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1  Introduction

Equations governing incompressible fluid flows correspond 
to the low Mach number limit of compressible flow equa-
tions. However, the incompressible flow solvers are signifi-
cantly different from the compressible flow solvers, due to 
the nature of pressure in the low Mach number limit, dif-
ference in mathematical representation (with compressible 
solvers focusing mainly on hyperbolicity) and the changing 
nature of the equation of state. The equations governing the 
incompressible flow are the Navier–Stokes (NS) equations 
given by 

 where � is the velocity of the flow, p denotes the pressure 
and � is the kinematic viscosity of the fluid. Clearly, the 
above is an underdetermined system. The exact solution to 
the NS equations is still an open problem.

The solutions of flows governed by (1) need to be 
obtained by the techniques of computational fluid dynam-
ics (CFD). Since there is no separate evolution equation for 
pressure, the numerical methods focus mainly on obtaining 
or eliminating the pressure. Several techniques have been 
introduced over the decades, including vorticity-stream func-
tion approach (pressure elimination method), pressure based 
methods (pressure Poisson equation based method), pressure 
correction methods (Marker and Cell (MAC) method [1], 
SIMPLE family, projection methods [2, 3] or fractional step 
methods), artificial compressibility method and a few more. 
For a detailed review of these methods, the reader is referred 
to the standard books including [4, 5, 6].

(1a)∇ ⋅ � = 0,

(1b)
��
�t

+ (� ⋅ ∇)� = −∇p + �Δ�,
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There are also the methods that take an altogether dif-
ferent approach to obtain the solutions of incompressible 
flow, e.g., lattice Boltzmann method (LBM) [7] and kineti-
cally reduced local Navier–Stokes (KRLNS) equation [8] 
approach. These methods are described at the kinetic level 
and tend towards the incompressible flow (Eq. (1)) in the 
hydrodynamic limit. In the traditional lattice Boltzmann 
method, the Gaussian equilibrium distribution functions 
(used to get compressible flow equations in the hydrody-
namic limit) are truncated to low Mach numbers, restrict-
ing the method to the incompressible flow applications. 
The relation between density and pressure is defined by an 
artificial equation of state. In KRLNS approach, the equa-
tions are rewritten in terms of velocity and grand potential, 
describing the thermodynamics of the fluid flow at low Mach 
numbers. Based on the framework of relaxation schemes 
which solve the hyperbolic conservation laws [9] and their 
connection to the discrete velocity Boltzmann system [10], a 
lattice Boltzmann relaxation scheme is introduced recently 
for solving compressible fluid flows [11, 12]. In the present 
work, introducing a similar framework, a new lattice Boltz-
mann relaxation scheme (LBRS) is presented for incom-
pressible flow simulations. First an artificial compressibility 
formulation is used to get a hyperbolic system of inviscid 
incompressible flow equations. Later a discrete velocity 
formulation for the vector conservation laws is used to get 
a new lattice Boltzmann method for inviscid incompress-
ible flow equations. Its further extension to viscous flows is 
based on Chapman–Enskog type expansion.

1.1 � Artificial compressibility method (ACM)

In 1967, Chorin [13] proposed an artificial compressibility 
method, consisting of a modified continuity equation. Since 
pressure is the only undetermined variable in (1), a time 
derivative of pressure (through a time derivative of density), 
based on an artificial equation of state p = �c2

s
 , is added 

to the divergence free constraint (1a). Hence, the modified 
system of equations is given as 

 Here c2
s
 is connected with the artificial compressibility 

parameter, with cs being the artificial speed of sound. With 
this modification, the original incompressible flow system 
gets converted to a system of hyperbolic-parabolic equa-
tions. In other words, an artificial wave propagation model is 
introduced in the system with a finite speed for the distribu-
tion of pressure pulses, contrary to the infinite speed inherent 

(2a)
��

�t
+ ∇ ⋅ � = 0,

(2b)
��
�t

+ (� ⋅ ∇)� = −∇p + �Δ�.

in the case of incompressible flow. The speed of these waves 
depends on the choice of the square of the artificial speed of 
sound, c2

s
 . From the introduced artificial equation of state, it 

is clear that for a quick recovery of divergence free property 
of the flow, the value of c2

s
 must be as high as possible. This 

upper limit of the parameter is dependent entirely on the 
algorithm used to simulate the flow.

For an inviscid 1-D incompressible flow, the ACM formula-
tion is given as 

 which, in vector form, can be rewritten as

where

Flux Jacobian matrix A for the above system is

The corresponding eigenvalues of the system are 
� = u ±

√
u2 + c2

s
 . Defining the pseudo speed of sound, a, 

as a =
√

u2 + c2
s
 , the eigenvalues � = u ± a are real and dis-

tinct, thus producing a strictly hyperbolic system as in the 
compressible case. The corresponding artificial Mach num-
ber of the flow is given as M =

u

a
=

u√
u2+c2

s

< 1 . Thus, we 

are assured that the introduced hyperbolic system will not 
produce any discontinuous solutions (shock waves), as the 
flow will always remain subsonic in nature.

For steady flow, the above system needs no modification, 
as the system is equivalent to the incompressible system of 
equations when the unsteady term in the continuity equa-
tion vanishes. When the time accurate solution is sought, the 
above system is modified by introducing a dual time-stepping 
approach [5, 6]. For the solution to converge, the artificial 
waves introduced should travel the whole domain at least once 
so that pressure field is well distributed. This implies that the 
time at which the artificial wave is travelling should be less 
compared to physical time. Hence, for a time accurate solution 
of the incompressible flow, the algorithm is designed in such 
a way that pressure field attains steady state in every iteration. 

(3a)
�p

�t
+ c2

s

�u
�x

= 0,

(3b)�u
�t

+
�(u2 + p)

�x
= 0,

�U
�t

+
�F
�x

= 0

U =

[
p

u

]
and F =

[
c2
s
u

u2 + p

]
.

A =
�F
�U

=

[
0 c2

s

1 2u

]
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A pseudo-time ( � ) derivative is introduced for the momentum 
equation, similar to the temporal derivative of pressure. 

 First, the system is iterated in pseudo time � till the diver-
gence-free flow field is numerically driven to zero, which 
refers to the inner loop. Then, the time-marching is done in 
real time t, which constitutes the outer loop. For unsteady 
flows or low-Reynolds-number flows, the stability of dual 
time stepping approach and the choice of c2

s
 become restric-

tive, leading to slow convergence rates [14].
There are significant similarities between ACM and 

LBM, as noted by Ohwada et al. [15]. They note that LBM 
can be regarded as a mesoscopic version of ACM in the 
sense that the asymptotic expansion of LBM leads to artifi-
cial compressibility (Eq. (2a)). Asinari et al. [16] introduced 
a scheme which combines the artificial compressibility 
method with the lattice Boltzmann method, called link-wise 
ACM (LW-ACM). In this work, we introduce a different 
lattice Boltzmann relaxation scheme, linking ACM with a 
relaxation system and then to a discrete velocity Boltzmann 
system.

2 � Lattice Boltzmann relaxation scheme (LBRS) 
for 1‑D incompressible inviscid flow

2.1 � 1‑D ACM framework

We first formulate the ACM framework for the governing 
equations of 1-D inviscid incompressible flows. The govern-
ing equations in the artificial compressibility formulation, as 
mentioned previously in (3), are

In vector form, the above hyperbolic system can be rewrit-
ten as

As mentioned earlier, the eigenvalues of the Jacobian A =
�F

�U
 

are � = u ±
√

u2 + c2
s
 which are real and distinct.

(4a)
�p

��
+ c2

s

�u
�x

= 0,

(4b)�u
��

+
�u
�t

+
�(u2 + p)

�x
= 0,

(5)

�p

�t
+ c2

s

�u
�x

= 0,

�u
�t

+
�
(
u2 + p

)
�x

= 0.

(6)
�U
�t

+
�F
�x

= 0.

2.2 � 1‑D relaxation system for ACM

We now introduce a relaxation system for the 1-D ACM, 
as in Jin and Xin [9]. Introducing a new variable V which 
replaces the nonlinear flux vector F in the first equation and 
then introducing its relaxation equation, the governing Eq. 
(6) in relaxation form is given by

where

It can be rewritten as

where the vectors Q, H and the matrix D are written as

In the above expressions, � is the relaxation parameter 
(� ∈ ℝ

+ , 𝜖 << 1) . In the limit � → 0 , the newly introduced 
variables in the system (7) relax to their equilibrium values 
( {V1,V2} = {F1,F2} ), thus recovering the original system 
of governing Eq. (6).

The eigenvalues of the matrix D are 
{
±�1, ±�2

}
 . Since 

all the eigenvalues are real and distinct, the system (7) 
can be converted to its corresponding diagonal form. Let 
D = R−1ΛR , where the matrix Λ is given as

In order to decouple the relaxation system, we introduce 
characteristic variables, defined by f = R−1Q , or Q = Rf . We 
then rewrite the relaxation system (7) in terms of the charac-
teristic variables by multiplying it by R−1 . Thus, we obtain 
the diagonal form of the relaxation system as

Using the definition f = R−1Q , we obtain

�U
�t

+
�V
�x

= 0,

�V
�t

+ Λ� �U
�x

= −
1

�
[V − F],

Λ� =

[
�2
1

0

0

�2
2

]
.

(7)
�Q

�t
+ D

�Q

�x
= H,

Q =

⎡⎢⎢⎢⎣

p

u

V1

V2

⎤⎥⎥⎥⎦
, D =

⎡⎢⎢⎢⎣

0 0 1 0

0 0 0 1

�2
1

0 0 0

0 �2
2
0 0

⎤⎥⎥⎥⎦
and H =

⎡
⎢⎢⎢⎢⎣

0

0

−
1

�

�
V1 − F1

�
−

1

�

�
V2 − F2

�

⎤⎥⎥⎥⎥⎦
.

Λ =

⎡⎢⎢⎢⎣

−�1 0 0 0

0 �1 0 0

0 0 − �2 0

0 0 0 �2

⎤⎥⎥⎥⎦
.

(8)
�f
�t

+ Λ
�f
�x

= R−1H.
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2.3 � Diagonal form as discrete velocity Boltzmann 
equation

The resulting relaxation system (8) can now be interpreted as 
a discrete velocity Boltzmann equation, as done by Natalini in 
[10]. We define new variables feq = {f | � → 0} . Using this, 
the decoupled relaxation system (8) can be rewritten as

where

The flow variables can be recovered using the following 
moment relations.

Assuming  the  in i t i a l  condi t ion  fo r  (6 )  as 
U(x, t = 0) = U0(x) , the initial condition for (10) is given 
as f(x, t = 0) = f

eq(U0(x)) , where feq is defined in (11). The 
relaxation system in the form (10) is very similar to the 
classical Boltzmann equation, except for having a discrete 
set of velocities (instead of continuous molecular velocity), 
namely {±�{1,2}} (for 1-D system).

The generalized version of the moments for the relaxation 
system (10) can be summed up by the following expression for 
the dependent variables as

where U =
[
U1,U2,⋯ ,Um

]T and fk,eq =
[
f
k,eq

1
, f

k,eq

2
,⋯ , f k,eq

m

]T
.

The value k represents the number of discrete velocities 
considered for computations. Clearly, for k = 4 , the discrete 
velocities of the system are �1,3 = −�{1,2} and �2,4 = �{1,2}.

(9)f =

⎡
⎢⎢⎢⎣

f1
f2
f3
f4

⎤
⎥⎥⎥⎦
= R−1Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�
U1

2
−

V1

2�1

�
�

U1

2
+

V1

2�1

�
�

U2

2
−

V2

2�2

�
�

U2

2
+

V2

2�2

�

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(10)
�f
�t

+ Λ
�f
�x

= −
1

�

[
f − f

eq
]

(11)f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�
U1

2
−

V1

2�1

�
�

U1

2
+

V1

2�1

�
�

U2

2
−

V2

2�2

�
�

U2

2
+

V2

2�2

�

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, f
eq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�
U1

2
−

F1

2�1

�
�

U1

2
+

F1

2�1

�
�

U2

2
−

F2

2�2

�
�

U2

2
+

F2

2�2

�

⎤⎥⎥⎥⎥⎥⎥⎥⎦

U1 =

2∑
i=1

fi =

2∑
i=1

f
eq

i
, U2 =

4∑
i=3

fi =

4∑
i=3

f
eq

i

(12)U =

n∑
k=1

f
k =

n∑
k=1

f
k,eq, F =

n∑
k=1

�kf
k,eq,

2.4 � Sub‑characteristic condition

It remains to assign acceptable values for the discrete veloci-
ties �� ,∀� ∈ {1,⋯ , n} . We can rewrite the second part of the 
system (7) as follows.

Let us utilize both these equations in the above relaxation 
system independently. Using the above information, we 
derive an expression for �tV{1,2} . Substituting the expression 
in (13), we obtain V{1,2} in terms of U{1,2} . Further, substitut-
ing the expression for V in �V

�x
 in (7), we get

The term in the RHS of the above expression represents the 
diffusion or the viscous term. Thus, it is clear that the relaxa-
tion system (7) provides a vanishing viscosity model to the 
original equation (6). Clearly, for the model to be stable, the 
coefficient of diffusion must be non-negative. Analysing the 
coefficient of diffusion component-wise, we get

In other words, we obtain

The condition (17) is called as the sub-characteristic condi-
tion for the relaxation system (7). In general, � is chosen as 
� = max

(
u ±

√
u2 + c2

s

)
in the domain.

2.5 � Lattice Boltzmann relaxation scheme (LBRS‑ACM)

The motivation of the framework for lattice Boltzmann 
relaxation scheme (LBRS) is taken from traditional Lattice 
Boltzmann Method (LBM). Hence, the solution methodol-
ogy is obtained using operator splitting. Thus, the solution 
consists of two steps: 1) streaming step and 2) collision step.

•	 Collision step

•	 Streaming step

Both these steps together will constitute for one time-step in 
the time evolution of the distribution functions �

�
 . The essential 

(13)V = F − �
(
�V
�t

+ Λ
� �U
�x

)

(14)or V = F + O(�).

(15)
�U
�t

+
�F
�x

= �
�
�x

[(
Λ

�

− A2
)�U
�x

]
.

(16)�2
i
≥ (Eigenvalues of A)2 = (u ±

√
u2 + c2

s
)2.

(17)−�i ≤ u ±

√
u2 + c2

s
≤ �i.

f
��
i
(x, t) = (1 − �)fi(x, t) + �feq

i
(x, t)

fi

(
x + �i∇t, t + ∇t

)
= f

��
i
(x, t)
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advantage of the lattice Boltzmann formulation is the exact 
nature of streaming in which truncation error is zero, unlike in 
the traditional CFD methods. Thus, the particles hop exactly 
to the neighbouring lattice points in the streaming step. Com-
bined with the collision step in the operator splitting procedure, 
this simple lattice Boltzmann strategy typically yields near 
second order accuracy, unlike in the traditional CFD methods 
which require additional procedures to increase the accuracy. 
Further, the simplicity of the two step algorithm is conveni-
ent for programming and is easily amenable to parallelization.

2.6 � Multiple scale Chapman–Enskog expansion

The LBRS framework consists of three different phenomena 
associated with three different time scales [17]. Let us con-
sider a small number � . Then, the three phenomena can be 
described as: (i) relaxation towards equilibrium—associated 
relaxation time scale 

(
�0
)
 , (ii) convection of the waves, which 

is slower than the relaxation time scale—associated convec-
tion time scale 

(
�−1

)
 and (iii) diffusion of the waves, which is 

slower than the convection waves—associated diffusive time 
scale 

(
�−2

)
 . Based on this, we denote the three time variables 

corresponding to the three phenomena, as t0 , t1 and, t2 . Relaxa-
tion, convection and diffusion spatially occur in similar man-
ner; hence, it can be described with just one spatial scale x1 . 
Hence, we can expand the temporal and spatial derivatives as 
�t → ��t1 + �2�t2 , �x → ��x1 . Consider an expansion for the 
distribution function �� w.r.t. small perturbations in equilibrium 
distribution function.

From (12), we can say that �� and the equilibrium distribu-
tion functions � (0)� = �

eq
�  , must have the same zeroth- and 

first-order moment. Therefore,

Substituting (18) in the above moment relations, we get ∑
�
� (1)� = 0,

∑
�
���

(1)
� = 0 and 

∑
�
� (2)� = 0,

∑
�
���

(2)
� = 0. Con-

sider the Taylor series expansion for ��.

We substitute the above expansion in the LBRS framework, 
then substitute the multiscaling of time t and space x, and the 
expansion of �� , (18). Collecting terms of order O(�) from 
the resulting expression, we get

(18)�� = �
(0)
� + �� (1)� + �2� (2)� + O(�3)

(19)
∑
�

f� =
∑
�

f
(0)
� = U,

∑
�

��f� =
∑
�

��f
(0)
� = F.

��

(
x + ��Δt, t + Δt

)
= ��(x, t) + Δt

���
�t

+ Δt��
���
�x

+
(Δt)2

2

[
�2��
�t2

+ 2��
�2��
�t�x

+ �2�
�2��
�x2

]
+ O

(
Δt3

)
.

Similarly, collecting terms of order O(�2) , we get

Hence, we have ��(1)
� + �2�(2)

� + O(�3) = 0 . Using previous 
information of moments and summing the expression of �(1)

�  
over � , we get

Hence, from expression corresponding to O(�) , we recover 
the 1D inviscid incompressible flow equations. We similarly 
analyse the term �(2)

�  . Since we have recovered the dynam-
ics corresponding to the convection time scale t1 , we wish 
to analyse only the diffusive scaling of the equation. Hence, 
we ignore the convection scaling of time, i.e., t1 . Thus the 
equation for �(2)

�  , (21), can be rewritten as,

Using (20), the second term of in the above equation can be 
rewritten as

After few algebraic steps the sum of �(2)
�  is given as

Adding (22) and (23), and using the definitions for t0, t1, t2, 
and x1 , we get the additional diffusion term to the original 
system of conservation laws on RHS as

(20)
Δt

(
�� (0)�

�t1
+ ��

�� (0)�

�x1

)
+ �� (1)�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=�

(1)
�

= 0.

(21)

Δt

(
��
(1)
�
�t1

+
��
(0)
�
�t2

+ ��
��
(1)
�

�x1

)
+

(Δt)2

2

(
�2 �

(0)
�

�t2
1

+ 2��
�2 �

(0)
�

�t1�x1
+ �2�

�2 �
(0)
�

�x2
1

)
+ �� (2)�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=�
(2)
�

= 0.

(22)
∑
�

�
(1)
� = 0, or,

�
�t1

(U) +
�
�x1

(F) = 0.

�
(2)
� = Δt

(
�� (0)�

�t2
+ ��

�� (1)�

�x1

)
+

(Δt)2

2

(
�2�

�2� (0)�

�x2
1

)
+ �� (2)� = 0.

�
(1)
� = −

Δt

�

(
�� (0)�

�t1
+ ��

�� (0)�

�x1

)
.

(23)

Δt
�
�t2

(∑
�

�
(0)
�

)
+ (Δt)2

(
1

2
−

1

�

)[
�2

�x2
1

(∑
�

�2��
(0)
�

)]

+ �
∑
�

�
(2)
� = 0,

⟹ Δt
�U
�t2

= (Δt)2
(
1

�
−

1

2

)[
�2

�x2
1

(∑
�

�2��
(0)
�

)]
.

(24)
�U
�t

+
�F
�x

= Δt
(
1

�
−

1

2

)[
�2
i

�2Ui

�x2

]
.
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For this numerical framework to be stable, the coefficient of 
diffusion must be positive, which gives us

2.7 � Stability analysis for LBRS

A general DdQn model in the LBRS framework (after 
combining the streaming step and collision step) can be 
written as

where �� represent the discrete velocities. For the case of 
d = 1, n = 2 we have � ∈ {1, 2}, �� = ±� . The initial con-
dition, same as the initial equilibrium function � eq� (xi, 0) , is 
given as

Hence, the initial value problem for the governing equations 
is given by equations (25) and (26). It can be shown that for 
the case d = 1, n = 2 the LBRS framework enjoys TV-, l∞− 
and l1− stability [18]. This can be extended to the general 
model DdQn with a similar analysis. Let us consider the 
following assumptions on the initial condition and the flux 
function of the governing equations.

(i)		  Uj,0(x) ∈ ��(ℝ) ∩ �1(ℝ) , where j ∈ 1, 2

•	 ⇒ ‖Uj, 0‖�� ≤ �1∕2 (some constant),
•	 ⇒ ��(U0) =

∑
i

�Uj,0,(i+1) − Uj,0,(i)� ≤ �1∕2.

	 (ii)	 max���≤‖Uj,0‖∞

�
� ±

�
�2 + c2

s

�2

≤ �2
j
 , with � representing 

the eigenvalues of the flux Jacobian matrix. This con-
dition is satisfied by the sub-characteristic condition 
(17).

•	 Since Uj,0 ∈ ��(ℝ) , the above can be generalized 

a s  sup
|𝜉|<𝛽

(
𝜉 ±

√
𝜉2 + c2

s

)2

≤ 𝜆2
j

  ,  w h e r e 

𝛽 > 𝛽1 ≥ ‖Uj,0‖��.
•	 Since Uj,0 ∈ ��(ℝ) ∩ �1(ℝ) , we can conclude that 

Uj,0(−∞) = 0 , or, 

	(iii)	 Fj(0) = 0

	(iv)	 � ≤ 1

Δt
(
1

𝜔
−

1

2

)
𝜆2
i
> 0 ⇒ 0 < 𝜔 < 2.

(25)f�(xi, t + Δt) = (1 − �)f�(xi − ��Δt, t) + �feq� (xi − ��Δt, t), � ∈ {1,… , n},

(26)

f�(xi, 0) = f
eq
� (xi, 0) =

U(xi, 0)

2
+

F(U(xi, 0))

2��
=

U0(xi)

2
+

F(U0(xi))

2��
.

�𝜉� = �Uj,0(x)� ≤ ‖U0‖�� + Uj,0(−∞) ≤ 𝛽1 < 𝛽.

The total variation for n functions is defined as

Hence, for �0
1
 and �0

2
 , the �� bound can be calculated as 

follows

With the following lemma and proposition, it can be shown 
that LBRS scheme is stable.

Lemma 1  Under the assumptions (i), (ii) and (iv), the 
scheme described in (25),(26) is ��� (Total Variation 
Diminishing), i.e., 

and hence the solution of the scheme, Un(x, t) is bounded.

Uniform boundedness of the solution from the LBRS 
framework, i.e., {Un

j
} , follows directly from the above 

lemma. Using the above lemma, we can show, as in [18], the 
following.

Proposition 1  The numerical solution of the LBRS frame-
work, {Un

j
} , under the assumptions (i)–(ii)–(iii), satisfies the 

following estimates. 

(a)	 ��− Stability, i.e., ��(Un
j
) < 𝛽.

(b)	 l∞− Stability, i.e., sup
i∈ℤ

|||Un
j,i

||| < 𝛽.

(c)	 l1− Stability, i.e., Δx
∑
i∈ℤ

���Un
j,i

��� ≤ 2
���Uj,0

����1

.

We would like to point out that the assumption (iv) is a 
sufficient condition. The LBRS framework still obtains cor-
rect results even if assumption (iv) is violated. Note, how-
ever, that the condition derived for � , given as 0 < 𝜔 < 2 , 
is a necessary condition.

(27)��(�1,… , �n) ∶=
∑
i

n∑
�=1

|��,i+1 − ��,i|.

��(f 0
1
, f 0
2
) =

∑
i

(
|�0
1,i+1

− �
0
1,i
| + |�0

2,i+1
− �

0
2,i
|
)

≤

∑
i

(
|Uj,0,i+1 − Uj,0,i| + |Fj,0,i+1 − Fj,0,i

�
|
)

≤�1 (by the second assumption).

��
(
f n+1
1

, f n+1
2

)
≤ ��

(
f n
1
, f n
2

)
< 𝛽,
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Remark 1  The results presented can be easily extended for 
any number of distribution functions, �� , where � = 1,⋯ ,N

3 � Application to Quasi‑1‑D incompressible flows

For 1-D flows, using the divergence free condition, we get 
u(t, x) = u(t) . Therefore, there is no variation in velocity 
w.r.t. space and the second equation gets converted into 
an ODE. Hence, the obtained solution is trivial. In order 
to validate the framework on simpler domains first, let 
us formulate the framework for quasi-1-D incompress-
ible flow, i.e., flows where the area is a function of the 
spatial coordinate, x. Example of such a flow is the flow 
in a converging-diverging channel (venturi tube). Flow in 
a converging-diverging channel can be represented as an 
essentially 1-D hyperbolic system with terms involving a 
varying cross-sectional area A. The area can be expressed 
as a function of the spatial coordinate x. Using the infor-
mation of A, the equations can be reformulated in such a 
way that the equations represent a quasi-1-D flow [19].

The governing equations for incompressible flow in 
a converging-diverging channel, in artificial compress-
ibility formulation, are given as

The LBRS framework needs to be reformulated in accord-
ance to the above defined set of equations. Let us consider 
the terms that involve area, i.e., the rightmost term in both 
the equations of (28), as source term. The relaxation system 
is now assumed to have the form

where  U =

[
p, u

]T
, F =

[
u, u2 + p

]T
andH =

[
H

1
,H

2

]T
[
−c2

s

u

A

dA

dx
,−

u2

A

dA

dx

]T
 . Using the same methodology for the 

construction of the framework as explained before, the dis-
crete velocity Boltzmann form of the above relaxation sys-
tem is given as

where Ĥ =
[
H1

2
,
H1

2
,
H2

2
,
H2

2

]T
.

(28)

1

c2
s

�p

�t
+

�u
�x

+
u

A

dA

dx
= 0

�u
�t

+
�
(
u2 + p

)
�x

+
u2

A

dA

dx
= 0

�U
�t

+
�V
�x

= H

�V
�t

+ Λ� �U
�x

= −
1

�
[V − F]

(29)
�f
�t

+ Λ
�f
�x

= Ĥ −
1

�

[
f − f

eq
]

The derivation of obtaining an LBRS framework 
remains the same. Thus, obtained LBRS framework for 
quasi-1-D incompressible flow is given as follows.

•	 Collision step

•	 Streaming step

4 � Application to 2‑D incompressible flows

The idea for the 2-D LBRS framework, in general, remains 
same as that for the 1-D case. Firstly, a relaxation system is 
constructed from the 2-D conservation law. The relaxation 
system can then be rewritten in the form of a discrete velocity 
Boltzmann equation (see [18] for details). The transformed set 
of equations, in vector form, is given as

The moment relation for the above system is given as

where P = [1,⋯ , 1]1×n.
We use the same procedure for the Chapman–Enskog type 

expansion, as in the previous case. From the final expression 
of the modified PDE for the 2-D scalar conservation law, we 
identify the coefficient of diffusion, in any system, as posi-
tive. Using this, we get the sub-characteristic condition for the 
discrete velocities as

It can be clearly observed that the sub-characteristic condi-
tion obtained cannot be extended for the vector case easily.

Now let us consider the 2-D artificial compressibility form 
of the incompressible Euler equations.

The above equations in vector form can be rewritten as

f
��
i
(x, t) = (1 − �)fi(x, t) + �feq

i
(x, t) + ΔtĤi

fi

(
x + �i∇t, t + ∇t

)
= f

��
i
(x, t)

(30)
�f
�t

+ Λ1

�f
�x

+ Λ2

� f

�y
= −

1

�

[
f − f

eq
]
.

U = Pf = P f
eq, F1(u) = PΛ1f

eq and F2(u) = PΛ2f
eq

−� ≤

√(
�g1(u)

�u

)2

+

(
�g2(u)

�u

)2

≤ �.

�p

�t
+

�
(
c2
s
u
)

�x
+

�
(
c2
s
v
)

�x
= 0

�u
�t

+
�
(
u2 + p

)
�x

+
�(uv)

�y
= 0

�v
�t

+
�(uv)

�x
+

�
(
v2 + p

)
�y

= 0
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The two flux Jacobian matrices, A and B, are given by

Let us denote artificial sound speed, a =
√

u2 + c2
s
 . The 

eigenvalues of the Jacobians A and B turn out to be 
{u, u ± a} and {v, v ± a}, respectively. We observe that the 
eigenvalues of the incompressible flow system are similar to 
those of compressible flow equations in the artificial com-
pressibility formulation. So we can compare the nature of 
the waves of both the systems in smooth regions.

For the 2-D systems, a 2-D discrete velocity Boltzmann equa-
tion, which is based on the isotropic relaxation system introduced 
by Raghurama Rao and was utilized in [11, 12, 20, 21, 22, 23], is 
appropriate. Let us consider the extension of isotropic relaxation 
system as the LBRS framework for the above vector conserva-
tion laws.

Here, Λ1 and Λ2 are given as

The equilibrium function feq is defined as in the 1-D LBRS 
framework.

As we have observed earlier, the sub-characteristic condition 
obtained for 2-D scalar conservation law cannot be directly 
extended for the vector case. Let us consider an N-dimen-
sional conservation law.

For the 2-D incompressible case defined above, the multi-
dimensional vector conservation law as given above can be 
rewritten as a discrete velocity Boltzmann equation. The 
Maxwellian function for the constructed discrete veloc-
ity Boltzmann equation, feq(U) , is given by the following 
expression.

�U
�t

+
�F1

�x
+

�F2

�y
= 0.

A =
�F1

�U
=

⎡
⎢⎢⎣

0

1

0

c2
s

2u

v

0

0

u

⎤
⎥⎥⎦
, B =

�F2

�U
=

⎡
⎢⎢⎣

0

0

1

0

v

0

c2
s

u

2v

⎤
⎥⎥⎦
.

(31)
�f
�t

+ Λ1

�f
�x

+ Λ2

�f
�y

= −
1

�
(f − f

eq)

Λ1 =

⎡⎢⎢⎢⎣

−� 0 0 0

0 � 0 0

0 0 � 0

0 0 0 − �

⎤⎥⎥⎥⎦
and Λ2 =

⎡⎢⎢⎢⎣

−� 0 0 0

0 − � 0 0

0 0 � 0

0 0 0 �

⎤⎥⎥⎥⎦
.

f
eq =

⎡⎢⎢⎢⎢⎣

f
eq

1

f
eq

2

f
eq

3

f
eq

4

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

U

4
−

F1

4�
−

F2

4�
U

4
+

F1

4�
−

F2

4�
U

4
+

F1

4�
+

F2

4�
U

4
−

F1

4�
+

F2

4�

⎤⎥⎥⎥⎥⎦

�U
�t

+

N∑
j=1

�
�xj

Fj(U) = 0.

Let �(f�,eq
i

(U)) denote the eigenspectrum of the Jacobian of 
the ith vector in the Maxwellian function with respect to the 
conserved variable vector U ( �Uf

eq

i
(U) ). Bouchut in [24] has 

shown that under some assumptions, the Jacobians, �Uf
eq

i
(U) , 

for a discrete velocity Boltzmann equation, are diagonaliza-
ble. Bouchut established that if 𝜎(f �,eq

i
(U)) ⊂ [0,∞) , then the 

constructed discrete kinetic system admits a kinetic entropy, 
and in the hydrodynamic limit, as � → 0 , the Lax entropy 
condition is satisfied.

For the present LBRS framework, the Jacobians are writ-
ten as

The eigenspectrum associated with Jacobians defined above 
is as follows.

f
eq(U) = �0U +

N∑
j=1

�jFj(U)

f
�,eq(U) =

⎡⎢⎢⎢⎢⎣

f
�,eq

1
(U)

f
�,eq

2
(U)

f
�,eq

3
(U)

f
�,eq

4
(U)

⎤⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

I

4
−

F
�

1

4�
−

F
�

2

4�
I

4
+

F
�

1

4�
−

F
�

2

4�
I

4
+

F
�

1

4�
+

F
�

2

4�
I

4
−

F
�

1

4�
+

F
�

2

4�

⎤
⎥⎥⎥⎥⎥⎥⎦

.

�(f�,eq
1

(U)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(� + u + v)

4�

� +

��
(u + v)2 + 2c2

s

�
+ (u + v)

4�

� −

��
(u + v)2 + 2c2

s

�
+ (u + v)

4�

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

�(f�,eq
2

(U)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(� − u + v)

4�

� +

��
(u − v)2 + 2c2

s

�
− (u − v)

4�

� −

��
(u − v)2 + 2c2

s

�
− (u − v)

4�

⎤⎥⎥⎥⎥⎥⎥⎥⎦

�(f�,eq
3

(U)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(� − u − v)

4�

� +

��
(u + v)2 + 2c2

s

�
− (u + v)

4�

� −

��
(u + v)2 + 2c2

s

�
− (u + v)

4�

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

�(f�,eq
4

(U)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(� + u − v)

4�

� +

��
(u − v)2 + 2c2

s

�
+ (u − v)

4�

� −

��
(u − v)2 + 2c2

s

�
+ (u − v)

4�

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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The stability criteria states that 𝜎(f �,eq
i

(U)) ⊂ [0,∞) . We use 
this information to obtain a value for the discrete velocity 
� . We consider �(f �,eq

i
(U)) = 0 and calculate the value of 

� . Hence, we get the condition for calculating the discrete 
velocity � as

The above result is for a D2Q4 model of the LBRS frame-
work. We can similarly derive the limits on � for D2Q5 and 
D2Q9 models (see [11] for details).

5 � Application to viscous incompressible flows

Navier–Stokes equations for viscous incompressible flows 
are given as in Eqs. [(1a), (1b)]. 

 We use two different methodologies to develop two numeri-
cal frameworks for the viscous equations, as in [11]. We 
name the two as LBRS - 1 and LBRS - 2.

5.1 � LBRS ‑ 1

In this approach, we use the Chapman–Enskog expansion, as 
described in the previous section, to formulate a numerical 
LBRS framework for the viscous equations. Let us com-
pare Eqs. (1b) and (24). This provides us with a relation-
ship between the discrete velocity �i , relaxation time � and 
viscosity � as

In the above expression �{1,2} (=
Δt

Δx
),Δt, � are specified; 

hence, the only unknown is � (or, � ). Solving (34) for � 
we get

If we assume � = 1 , then we can rewrite the above equa-
tion as

(32)� = max

⎛
⎜⎜⎜⎜⎝

�u + v�, �u − v�,����
��

(u + v)2 + 2c2
s

�
− (u + v)

����,
����
��

(u + v)2 + 2c2
s

�
+ (u + v)

����,����
��

(u − v)2 + 2c2
s

�
− (u − v)

����,
����
��

(u − v)2 + 2c2
s

�
+ (u − v)

����

⎞⎟⎟⎟⎟⎠
.

∇ ⋅ � = 0,

��
�t

+ (� ⋅ ∇)� = −∇p + �Δ�.

(34)� = Δt
(
1

�
−

1

2

)
�2
i
, with � = Δt∕�.

� = 1∕
(

�

Δx2
Δt +

1

2

)
.

(35)Δt =
Δx2

2�
.

5.2 � LBRS ‑ 2

Here, we utilize the equivalent relaxation system formula-
tion used to estimate a viscous conservation law, as in [25]. 
We start with the general form of the relaxation scheme for 

scalar equation as

The same can be extended for system of equations as 
follows.

By the Chapman–Enskog type expansion for the above sys-
tem, we get

Comparing the above with the viscous system 
�U

�t
+

�F

�x
=
[
0, � �2u

�x2

]T
, (

�F

�U
= A) , we get

In other words, we get M�(U) =
(

�F

�U

)2

+

[
0 0

0
�

�

]
 . We can 

consider the Jacobian �F
�U

 in its diagonal form. Comparing the 
obtained relaxation system with the previously defined relax-
ation system, we get � as

S i n c e  �, �  a r e  p o s i t i v e , 
(u +

√
c2
s
+ u2) < [(u +

√
c2
s
+ u2) +

𝜈

𝜖
] . Hence, we can 

rewrite the condition for � as

�u
�t

+
�v
�x

= 0

�v
�t

+M
�(u)

�u
�x

= −
1

�

[
v − g(u)

]
.

�U
�t

+
�V
�x

= 0

�V
�t

+M
�(U)

�U
�x

= −
1

�
[V − F]

�U
�t

+
�F
�x

= �
�
�x

[(
M

�(U) − A2
)�U
�x

]
+ O

(
�2
)
.

[
0

�

]
= �

(
M

�(U) − A2
)

� = max

[
±

√
(u +

√
c2
s
+ u2),±

√
(u +

√
c2
s
+ u2) +

�
�

]
.

(36)� = max

[
±

√
(u +

√
c2
s
+ u2) +

�
�

]
.
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Remark 2  From the derivation of LBRS - 1 and LBRS - 
2, we observe that the basic numerical framework of the 
scheme, defined by the streaming step and the collision step, 
remains unchanged. Only the way the variables are deter-
mined is changed.

6 � Numerical experiments

Numerical experiments presented in [18] suggest that LBRS-
2 is slightly better in performance than LBRS-1. Hence, the 
results are presented here with LBRS-2.

6.1 � Flow through a venturi tube

The geometry under consideration for this test case is for a 
venturi tube. A venturi tube represents a channel with both 
convergent and divergent cross sections. The computational 
domain considered in the present test case is x ∈ Ω = [0, 1] 
and the cross-sectional area of the tube is given as

The initial conditions are as specified in [19]. Since the 
channel has both a convergent followed by a divergent 
cross-sectional area, it will constitute a throat. This induces 
a discontinuous curvature in the flow variables, i.e., at the 
throat region, the pressure will decrease to its lowest value 
and velocity will reach the maximum value.

A D1Q2 model is used to simulate the flow for this test 
case. The results obtained by this inviscid LBRS framework 
(Fig. 1) represent a good approximation to the exact solu-
tion. The L∞ convergence plot for the above test case is as 
shown in Fig. 2. The steady state is reached in about 50 
time steps.

A(x) =

{
7

4
−

3

4
cos(2𝜋x − 𝜋), 0 ≤ x ≤ 0.5,

5

4
−

1

4
cos(2𝜋x − 𝜋), 0.5 < x ≤ 1.

6.2 � Lid driven cavity flow

Flow in a lid-driven cavity is a standard benchmark test case 
used for checking the stability, accuracy and robustness of 
the numerical schemes [26]. The domain for the test case 
is Ω = [0, 1] × [0, 1] . The left, right and bottom boundaries 
are stationary walls, whereas the top wall is considered as 
a moving wall.

This test case is important because the pressure develops 
a singularity at the lid corners for some schemes. This makes 
it a severe test for robustness and stability of a numerical 
scheme. The flow inside the cavity is laminar up to Reynolds 
number Re = 7500.

In the following test case, we consider the velocity of the 
lid as (u, v) = (1.0, 0.0) . At the lid corners, we impose the 
velocity as the lid velocity. For the stationary walls, bounce-
back boundary condition is applied for velocity. At all the 
walls, stationary and moving, the pressure is extrapolated 
(Fig. 3).

Fig. 1   Pressure and velocity plot for flow in the converging-diverging channel, after the steady state is reached

Fig. 2   Convergence rate for flow in a converging-diverging channel
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The results are obtained for Re = 100, 400 and 1000. The 
results are compared to the standard results of Ghia et al. 
[26] and ACM 1st and 2nd order accurate results presented 
in [27] (Figs. 4, 5, 6, 7, 8, 9, 10). It can be observed that the 
results with LBRS-2 are generally closer to the results of the 
second-order accurate ACM.

6.3 � Flow over a backward facing step

The flow over a backward-facing step is a simple example 
to observe separating, recirculating and reattaching flows in 
nature. These can also be observed in various engineering 
applications. A few examples are the flows around buildings, 
flows inside combustors, industrial ducts, and in cooling of 

Fig. 3   Geometry for lid-driven cavity test case

Fig. 4   v along centre horizontal line passing through the cavity (Re 
= 100)

Fig. 5   u along centre vertical line passing through the cavity (Re = 
100)

Fig. 6   v along centre horizontal line passing through the cavity (Re 
= 400)

Fig. 7   u along centre vertical line passing through the cavity (Re = 
400)



45Int J Adv Eng Sci Appl Math (2022) 14(1-2):34–47	

1 3

electronic devices. In the context of aeronautical applica-
tions, these kinds of flows result in a loss of lift force and 
increased drag.

The domain and initial conditions for this test case have 
been taken from Biswas et al. [28]. In the paper by Arm-
aly et al. [29], it is observed that the flow appears to be 
three-dimensional above Reynolds numbers close to 400. 
Around this Reynolds number, they have also observed 
that a discrepancy in the primary recirculation length 
occurs, between the experimental and numerical results. 
Hence, we present results for Re < 400 (Fig. 11).

The results presented are generated with the framework 
LBRS-2.
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Fig. 8   Lid-driven cavity test case with Re = 1000

Fig. 9   v along centre horizontal line passing through the cavity (Re 
= 1000)

Fig. 10   u along centre vertical line passing through the cavity (Re = 
1000)

Fig. 11   Backward-facing step flow
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The results are also compared with those of Bis-
was et  al. and are given in Fig. 12. The results of the 
LDC for Re = 100 and Re = 400 are shown in Figs. 13, 
14 respectively.

7 � Conclusions

In this work, a novel lattice Boltzmann relaxation scheme 
is proposed for the numerical simulation of incompressible 
fluid flows. The derivation of this scheme needed two impor-
tant tools: (i) linearization using discrete velocity Boltzmann 

equation formulation and further utilization of truncation 
error free streaming step for the convection part of the equa-
tion, as in the LBM framework, and (ii) analysing the stabil-
ity of the resultant scheme. The foundation of the scheme is 
based on the artificial compressibility (ACM) formulation of 
the incompressible flow equations, together with the relaxa-
tion approximation and its diagonal form, with the resulting 
discrete velocity Boltzmann formulation.

The results for typical benchmark incompressible flow 
test cases are presented using the LBRS-ACM scheme. 
The formulation is slightly modified to analyse the results 
for quasi-1-D case. Later the formulation is extended 
to 2-D fluid flow equations and tested for the standard 
benchmark cases of the incompressible flow. The results 
are comparable to the second order accurate results of the 
standard ACM solvers, are slightly more diffusive, but are 
much better than the corresponding first-order accurate 
schemes. In general, the typical expectations of empirical 
second-order accuracy of lattice Boltzmann schemes are 
fulfilled.
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