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Pulsatile flow of blood through a stenosed tube:
effect of periodic body acceleration and a magnetic field
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Abstract A proper understanding of the interactions of

body acceleration and a magnetic field with blood flow could

be useful in the diagnosis and treatment of some health

problems. In the work reported in this paper we studied the

pulsatile flow of blood through stenosed arteries, including

the effects of body acceleration and a magnetic field. Blood is

regarded as an electrically conducting, incompressible,

couple-stress fluid in the presence of a magnetic field along

the radius of the tube. The effects of the body acceleration

and the magnetic field on the axial velocity, flow rate, and

fluid acceleration were obtained analytically by use of the

Hankel transform and the Laplace transform. Velocity

variations under different conditions are shown graphically.

The results have been compared with those from other the-

oretical models, and are in good agreement. Finally, our

mathematical model gives a simple velocity expression for

blood flow so it will help not only in the field of physiological

fluid dynamics but will also help medical practitioners with

elementary knowledge of mathematics.

Keywords Blood flow � Couple-stress fluid �
Non-Newtonian fluid � Magnetohydrodynamics

List of symbols
op
oz

Pressure gradient

A0 Steady-state part of the pressure gradient

A1 Amplitude of the oscillatory part

x1 2pf1, where f1 is the heart pulse

frequency

z Axial distance

t Time

a0 Amplitude of body acceleration

x2 2pf2, where f2 is the body force

acceleration frequency

/ Phase difference

u Velocity in the axial direction

q Density of blood

l Dynamic coefficient of viscosity

of blood

g Couple-stress viscosity

r Electrical conductivity

B0 Applied magnetic field

r Radial coordinate

R(z) Radius of the tube in the stenotic region

�a2 ¼ R2l
g

Couple-stress parameter

a2 ¼ R2xq
l

Womersley parameter

H ¼ B0R r
l

� �1=2 Hartmann number

kn Roots/zeros of Bessel functions

J0(n) = 0

Introduction

Many biological phenomena are being studied from the

standpoint of fluid dynamics. One of these is blood flow

through a stenosed tube under periodic body acceleration

and in a magnetic field, which is of interest to mechanical

engineers and to medical researchers. The red blood cell is

a major biomagnetic substance, and blood flow may be

affected by a magnetic field. A decrease in blood flow is
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caused by either an increase in blood resistance or a

decrease in blood pressure. Therefore, a high static mag-

netic field increases blood resistance. The major mecha-

nism of the effect of a static magnetic field on blood

viscosity is based on the interaction between the induced

magnetic moment of the RBC and the external magnetic

field. The RBC has greater susceptibility along its long

axis. Therefore, it tends to orient its long axis for larger

magnetic susceptibility along the external magnetic field.

This property in a static magnetic field increases the fric-

tion of the flowing blood, because the anisotropic orien-

tation of the RBC in the static magnetic field disturbs the

rolling of the cell in flowing blood, and so the blood vis-

cosity increases. The magnetic properties of RBCs are

important in the increase in blood viscosity during expo-

sure to a static magnetic field [8]. Sud and Sekhon [15]

studied blood flow through the human arterial system in the

presence of a magnetic field. Stenosis, which is a frequent

result of atherosclerosis, is a possible cause of arterial

diseases such as post-stenotic dilatation and haemolysis. If

a stenosis occurs in an artery, normal blood flow is dis-

turbed. This fluid-dynamical factor is important in the

development of arterial diseases. Although several

hypotheses have been proposed to explain why arterial

diseases occur locally at a stenosis or why a stenosis

appears, there is not yet a definite theory. Therefore, it is of

interest to clarify blood flow through a stenosed tube under

the action of a magnetic field.

Ishikawa et al. [4] analysed periodic blood flow through

a stenosed tube. Effects of pulsation and the rheology of

the blood were considered. They obtained a flow pattern, a

separated region, and the distributions of pressure and

shear stress at the wall. They showed that the non-New-

tonian property reduces the strength of the vortex down-

stream of the stenosis and this has a substantial effect on

the flow, even at high Stokes and Reynolds numbers. El-

Shahed [3] investigated the analytical expression for axial

velocity, fluid acceleration, flow rate, and shear stress.

Kumar and Singh [7] studied a mathematical model on

arterial unsteady blood flow with mild stenosis in the

presence of a magnetic field. Steady flow of blood through

a rigid straight circular tube under the action of periodic

body acceleration and a magnetic field was studied by

Rathod et al. [11] by considering blood as a couple-stress

fluid. Rathod and Pawar [10] studied the effect of periodic

body acceleration on pulsatile blood flow through a ste-

nosed narrow tube. Bali and Awasthi [1] researched the

effect of magnetic field on blood flow in a stenotic artery

taking into account the effect of a magnetic field in the

direction transverse to the blood flow, and considering the

viscosity of the blood as radial co-ordinate-dependent. The

effects of the interaction between a magnetic field and the

haemodynamics of the arterial system have been studied by

Mishra and Shekhawat [9]. Numerical analysis of blood

flow in realistic arteries subjected to a strong non-uniform

magnetic fields has been studied by Kenjereš [6], who

concluded that an imposed non-uniform magnetic field can

create significant changes in the secondary flow patterns.

Das and Saha [2] obtained the velocity and the maximum

value of volumetric flow rate decreases with increasing

Hartmann number and for a particular value of the phase

angle; the maximum value of the wall shear stress increases

with increasing Hartmann number but the effect is reversed

for a fixed value of t. Rathod and Tanveer [12] used a

mathematical model to study the effect of periodic body

acceleration and a magnetic field on pulsatile blood flow

through a porous medium, considering blood as a couple-

stress fluid in a circular tube. The effect of body acceler-

ation and an external magnetic field on two-dimensional

flow of a non-Newtonian fluid through an asymmetric

stenosed artery was analysed by Shaw et al. [13]. They

treated the artery wall as an elastic (moving wall) cylin-

drical tube. The laminar, incompressible, fully developed

non-Newtonian flow of blood in an artery with multiple

stenoses under the action of a magnetic field has been

studied numerically by use of a finite difference technique

[16]. All the flow characteristics were found to be affected

by the presence of multiple stenoses and exposure to

magnetic fields of different intensities. There is a sub-

stantial difference between blood flow and water flow

through a stenosed tube and the effect of the non-Newto-

nian property of blood should not be neglected. Non-

Newtonian viscosity becomes significant in the low-shear

stress region. Therefore, if there is a stagnant period, as in

blood flow in vivo, the effect of the non-Newtonian prop-

erty of blood should be considered together with pulsation

of the flow rate.

In this work, pulsatile blood flow through a stenosed

tube with periodic body acceleration in the presence of

uniform transverse magnetic field was studied analyti-

cally, assuming blood to be a couple-stress fluid. The

effect of the non-Newtonian property of blood was

investigated.

Mathematical model

Let us consider a one-dimensional pulsatile flow of blood

through a uniform straight and stenosed tube by consider-

ing blood as an electrically conducting, incompressible,

couple-stress fluid. The magnetic field is acting along the

radius of the tube and the flow is axially symmetric and

fully developed. The stenosis is mild. The magnetic Rey-

nolds number of the flow is assumed to be sufficiently

small that the induced magnetic and electric fields can be

neglected [10, 11].
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The pressure gradient op
oz

� �
produced by the pumping

action of the heart is given by:

� op

oz
¼ A0 þ A1 cosðx1tÞ; t� 0; ð2:1Þ

The time-periodic body acceleration is given by:

G ¼ a0 cosðx2t þ /Þ; t� 0; ð2:2Þ

A transverse magnetic field is applied as shown in

Fig. 3.

The geometry of the stenosis is defined by [5]:

RðzÞ ¼ a� d 1þ cos pz
2z0

� �
; �2z0� z� 2z0

a; otherwise

( )
: ð2:3Þ

The governing equation in cylindrical polar coordinates

in the presence of a transverse magnetic field and periodic

body acceleration can be written in the form:

ou

oz
¼ 0; ð2:4Þ

op

or
¼ 0; ð2:5Þ

q
ou

ot
¼ � op

oz
þ qGþ lr2u� gr2ðr2uÞ � rB2

0u; ð2:6Þ

where

r2 ¼ 1

r

o

or
r

o

or

� �
:

The following dimensionless quantities are used:

u� ¼ u

xR
; t� ¼ tx; A�0 ¼

R

lx
A0; A�1 ¼

R

lx
A1;

a�0 ¼
qR

lx
a0; z� ¼ z

R
; c ¼ x1

x
; b ¼ x2

x
:

We now introduce a radial coordinate transformation

given by:

n ¼ r

RðzÞ : ð2:7Þ

In terms of these variables, Eq. (2.6), on dropping the

asterisks, becomes

�a2a2ou

ot
¼�a2A0þ�a2A1 cosctþ�a2a0 cosðbtþ/Þ

þ�a2 1

n
o

on
n
ou

on

� �� 	
� 1

n
o

on
n

o

on

� �� 	
1

n
o

on
n
ou

on

� �� 	
��a2H2u

ð2:8Þ

The initial and boundary condition for solving Eq. (2.8)

are:

uðn; 0Þ ¼ 2
X1
n¼1

J0ðnknÞ�a2

knJ1ðknÞ
A0 þ A1 þ a0 cos /ð Þ
k4

n þ �a2 k2
n þH2


 �
" #

; ð2:9AÞ

(This is the result of steady flow of blood through a

stenosed tube under periodic body acceleration and

magnetic field.)

u and r2u are finite at n ¼ 0; ð2:9BÞ

u and r2u ¼ 0 at n ¼ 1: ð2:9CÞ

Required integral transform

If f(n) satisfies the Dirchlet condition in [0, 1] and if f �ðknÞ
is the finite Hankel transform of f(n) then we have:

f �ðknÞ ¼
Z1

0

nf ðnÞJ0ðnknÞdn ð3:1Þ

where kn are the roots of the Bessel functions J0(n) = 0.

Then, at each point of the interval in which f(n) is

continuous:

f ðnÞ ¼ 2
X1
n¼1

f �ðknÞ
J0ðnknÞ
J2

1ðknÞ
: ð3:2Þ

where the sum is taken over all positive roots of J0ðnÞ ¼ 0.

The Laplace transform of any function is defined as [14]:

f ðsÞ ¼
Z1

0

e�stf ðtÞdt; s [ 0: ð3:3Þ

Analysis

Applying the Laplace transform to Eq. (2.8) in the light of

Eq. (2.9B), we obtain:

�a2a2½s�u� uðn; 0Þ� ¼ �a2 A0

s
þ �a2A1

s

s2 þ c2

þ �a2a0ðs cos /� b sin /Þ
s2 þ b2

þ �a2 1

n
o

on
n
o�u

on

� �� 	

� 1

n
o

on
n

o

on

� �� 	
1

n
o

on
n
o�u

on

� �� 	
� �a2H2�u:

ð4:1Þ
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where �uðn; sÞ ¼
Z1

0

e�stuðn; tÞdt ð4:2Þ

Now applying the finite Hankel transform to Eq. (4.1),

using Eq. (2.9C), we obtain:

�u�ðkn;sÞ¼
J1ðknÞ

kn
�a2 A0

s
þA1

s

s2þc2
þa0ðscos/�bsin/Þ

s2þb2

�

þm
X1
n¼1

A0þA1þa0 cos/

k4
nþ�a2½k2

nþH2�

#
:

1

smþk4
nþ�a2½k2

nþH2�

where m ¼ �a2 � a2: ð4:3Þ

Now rearranging the terms of Eq. (4.3) into a form

convenient for taking the inverse Laplace transform we

obtain:

�u�ðkn; sÞ ¼
J1ðknÞ

kn
�a2 A0

k4
n þ �a2ðk2

n þ H2Þ
� 
 1

s
� 1

sþ p

� �"

þ A1

k4
n þ �a2ðk2

n þ H2Þ
� 


k4
n þ �a2ðk2

n þ H2Þ
� 
2þm2c2

� � 1

sþ p
þ s

s2 þ c2
þ mc2

k4
n þ �a2ðk2

n þ H2Þ
� 


ðs2 þ c2Þ

 !

þ
a0 k4

n þ �a2 k2
n þ H2


 �� 

cos /

k4
n þ �a2 k2

n þ H2

 �� 
2þm2b2

� 1

sþ p
þ s

s2 þ b2

�

þ mb2

k4
n þ �a2ðk2

n þ H2Þ
� 


ðs2 þ b2Þ

!

� a0bm sin /

k4
n þ �a2ðk2

n þ H2Þ
� 
2þm2b2

� 1

sþ p
� s

s2 þ b2
þ

k4
n þ a2ðk2

n þ H2Þ
� 


mðs2 þ b2Þ

 !

þm
X1
n¼1

ðA0 þ A1 þ a0 cos /Þ
½k4

n þ �a2ðk2
n þ H2Þ�

1

m
:

1

sþ p

� �#
;

where p ¼ k4
n þ �a2½k2

n þ H2�
m

: ð4:4Þ

Now taking the inverse Laplace transform of Eq. (4.4),

we obtain:

u�ðknÞ¼
J1ðknÞ

kn
�a2 A0

k4
nþ�a2ðk2

nþH2Þ
� 


("

þA1

k4
nþ�a2ðk2

nþH2Þ
� 


cosctþmcsinct

k4
nþ�a2ðk2

nþH2Þ
� 
2þm2c2

þ
a0 k4

nþ�a2ðk2
nþH2Þ

� 

cosðbtþ/Þþmbsinðbtþ/Þ

k4
nþ�a2ðk2

nþH2Þ
� 
2þm2b2

)

�e�pt A0

k4
nþ�a2ðk2

nþH2Þ
� 


(
þA1

k4
nþ�a2ðk2

nþH2Þ
� 


k4
nþ�a2ðk2

nþH2Þ
� 
2þm2c2

þ
a0 k4

nþ�a2ðk2
nþH2Þ

� 

cos/þbmsin/

k4
nþ�a2ðk2

nþH2Þ
� 
2þm2b2

�
X1
n¼1

ðA0þA1þa0 cos/Þ
k4

nþ�a2ðk2
nþH2Þ

� 

)#

:

ð4:5Þ

The finite Hankel inversion of Eq. (4.5) gives the final

solution in the form:

uðn; tÞ ¼ 2
X1
n¼1

u�ðknÞ
J0ðnknÞ
J2

1ðknÞ
:

uðn; tÞ¼ 2
X1
n¼1

A0J0ðnknÞ�a2

J1ðknÞkn

1

k4
nþ�a2ðk2

nþH2Þ
� 


("

þA1=A0

k4
nþ�a2ðk2

nþH2Þ
� 


cosctþmcsinct

k4
nþ�a2ðk2

nþH2Þ
� 
2þm2c2

þ
a0=A0 k4

nþ�a2ðk2
nþH2Þ

� 

cosðbtþ/Þþmbsinðbtþ/Þ

k4
nþ�a2ðk2

nþH2Þ
� 
2þm2b2

)

� e�pt 1

k4
nþ�a2ðk2

nþH2Þ
� 


(

þA1=A0

k4
nþ�a2ðk2

nþH2Þ
� 


k4
nþ�a2ðk2

nþH2Þ
� 
2þm2c2

þ
a0=A0 k4

nþ�a2ðk2
nþH2Þ

� 

cos/þbmsin/

k4
nþ�a2ðk2

nþH2Þ
� 
2þm2b2

�ð1þA1=A0þa0=A0 cos/Þ
k4

nþ�a2ðk2
nþH2Þ

� 

)#

:

ð4:6Þ

The expression for the flow rate Q can be written in the

form:

Q ¼ 2p
Z1

0

nu dn ð4:7Þ

using Eq. (4.6) in Eq. (4.7), we get the flow rate in the

form:

Q¼4p
X1
n¼1

A0�a2

kn

1

k4
nþ �a2ðk2

nþH2Þ
� 


("

þA1=A0

k4
nþ �a2ðk2

nþH2Þ
� 


cosctþmcsinct

k4
nþ �a2ðk2

nþH2Þ
� 
2þm2c2

þ
a0=A0 k4

nþ �a2ðk2
nþH2Þ

� 

cosðbtþ/Þ þmbsinðbtþ/Þ

k4
nþ �a2ðk2

nþH2Þ
� 
2þm2b2

)
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�e�pt 1

k4
nþ �a2ðk2

nþH2Þ
� 


(

þA1=A0

k4
nþ �a2ðk2

nþH2Þ
� 


k4
nþ �a2ðk2

nþH2Þ
� 
2þm2c2

þ
a0=A0 k4

nþ �a2ðk2
nþH2Þ

� 

cos/þ bmsin/

k4
nþ �a2ðk2

nþH2Þ
� 
2þm2b2

�ð1þA1=A0þ a0=A0 cos/Þ
k4

nþ �a2ðk2
nþH2Þ

� 

)#

: ð4:8Þ

Similarly the expression for fluid acceleration F can be

obtained in the form:

Fðn; tÞ¼ou

ot
¼2
X1
n¼1

A0

J0ðnknÞ
knJ1ðknÞ

�a2

�
A1=A0 c2mcosct� k4

nþ�a2ðk2
nþH2Þ

� �
csinct

� 


k4
nþ�a2ðk2

nþH2Þ
� 
2þm2c2

"

þ
a0=A0b mbcosðbtþ/Þ� k4

nþ�a2ðk2
nþH2Þ

� 

sinðbtþ/Þ

� 


k4
nþ�a2ðk2

nþH2Þ
� 
2þm2b2

þpe�pt 1

k4
nþ�a2ðk2

nþH2Þ
� 


(

þA1=A0

k4
nþ�a2ðk2

nþH2Þ
� 


k4
nþ�a2ðk2

nþH2Þ
� 
2þm2c2

þ
a0=A0 k4

nþ�a2ðk2
nþH2Þ

� 

cos/þbmsin/

k4
nþ�a2ðk2

nþH2Þ
� 
2þm2b2

�ð1þA1=A0þa0=A0 cos/Þ
k4

nþ�a2ðk2
nþH2Þ

� 

)#

: ð4:9Þ

Numerical computations for theoretical analysis

As we know, kn are zeros/roots of the Bessel function

J0(n) = 0. When we multiply n = 0.2 by k1, i.e., 2.42

(0.2 9 2.42 = 0.484) and from a table of Bessel function

we obtain J0(0.484). For n = 1 the Bessel function J0(k1)

will become zero, i.e., at the tube wall the velocity

becomes 0. Similarly we can continue the computation for

next sum n = 2, and so on.

In order to obtain physiological insight into the effect of

stenosis, magnetic field, and periodic body acceleration on

the velocity profile, the following values are taken:

Phase difference / = 150, b = 2, c = 2, etc.

Results and discussion

The velocity profile for a pulsatile flow of blood through a

stenosed tube with periodic body acceleration in the

presence of a magnetic field, computed by using Eq. (4.6)

for different values of the amplitude of body acceleration

a0, Womersley parameter a, steady state part of pressure

gradient A0, amplitude of oscillatory part A1, couple stress

parameter ð�aÞ; Hartmann number (H), time t, have been

shown through graphs.

Figure 1 illustrates the variation of axial velocity profile

for different values of the amplitude of body acceleration
a0

A0
: It is observed that the velocity profile increase for

increasing the amplitude of body acceleration. It can be

seen from Fig. 2, that the velocity increases for increase in

steady state part of pressure gradient and amplitude of body

oscillatory part A1

A0
: Figure 3 shows that the velocity

Fig. 1 Variation of the axial velocity profile for different values of

a0/A0 taking A1/A0 = 1, a ¼ 1; a = 1, / = 15�, b = 2, c = 2, t = 3,

H = 2, A0 = 4

Fig. 2 Variation of the axial velocity profile for different values of

A1/A0 taking a ¼ 1; a = 1, / = 15�, b = 2, c = 2, t = 3, H = 2,

A0 = 4, a0/A0 = 0.5
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decreases as the transverse magnetic field (H) is increased.

From Fig. 4 it is observed that the velocity increases as �a is

increased. Figures 5 and 6 show the variation of the

velocity profile with Womersley parameter a and time t.

Conclusion

In the present mathematical model the pulsatile blood flow

through a stenosed narrow tube under the action of periodic

body acceleration and a magnetic field has been studied. The

velocity expression has been obtained in the Bessel–Fourier

series form. The corresponding expressions to flow rate and

fluid acceleration are also been obtained.
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