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Abstract  In the present study, we employed an analyti-
cal technique in order to determine the approximate/exact 
solutions to the distinct kind of partial differential equations 
(PDEs) (especially wave equation). Generalized homotopy 
perturbation method (GHPM) depends upon He’s theory 
of homotopy perturbation and basic theory of least square 
method (LSM). The GHPM has been proven beneficial in 
obtaining the convergent solutions with ease. Applications of 
the scheme are demonstrated by assuming some examples.
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1  Introduction

Partial differential equations (PDEs) are naturally encoun-
tered during the mathematical modeling of various physical 
phenomena and thus are of interest to several mathemati-
cians and scientists [1]. These equations in general corre-
spond to certain physical conservation laws (mass, energy) 
or balance of forces (momentum). Researchers always 
involve themselves in the development of mathematical 
theory and methods only for the treatment of PDEs, for 
instance, heat equation, Navier–Stokes equation, Schrod-
inger equation, Maxwell’s equation, etc. [2]. Our main aim 
is to explore GHPM to the different versions of PDEs.

Some of the well-known PDEs type wave equations are 
Klein–Gordon equation, Burger’s equation, Boussinesq 

equation, cubic Schrodinger equation, etc. [3]. Wave equa-
tions give the description for the propagation of the distinct 
kinds of waves like water waves, sound waves, light waves 
and typical example is tsunami propagation, acoustic, elec-
trodynamics and traffic flow [4–6]. There is great need to 
thoroughly study these equations for the sake of their appli-
cations in the areas of engineering and other disciplines. 
Kaya and INC [7] found the solution of wave equations by 
decomposition method. Biazar and Islam have used ADM 
for the wave equation [8]. Further, Biazar and Ghazvini [9] 
investigated PDEs type wave equations by variational itera-
tion method. Galerkin method has been used to study PDEs 
by using finite element in space and Crank-Nicolson algo-
rithm [10].

In this article, we explore He’s homotopy theory with 
least square approximation to tackle PDEs especially wave 
equations and present the method as GHPM. Using GHPM, 
firstly, we construct reliable homotopy for the given problem 
along with homotopy parameter and receive a homotopy per-
turbated solution. After that linear combination of the terms 
appearing in homotopy solutions is assumed as approximate 
solution. Further, least square method is adopted to calcu-
late the constants appearing in the involved solution. The 
interesting part of this procedure is that we need only initial 
approximation of HPM solution to achieve accurate result. 
The theoretical background has been built by [11]. Our 
results will fill the gap in the literature related to the exact 
solution of wave equations.

Rest part of the paper maintains following structure: In 
Sect. 2, the mathematical basis (algorithm) of GHPM has 
been discussed along with required definitions. In Sect. 3, 
the applications of GHPM have been demonstrated by pre-
senting three examples whose exact solutions are already 
available. In the last section, we present our conclusion.

 *	 Reena Koundal 
	 koundalreena6@gmail.com
1	 Lovely Professional University, Phagwara, India
2	 NIT, Hamirpur, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s12572-023-00351-6&domain=pdf


151Int J Adv Eng Sci Appl Math (2024) 16(2):150–155	

1 3

2 � Foundation of GHPM for system of PDEs

Let us suppose following system of PDEs [12, 13]:

with

Here L1 and L2 are linear differential operators, M, N are 
nonlinear differential operators, Q(�, �),W(�, �) are unknown 
functions, I1, I2 are boundary operators, and �1(�, �), and 
�2(�, �) are known functions.

(1)

L1[Q(�, �)] +M[Q(�, �), W(�, �)] − �1(�, �) = 0,
(�, �) ∈ Ω = (0, l) × (0, t),
L2[Q(�, �)] + N[Q(�, �), W(�, �)] − �2(�, �) = 0,
(�, �) ∈ Ω = (0, l) × (0, t),

(2)I1

(

Q,
�Q

�n

)

= 0, I2

(
W,

�W

�n

)
= 0, (�, �) ∈ �Ω.

Let
�(�, �;p) ∶ Ω × [0, 1] → ℝ,�(�, �;p) ∶ Ω × [0, 1] → ℝ,
which satisfy following homotopy equations (14–16):

Here, Ω is the simply connected domain under considera-
tion, p ∈ [0, 1] . p = 0 gives

while initial guesses Q0(�, �) and W0(�, �) will be deter-
mined through

(3)
(1 − p)

[
L1
[
�(�, �;p)

]
− �1(�, �)

]
+ p[L1

[
�(�, �;p)

]

+M
[
�(�, �;p),�(�, �;p)

]
− �1(�, �)] = 0,

(4)
(1 − p)

[
L2
[
�(�, �;p)

]
− �2(�, �)

]
+ p

[
�(�, �;p)

]

+ N
[
�(�, �;p),�(�, �;p)

]
− �2(�, �)] = 0.

�(�, �;0) = Q0(�, �), and �(�, �;0) = W0(�, �),

(5)
Q0(�, �) = L−1

(
�1(�, �)

)
and W0(�, �) = L−1

(
�2(�, �)

)
,

Subjected to

Further, p = 1 , in equations (3) and (4) provides

Following the classical procedure of ordinary homotopy 
perturbation, we assume that

On substituting expansions (6) and (7) into (3) and (4), 
we have:

Solutions to set of above equations can be readily 
achieved in terms of Q� , Wi for �, � = 0, 1, 2, ...,∞. But here 
we proceed in a different way. So, we require only the ini-
tial iterations of homotopy perturbation method.

Remark 2.1  The zeroth-order solutions are similar to equa-
tion (5).

Let

are the HP-solution.
We prepare following two sets:

and �0 = Q0 , �1 = Q1,…, �� = Q� and Θ0 = W0 , Θ1 = W1

,…, Θ� = W�. It can be easily verified here that G𝛾−1 ⊆ G𝛾 , 
Z𝛿−1 ⊆ Z𝛿 and G� , Z� are L.I. in the vector space structure of 
continuous functions defined over ℝ.

I1

(

Q0,
�Q0

�n

)

= 0, I2

(

W0,
�W0

�n

)

= 0.

�(�, �;1) = Q(�, �), �(�, �;1) = W(�, �).

(6)�(�, �;p) = Q0(�, �) +
∑

�≥1
Q� (�, �)p

� .

(7)�(�, �;p) = W0(�, �) +
∑

�≥1
W�(�, �)p

� .

Q0(�, �) +
∑

�≥1
Q� (�, �)p

� = L−1
1

[

�1(�, �) −M

({

Q0(�, �) +
∑

�≥1
Q� (�, �)p

�

}

,

{

W0(�, �) +
∑

�≥1
W�(�, �)p

�

})]

,

W0(�, �) +
∑

�≥1
W�(�, �)p

� = L−1
2

[

�2(�, �) − N

({

Q0(�, �) +
∑

�≥1
Q� (�, �)p

�

}

,

{

W0(�, �) +
∑

�≥1
W�(�, �)p

�

})]

.

�� = Q0 + Q1 +…+ Q� , and �� = W0 +W1 +…+W� ,

(8)
G� =

{

�0 + �1 +…+ ��
}

, and Z� =
{

Θ0 + Θ1 +…+ Θ�
}

where � , � = 0, 1, 2,… ,



152	 Int J Adv Eng Sci Appl Math (2024) 16(2):150–155

1 3

Definition 2.1  Let [13]

be the residuals for the PDE (1), with

where

are called as the approximate solution to (1).

Definition 2.2.  Let 
{
S� (�, �)

}
�∈ℕ

 and 
{
P�(�, �)

}
�∈ℕ

 are the 
two HP-sequences of HP-functions for equations (1), (2), 
then

where

Definition 2.3.  If

and
lim

(� ,�)→(∞,∞)
R2

(
�, �, S� (�, �),P�(�, �)

)
= 0.

Then 
{
S�
}
 and 

{
P�

}
 converge to (1) and (2) [13].

Definition 2.4.  If

then Q,W  called as the �-approximate HP-solutions to the 
system (1), (2) on domain Ω along with (11) [13].

Definition 2.5.  If

(9)

R1

(
�, �,Q,W

)
=L1

[
Q(�, �)

]
+M

[
Q(�, �),W(�, �)

]
− �1(�, �) = 0,

(�, �) ∈ Ω =(0, l) × (0, t),

(10)

R2

(
�, �,Q,W

)
=L2

[
Q(�, �)

]
+ N

[
Q(�, �),W(�, �)

]
− �2(�, �) = 0,

(�, �) ∈ Ω =(0, l) × (0, t),

(11)I1

(

Q,
�Q

�n

)

= 0, I2

(

W,
�W

�n

)

= 0,

(12)Q =

�∑

l=0

Λl
�
�l, W =

�∑

h=0

Δh
�
Θh, for � , � ≥ 0,

S� (�, �) =

�∑

l=0

Λl
�
�l, P�(�, �) =

�∑

h=0

Δh
�
Θh,

� , � ∈ ℕ,Λl
�
,Δh

�
∈ ℝ[13].

lim
(� ,�)→(∞,∞)

R1

(
�, �, S� (�, �),P�(�, �)

)
= 0,

|||
|
R1

(
𝜋, 𝜏,Q,W

)|||
|
< 𝜖, and,

|||
|
R2

(
𝜋, 𝜏,Q,W

)|||
|
< 𝜖,

�
ℝ

�
0

R
2

1

(
�, �,Q,W

)
d�d� ≤ �, �

ℝ

�
0

R
2

2

(
�, �,Q,W

)
d�d� ≤ �,

Table 1   OHAM [17], GHPM and exact solutions for equation (16)

(�, �) Exact solution OHAM solu-
tion [17]

GHPM solution

(0.6,0.1) 0.00182 0.00182 0.00182
(0.9,0.1) 0.00245 0.00245 0.00245
(0.3,0.5) 0.16873 0.16873 0.16873
(0.9,0.5) 0.30745 0.30746 0.30745
(0.6,0.9) 0.30745 1.32834 1.32832
(0.9,0.9) 1.79305 1.79307 1.79305

be the residual functions to the system (1), (2) [13].
Further, to calculate the scalars Λl

�
, and Δh

�
 (appearing 

in above linear combinations) accurately, we substitute the 
expression of Q,W  in (9) and (10) and achieve:

Let J
(
Λl

�
, Δh

�

)
 is defined as [13]

real functional. Next, we minimize the functional (14) to 
determine the scalars.

Theorem  2.1.  If 
{
S� (�, �)

}
 , 
{
P�(�, �)

}
 are the HP-

sequences (Definition (2.2)) then the following is true:

Proof  The procedure for proof of this theorem is similar 
to [13].

3 � Applications

Example 1.  Suppose a linear diffusion-wave equation as 
[17]:

with

(13)
ℜ1

(

�, �,Λl
� ,Δ

h
�

)

= R1

(

�, �,Q,W
)

,

ℜ2

(

�, �,Λl
� ,Δ

h
�

)

= R2

(

�, �,Q,W
)

.

(14)

J

(
Λl

�
,Δh

�

)
= ∫

ℝ

∫
0

{
ℜ

2

1

(
�, �,Λl

�
,Δh

�

)
+ℜ

2

2

(
�, �,Λl

�
,Δh

�

)}
d�d�,

lim
(� ,�)→(∞,∞)∫

ℝ

∫
0

{
ℜ

2

1

(
�, �, S� (�, �),P�(�, �)

)

+ℜ2

2

(
�, �, S� (�, �),P�(�, �)

)}
d�d� = 0.

(15)�2Q

��2
−

�2Q

��2
−

�Q

��
+
(
3�2 − �3 + 6�

)
e� = 0,
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The closed form solution given in [17] at � = 2. Now 
continuing with GHPM procedure, let � = 3 . Then

Applying the rest procedure, we will get same solution as 
given in [17]. In Table 1, we have presented the comparison 
of our results with OHAM [17].

Example 2.  Assume the nonlinear wave equation as con-
sidered in [18, 19]:

with

In this case let � = 4 . For equation (18), surface and two-
dimensional plots can be seen in Fig. 1. Table 2 is prepared 
for comparison.

Example 3  Let us suppose the two-dimensional system of 
partial differential equation [20]:

and

(16)
Q(�, 0) = �Q

��
(�, 0) = 0, � ∈ [0, 1],

Q(0, �) = �3, Q(1, �) = e�3, � ∈ [0, 1].

G
3

=
{
�(e� + (−e + 1)� − 1), �2(e� + (−e + 1)� − 1),

�3((e − 1)� + 1), �3e�
}
.

(17)

�2Q

��2
− Q

�2Q

��2
= −�2sin(π) − 2�2 sin2 (�), 0 ≤ �, � ≤ 1,

(18)Q(0, �) = 0,
�Q

��
(0, �) =

�2

2
.

(19)
�Q

��
−W

�Q

��
+ Q

�W

��
= −1 + e� sin (�),

(20)�W

��
+

�Q

��

�W

��
+

�W

��

�Q

��
= −1 − e� cos (�),

Now apply the HPM procedure as described in section 2 
we get:

Consider (� , �) = (1, 1) , then set of functions as 
G1 = {�, e�sin�} and Z1 = {�, e−�cos�}.

Utilizing zeroth-order solutions of HPM to assume relia-
ble approximate solutions for the system of Eq. (19), (20) as:

Continuing with the procedure of GHPM, we obtain

This solution matches with the exact solution [20]. The 
behavior of solutions attained by GHPM has been displayed 
in the form of Figs. 2, 3. The solutions presented by Biazar 

(21)Q(0, �) = sin (�), W(0, �) = cos (�).

(22)Q0 = −� + e� sin �.

(23)W0 = −� + e� cos �.

(24)Q = Λ0� + Λ1e
� sin �,

(25)W = Δ0� + Λ1e
−� cos �.

(26)Q = e� sin (�), W = e−� cos (�).

Fig. 1   Graphical presentation 
for equation (17)

(a) Surface plot for equation (18).                  
                                                                                    GHPM and exact solution at τ = 1

             (b) Comparison between HPM, LSM [19], 

Table 2   LSM [19], HPM, GHPM and exact solutions of equation 
(17)

(�, �) Exact solution LSM [6] HPM solution GHPM 
solution

(0.2, 0.1) 0.0019866 0.0019872
9.8 × 10

−4 0.0019866
(0.2, 0.9) 0.1609221 0.1609680 0.0797073 0.1609221
(0.4, 0.5) 0.0973545 0.0973642 0.0463104 0.0973545
(0.8, 0.5) 0.1793390 0.1793162 0.0636639 0.1793390
(0.7, 0.7) 0.3156666 0.3156244 0.1257956 0.3156666
(0.1, 0.1) 0.8414709 0.8413900 0.1955076 0.8414709
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and Eslami in [20] used NHPM which depends upon tradi-
tional HPA. We can easily see that they found exact solutions 
for the same problem but they need higher-order approxi-
mation for this purpose. While in GHPM we manipulate 
only zeroth-order of HP-solutions and then apply LSA to 
get exact solutions.

4 � Conclusion

GHPM is explored to achieve the exact solutions for wave 
equations. The examples in the different forms of wave equa-
tions exactly validate the theory. The beauty of the method 
is its simplicity and accuracy and flexibility. Because of the 
flexibility of GHPM, it can be apply on both mixed type or 
Robin type boundary conditions particularly. The inclusion 
of these conditions might be a challenging task. But due to 
the homotopy parameter, GHPM can be handle the complex-
ity of both types of the conditions in more easy way. This 
method will fill the gap in the literature by providing an 
alternating and simple way to obtain the solutions to PDEs, 
especially wave equations.
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