultures of CGNs were obtained from neonatal
Sprague-Dawley rats (The Center of Experimental Ani-
mals, Nantong University, China) at 8 days of age using
previously described procedures [29]. Briefly, the cere-
bellum was removed from rats and minced with sterile
surgical blades. The minced cerebellum was chemically
dissociated in the presence of trypsin (Amresco, USA) and
DNase I (Worthington, USA), and resuspended in the fol-
lowing culture medium: basal Eagle’s medium (Sigma,
USA), 10 % fetal bovine serum (Amresco, USA), 25 mM
KCl, 0.1 g/l gentamicin, and 2.2 g/l NaHCOj;, 2.385 g/l
HEPES. The samples were plated onto poly-L-lysine-
coated glass coverslips (0.32 x 10° cells/ml) for electro-
physiological recording, or seeded at a density of
0.8 x 10° cells/ml in 96 wells for calcium imaging or at
2.0 x 10° cells/ml in 6 wells for Western blot, respec-
tively. The cells were incubated at 37 °C with a humidified
5 % CO,/95 % air atmosphere in an incubator (ESPEC
BNA-311, Japan). To inhibit glial proliferation, cytosine
arabinoside (Sigma, USA, 10 pM) was added to the cul-
tures 18-24 h after the cells were plated. Rat recombinant
IL-6 (R&D Systems, USA) at a concentration of 120 ng/ml
was added to the cultures of CGNs for at least 24 h incu-
bation. All experiments described below were performed
using the CGNs cultured for 8 days.

Electrophysiological recording

Current through the Ca channel was isolated by blocking
the Na channel with TTX and recorded using an Axopatch
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200B patch-clamp amplifier (Axon, USA) at room tem-
perature (20-22 °C). The bath solution was composed of
TEA-C1 144, BaCl, 10, MgCl, 2, CsCl 3, HEPES 10,
glucose 10, 4-aminopyridine 2, and TTX 0.001 (all in
mM), and adjusted to pH 7.4 with TEA-OH. Patch pipettes
were pulled on a micropipette puller (pp830, Narishige,
Japan) to a tip resistance of 3-5 MQ when filled with
internal solution. The pipette solution contained CsCl 140,
HEPES 10, EGTA 10, TEA-CI1 5, and Na,-ATP 2 (all in
mM), and was adjusted to pH 7.2 with CsOH. Current
responses were low-pass filtered at 1 kHz and analyzed
with pClamp10.2 (Axon, USA). Linear components of
capacitive and leak currents were subtracted using the P/4
protocol. Ic,, carried by Ba?*, was elicited by a series of
command potentials from —60 to +40 mV for 250 ms
in 10-mV steps from a holding potential of —80 mV.
The whole-cell current densities were defined as peak
current amplitude divided by cell capacitance. Nifedipine
(Sigma), a blocker for LCCs, was used to determine the
proportion of LCC current in the whole-cell current. It
was added to 2 ml of bath solution with a final concen-
tration of 10 pM, and 2-min later, the non-L-type channel
current was recorded [30]. To determine the voltage-
dependent activation property of LCCs, values of currents
obtained were normalized to conductance with the form
g = I/(Vy, — Vi), and fitted to a single Boltzmann function
of the form g/gmax =1 — {1 + exp[(Va — Vip)/K]} ™",
where g is conductance, [ is the amplitude of whole-cell
LCC current, V,, is the membrane voltage, V., is the
reversal potential, k is the slope factor, and g..x is the
maximal conductance.

Measurement of intracellular Ca>" fluorescence
intensity

Intracellular Ca*" level was quantified by single cell fluo-3
fluorescence intensity as described previously [29] with a
small modification. Briefly, cultured CGNs were rinsed
twice with balanced salt solution (BSS), then incubated at
37 °C for 45 min in the presence of 5 pM fluo-3/acet-
oxymethyl ester (Fluo-3/AM, Calbiochem), washed twice
again with BSS, and incubated for an additional 20 min
prior to imaging. The BSS was composed of (in mM): 145
NaCl, 5.6 KCl, 5 HEPES, 3.6 NaHCO3;, 5.6 glucose, and
2.3 CaCl,. Calcium imaging was recorded by CLSM (Leica
TCS SPE, Germany). Successive images were collected at
5-s intervals. Fluo-3 fluorescence was excited at 488 nm,
and emitted light was measured at 530 nm. Quantification
of the fluorescence intensity was performed using TCS-
SPE software from Leica. To depolarize neurons and
activate  VGCCs, neurons were stimulated with high
K*-solution (150 mM KCI), whose composition was the
same as that of BSS, but Na® was replaced by K*. When
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the high-K* solution was applied to stimulate neurons,
100 pl of solution containing 150 mM KCI was added to
100 pl of BSS, and therefore the high K™ concentration
was about 75 mM. Because the concentration of other
constituents than K™ in the high-K™ solution was the same
as that in BSS, the addition of the high-K+ solution to BSS
did not alter the concentration of other constituents such as
HEPES, NaHCO3;, glucose, and CaCl,. Nifedipine (10 pM)
was applied to neurons 25 min before high K* stimulation.
In one-scanned visual field, 30 neurons were randomly
selected to obtain their dynamic intracellular Ca”" levels.
Neuronal basal Ca®" fluorescence intensity before high K™
stimulation was firstly recorded for about 90 s, and then
these neurons were stimulated by high K and scanned for
6 min. Neuronal maximal fluo-3 fluorescence intensity
after high K* stimulation was statistically analyzed. The
same experiment was repeated four times.

Western blot assay

For measurement of expression of the LCC subunit, pore-
forming o, (also known as Ca,l1.2), the cultured CGNS
were lysed by boiling sample buffer (125 mM Tris-HCI,
pH 6.8, containing 4 % SDS, 12 % f-mercaptoethanol, and
20 % glycerol). The cell extracts were boiled for 5 min and
loaded onto gels in each electrophoresis. After SDS-PAGE,
the separated proteins in the gel were electrotransferred
onto a PVDF membrane (Millipore) in tris-glycine-meth-
anol buffer. The membrane was blocked in blocking
solution (5 % non-fat dry milk in TBS), and then incubated
with primary antibody in blocking solution (rabbit anti-o.,
1:200; Alomone) overnight at 4 °C. After washing with
TBS/Tween-20, the membrane was incubated in secondary
antibody (1:5,000 dilution) coupled to HRP, washed as
above, and visualized by chemiluminescence using the
ECL system.

Statistical analysis

Data were analyzed using pClamp 10.2 (Axon Instru-
ments). One-way analysis or Student’s 7 test was used for
comparisons, with p < 0.05 indicating statistical differ-
ence. All data were presented as mean =+ standard devia-
tion (M + SD).

Results
Influence of IL-6 on whole-cell LCC current
Under the condition of Ba®t instead of Ca>" in the bath

solution, which reduced the influence of Ca®t current
rundown [31], the whole-cell current through the Ca

channel, evoked by depolarization from —60 to +40 mV at
a holding potential of —80 mV, in neurons pretreated with
IL-6 (120 ng/ml) was smaller than that in control neurons
(Fig. 1a, b). Statistical analysis of current density displayed
that the effect of IL-6 diminishing Ca-channel current was
significant between —20 and +10 mV of depolarization
(Fig. 1c).

The effect of IL-6 on LCC current was examined using
the selective LCC antagonist, nifedipine. In control neu-
rons, depolarization from a holding potential of —80 mV to
a test potential of —10 mV evoked an inward Ca-channel
current, and perfusion with nifedipine (10 pM) diminished
the Ca-channel current (Fig. 2a). This demonstrated that
opening of LCCs contributed to the inward current through
the Ca channel. In IL-6-pretreated neurons, the depolar-
ization from —80 to —10 mV also evoked an inward
Ca-channel current, but the current was smaller than that in
control neurons (Fig. 2a), demonstrating an inhibitory
effect of IL-6 on Ca-channel current. The nifedipine per-
fusion also decreased the current through Ca-channel in
IL-6-pretreated neurons (Fig. 2a). However, between
IL-6-treated and control neurons, the nifedipine-insensitive
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Fig. 1 Effect of IL-6 on whole-cell Ca-channel current in cultured
CGNs. The whole-cell inward currents through the Ca channel were
evoked by depolarization from —60 to +40 mV at a holding potential
of —80 mV. A typical whole-cell inward Ca-channel current in
control neuron (a) and in IL-6-pretreated neuron (b) was exhibited.
Statistical analysis of current density displayed that the effect of IL-6
diminishing the Ca-channel current was significant between —20 and
410 mV of depolarization (¢). *p < 0.05, **p < 0.01, compared with
relative membrane potential of control (n = 10)

@ Springer



388

J Physiol Sci (2012) 62:385-392

A Nifedipine = ) Nifcdiginc o
Mmmasmis o tsnamartne e

-10 mV -10 mV
80 mvV — [ L
Control IL-6
B1 Non L-type current
-10 mV -10 mV
80mvV — | | 8
Control IL-6
B2 ~
:"% 20 4
<
&
£ 15 T
5
=
S 10 -
™
=
Q
o
B 5
E
F4 0
Control IL-6

Fig. 2 Influence of IL-6 on whole-cell LCC current in cultured
CGNs. Depolarization voltage was set to —10 mV from a holding
potential of —80 mV, and whole-cell inward current through the Ca
channel was recorded in control and IL-6-exposed neurons. Perfusion
of control or IL-6-exposed neurons with 10 pM of nifedipine, a
blocker for LCCs, reduced the inward current through the Ca channel
(a). The inward current after nifedipine action was non-L-type
Ca-channel current (b1), and it was not significantly different between
IL-6-pretreated and control neurons (b2). The inward current blocked

Ca-channel current was not significantly different
(Fig. 2b), indicating that IL-6 did not alter the non-L-type
Ca-channel current. On the other hand, the nifedipine-
sensitive Ca-channel current was remarkably suppressed by
IL-6 exposure (Fig. 2c). This revealed that the suppressive
effect of IL-6 on the Ca-channel current was a result of its
inhibition of LCCs. Moreover, to examine whether the
voltage-dependent activation property of I cc was modi-
fied by IL-6 exposure, we calculated normalized conduc-
tance of LCCs using Boltzmann’s equation. The value of
the reversal potential was close to 60 mV. The fitted values
of Vi, were —25.05 & 1.93 and —26.84 £+ 1.64 mV, and
the slope factors were —5.84 £+ 1.81 and —4.75 &+ 1.30 in
control and IL-6-treated neurons, respectively. These data
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by nifedipine was the LCC current (¢1). The LCC current density was
evidently lower in IL-6-exposed neurons than in controls (c2).
**p < 0.01, compared with controls (n = 8). Voltage-dependent
activation curves were obtained by the Boltzmann equation,
8/8max = 1 — {1 + exp[(Vi, — Vl/z)/K]}fl. The fitted values of Vy,,
were —25.05 £+ 1.93 and —26.84 £+ 1.64 mV, and the k (slope factor)
was —5.84 £ 1.81 and —4.75 £ 1.30 in control and IL-6-treated
neurons, respectively. No significant differences in the data were found
between IL-6-treated and control neurons (¢3, n = 6)

showed that neuronal voltage dependence on activation
was not changed following incubation of the neurons with
IL-6 (Fig. 2c3).

Effect of IL-6 on high K*-evoked [Ca®"); increase

To further demonstrate the effect of IL-6 on LCCs, we
measured dynamic changes of intracellular Ca** fluores-
cence intensity in cultured CGNs by CLSM. In control
neurons, depolarization stimulation by high K* evoked an
acute elevation of intracellular Ca*" level (Fig. 3). In IL-6-
pretreated neurons, high K" stimulation evoked signifi-
cantly less elevation of the intracellular Ca®>" level than in
control neurons (Fig. 3), indicating that IL-6 suppressed
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high K'-induced intracellular Ca*" overload. After expo-
sure to nifedipine (10 uM), an LCC antagonist, for 25 min,
high K stimulation resulted in a reduction of intracellular
Ca’* overload compared with control neurons lacking
nifedipine exposure (Fig. 3). This suggests that the reduc-
tion of intracellular Ca** was attributable to a reduction of
Ca®* influx through LCCs. However, the inhibitory effect
of nifedipine on high K'-induced intracellular Ca®"
overload did not have a notable difference in the presence
and the absence of IL-6 (Fig. 3). This indicated that IL-6
did not significantly alter nifedipine-resistant Ca*™ over-
load components and therefore suggested that IL-6 exerted
its suppressive effect on high K*-evoked intracellular Ca®"
overload by attenuating nifedipine-dependent LCC Ca®"
influx.

IL-6 downregulates protein expression of LCC subunit

Expression of the LCC subunit, pore-forming o;. (also
known as Ca,1.2), in cultured CGNs was measured in order
to reveal the mechanism underlying IL-6 suppression of the
LCC current and LCC Ca*" influx. The LCC subunit
protein expression was remarkably downregulated by IL-6
pretreatment (Fig. 4). This showed that via the downreg-
ulation, IL-6 carried out its inhibitory effect on LCC
function.

Discussion

In this study, IL-6 pretreatment of cultured CGNs signifi-
cantly reduced the inward current through the Ca channel
evoked by depolarization from —20 to 410 mV at a holding
potential of —80 mV, suggesting that IL-6 inhibits VGCC
opening. To examine the contribution of LCCs, a type of
VGCCs, to the inward Ca-channel current, we used nifedi-
pine to block LCCs and found that the inward Ca-channel
current was diminished. This suggests that depolarizing
stimulation causes opening of LCCs and consequent influx
of Ca®" current in cultured CGNs. The report that extra-
cellular Ca®" influx occurs not only directly through the
glutamate-activated membrane channel, but also indirectly
through activated VGCCs by membrane depolarization [32]
supports our present results. Importantly, after neurons were
pretreated with IL-6, the effect of the nifedipine-sensitive
inward Ca-channel current was significantly suppressed. The
result suggests that IL-6 inhibits LCC activity. Some other
cytokines, such as interleukin-1/, tumor necrosis factor o,
and ciliary neurotrophic factor, have been reported to
modulate various types of VGCC currents in neurons [30,
33, 34]. Thus, our present data provide more evidence for
IL-6 regulating the LCC current in cultured CGNs.

To further demonstrate the modulation of LCC activity
by IL-6, we observed the influence of IL-6 on intracellular
Ca”* overload evoked by high K'-depolarization stimu-
lation in cultured CGNs. The IL-6 pretreatment signifi-
cantly reduced the high K'™-evoked intracellular Ca®"
overload. The result is consistent with the data obtained
from the patch-clamp experiments and demonstrates that
IL-6 inhibits VGCC activity. In our previous work, we
indicated that IL-6 suppresses glutamate- or NMDA-
induced intracellular Ca** overload and neuronal apoptosis
in cultured CGNs, and therefore suggest that IL-6 has a
neuroprotective effect [13, 15, 29]. Here we add evidence
for the IL-6 neuroprotection at the profile of its suppression
of VGCCs. Further, we hypothesized that the inhibitory
effect of IL-6 on VGCC-dependent Ca" influx is mediated
by LCC-activity suppression. We observed that nifedipine
attenuated intracellular Ca** overload triggered by high
K+—dep01arization stimulation, demonstrating that LCC
opening is involved in the high K*-induced intracellular
Ca”’" overload. The inhibitory effect of nifedipine on
intracellular Ca®" overload occurred similarly in IL-6-
exposed and control neurons. It indicates that IL-6 does not
significantly alter the nifedipine-insensitive Ca”"-influx
component. Therefore, the suppression of intracellular
Ca*" overload by IL-6 is attributed to its suppression of the
nifedipine-sensitive Ca”"-influx component. These find-
ings are consistent with the conclusion from the whole-cell
recording that IL-6 suppresses LCC activity. Thus, we
suggest that IL-6 neuroprotection through suppression of
intracellular Ca** overload is implemented, at least partly,
by the inhibition of the LCC current.

Since the voltage-dependent property of I} cc was not
modified by IL-6 pretreatment in the current study, the
mechanism underlying the IL-6 inhibition of LCC activity
needs to be explained. We found that expression of the
LCC pore-forming subunit Ca,l.2 was significantly
downregulated by IL-6 exposure in cultured CGNs. The
downregulation reached 60 %, and it was quite consistent
with the reduction in I cc peak current density in IL-6-
treated neurons. On the basis of these findings, we suggest
that the suppression of LCC function by IL-6 is related to a
decrease in LCC protein expression.

As we previously reported [13, 15, 29], the present study
represents a neuroprotective role of IL-6. However, since
IL-6 is a pleiotropic cytokine, it exerts neurotrophic and
neuroprotective effects, and yet can also function as a
mediator of inflammation, demyelination, and astrogliosis,
depending on the cellular context [35]. Therefore, the
dosage of IL-6, degree of neuronal damage, type and
environment of neurons, and existence of soluble IL-6
receptors can influence IL-6 effects [36, 37]. For example,
Nelson et al. [38] showed that a lower dose of IL-6 (5 ng/ml)
exposure enhances the mean amplitude of the Ca®" signal
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Fig. 3 Role of LCCs in IL-6 suppressing high K™ -trigged intracel-
lular Ca** overload. LCC blocker nifedipine (10 uM) treated neurons
for 25 min before high K*-stimulation. The neurons were incubated
at 37 °C for 45 min in the presence of 5 uM of Fluo-3/AM, and then
dynamic changes in intracellular Ca*" levels were tested by CLSM
during the whole 6-min high-K* stimulation. In each treatment, 30
neurons were randomly selected to analyze dynamic intracellular
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Fig. 4 IL-6 downregulates LCC subunit expression in cultured
CGNs. The CGNs from 8-day-old rats were incubated for 7 days
and then exposed to IL-6 (120 ng/ml) for 24 h. The protein
expression of the LCC subunit, pore-forming o;. (also known as
Ca,1.2), was significantly downregulated by IL-6 pretreatment (a).
The data are from three separate experiments (b). **p < 0.01,
compared with control

in response to glutamate receptor agonists in cultured
cerebellar Purkinje neurons, whereas a higher concentra-
tion of IL-6 (10 ng/ml) has no effect on the Ca*" signal in
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Ca®" levels (a). The compilation of data for the mean and SD of four
separate experiments as in a is presented in b. The peak intracellular
Ca®* levels following high K stimulation were compared for
statistical significance of the differences between the various treat-
ments (c). The arrows denote the beginning time when KCl was
applied. *p < 0.05 and NS means no significant difference

response to the same agonists. On the other hand, Vereyken
et al. [39] report that transient high—K* stimulation (0.5 s)
enhances the Ca®" signal, but longer high-K* stimulation
(>1 s) attenuates the Ca>" signal in IL-6-treated neurons.
In addition, NMDA infusion into rat striatum results in a
decrease in striatal cholinergic and GABAergic neurons,
and co-infusion of IL-6 and NMDA reduces the loss of
cholinergic neurons, but fails to prevent the loss of GAB-
Aergic neurons [37]. These differences of response to IL-6
among different IL-6 dosages, neuron-damaged degrees,
and neuronal types explain the distinct and complex effects
of IL-6, neuroprotective, neuroinjured, or non-effective.
Further exploration is needed to clarify the mechanisms
underlying the different effects of IL-6.

In general, in the presence of IL-6 receptor, IL-6 acts on
target cells and promotes dimerization of gp130, a signal-
transducing subunit coupled with IL-6 receptor. CGNs
have been reported to express IL-6 receptor and gpl30
signal protein [40, 41]. In our previous work, anti-gp130
antibody blocked the inhibitory effect of IL-6 on gluta-
mate-induced intracellular Ca®>" overload, indicating that
the IL-6 receptor is involved in the neuroprotective effect
of IL-6 [29]. On the basis of these findings, we suggest that
the suppressed LCC activity caused by IL-6 is mediated by
the IL-6 receptor.
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In conclusion, we revealed that IL-6 inhibits the activity

of LCCs in cultured CGNs and this inhibition is associated
with downregulation of LCC protein expression. These
results imply that a neuroprotective role of IL-6 in the CNS
is implemented, at least partially, by suppression of the
neuronal LCC current and therefore a reduction in intra-
cellular Ca®" overload.
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