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the interaction between the estimator and controller remains 
hidden and can be analyzed only via numerical simulations. 
In this work, we propose using multiparametric program-
ming to find the explicit solution of the joint estimator-MPC 
problem. In particular, the eMPC control law now depends 
linearly on the joint information of states and measure-
ments. This allows explicitly obtaining the sensitivity of the 
MPC control law to the measurement as well as the estima-
tor parameters. The proposed explicit solution of the joint 
estimator-MPC problem is demonstrated on a SISO 2-tank 
system. The effect of the estimator gain on the size of the 
feasible region is delineated.

Keywords Explicit MPC · Joint Estimator-MPC · 
Multiparametric programming

1 Introduction

In most fault-tolerant control applications, state feedback 
model predictive control (MPC) is used in conjunction with 
a state estimator. In linear implementations, the estimator 
uses measurements and a linear state space model to obtain 
full-state information online which is subsequently used for 
state feedback by MPC. Popular manifestations of linear 
estimators include the Luenberger observer and the station-
ary Kalman filter. The Kalman filter design is dependent on 
noise covariances. These noise covariances are not known a 
priori and therefore need to be estimated [1, 2].

In context of nonlinear systems [3], present a one way 
separation principle, wherein the controller does not affect 
the stability of the observer, but the controller stability is 
influenced by the observer dynamics. It is therefore clear 
that the state estimator also influences the performance of 
the controller. However, since MPC is typically implemented 

Abstract Model predictive control (MPC) represents an 
optimal strategy where constraints on inputs, outputs and 
system states can be implemented as part of the control law 
that takes the form of a mathematical program. MPC of lin-
ear systems with a quadratic objective function results in a 
quadratic program (QP) that needs to be solved online at 
each sampling instant. Multiparametric programming meth-
ods that attempt an explicit solution to QPs have been suc-
cessfully used in context of MPC and is termed as explicit 
MPC (eMPC). eMPC for linear systems results in a piece-
wise affine-in-state feedback control law and is determined 
offline. During online implementation, the control law is 
selected from among the different pieces based on the real-
time value of the states. An ability to verify the control-
ler output over all possible state realizations of the feasible 
state-space is important in any critical application includ-
ing health and aerospace and is a unique feature of eMPC. 
Since state feedback MPC requires full state information, it 
is always used in conjunction with a state estimator such as 
a Kalman Filter. Further, fault tolerant control methodolo-
gies depend on state and parameter estimation to detect and 
diagnose faults followed by compensation. Conventionally, 
the state filtering step is performed prior to MPC and thus 
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implicitly, a quantification of the extent of the interaction 
between the observer and the controller is only possible 
through numerical simulations. A recent paper by [4] simul-
taneously implements explicit approach for MPC and Mov-
ing horizon estimation (MHE). However, here the estimation 
and control are solved as two independent problems. In [5] 
and [6] the inclusion of state estimation within MPC makes 
it a stochastic control problem whose solution is obtained 
by solving an equivalent deterministic MPC problem. The 
relationship between control and estimator is not explicit in 
these works and is therefore difficult to characterize their 
interaction.

Explicit MPC (eMPC), while a sound way for implemen-
tation of MPC in its own right, also provides insights into 
the MPC law, which is not afforded by a numerical implicit 
implementation. eMPC solves the quadratic program (QP) 
in a multiparametric (mp) framework resulting in an explicit 
statement of the control law [7]. The ability to write the 
MPC law for regulation of a linear system in an analyti-
cal form explicitly informs of the piecewise affine-in-state 
nature of the MPC law. Such an analytical MPC solution pro-
vides an opportunity to characterize the interaction between 
MPC and unconstrained linear state estimation such as a 
stationary Kalman filter or Luenberger observer. Benefits 
of quantification of the interaction includes joint design of 
the estimator and controller with robust performance bound 
guarantees of the overall system, a requirement for critical 
applications. This proposal is an attempt to explicitly outline 
the impact of the state estimator design on the MPC law and 
its region of validity.

The paper is organized as follows. Section 2 introduces 
system definition and estimator dynamics. In Section 3, 
MPC formulation for the estimator dynamics along with 
equivalent MpQP problem is presented. Section 4 presents 
(i) explicit relationship between control and the estimator (ii) 
sensitivity of control to output. Further, Section 5 presents 
numerical results with the help of an example.

Notations The MPC prediction horizon is N ∈ ℕ>0 . 
U ≜ {uk, uk+1,⋯ , uk+N−1} is sequence of control inputs. 
𝜒 ≜ {x̂k|k, x̂k+1|k,⋯ , x̂k+N|k} is sequence of predicted state 
estimates. �x =

�

�x
 is the partial derivative with respect to x 

of a function f (⋅) where x is one of its variable. �(⋅) is the 
conditional expectation. X̄ and X are vectors of upper and 
lower bounds on xk , respectively. Ū and U are vectors of 
upper and lower bounds on uk , respectively.

2  Preliminaries

2.1  System Description

Consider the linear discrete-time dynamic system

where the system matrices A, B, and C have appropri-
ate dimensions. xk ∈ 𝕏 ⊂ ℝ

n is the state, uk ∈ 𝕌 ⊂ ℝ
m 

is the input; wk ∼ N(0,Rw) is the state disturbance and 
�k ∼ N(0,R�) is measurement noise (both are Gaussian and 
independent), respectively, and yk ∈ 𝕐 ⊂ ℝ

q are the meas-
urements. Additionally, the initial state x0 is assumed to be 
distributed normally with mean x̂0 and covariance P0 . The 
constraint sets � and � are closed, compact and convex hav-
ing origin in their interior. The pairs (A, B) and (A, C) are 
controllable and observable, respectively.

2.2  Estimator Dynamics

In linear implementations, a linear state space model along 
with measurement yk given by Eq.(2) and Eq.(1), respec-
tively, is used to obtain full-state information online. 
In Kalman filter the mean of the posterior state density 
x̂k|k = �(xk|yk) is obtained as an update of the mean of 
the prior x̂k|k−1 = �(xk|yk−1) , thereby yielding a recursive 
formulation. In case of LTI system, the state covariance 
Pk becomes time invariant P∞ , resulting in the stationary 
Kalman filter and can be directly obtained by the discrete 
algebraic Riccati equation [8] given below.

The time invariant state covariance P∞ is further used to 
compute K∞,

In conjunction with system dynamic Eq.(2), recursion for 
the stationary Kalman filter can be written in the following 
predictor-corrector form [9].

Corrector equation:

Here K∞ ∈ ℝ
n×q is the estimator gain given by.

(1)yk = Cxk + �k

(2)xk+1 = Axk + Buk + wk

(3)P∞ = AP∞A
T + Rw − AP∞C

T (CP∞C
T + R�)

−1CP∞A
T

(4)K∞ = AP∞C
T (CP∞C

T + R�)
−1

(5)x̂k|k = (I − K∞C)x̂k|k−1 + K∞yk
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Predictor equation:

Equivalently, substituting Eq.(5) in Eq.(6), gives the estima-
tor dynamics as follows.

Estimator dynamics:

where Ā = A(I − K∞C) and Γ = AK∞.

3  Stationary Kalman Filter and Linear MPC: 
An Explicit Scheme

3.1  Constrained Optimal Control Problem

Consider the following constrained optimal control prob-
lem for initial condition x̂k|k−1 and prediction horizon N. 
The purpose of solving this problem is to drive the pre-
dicted state x̂k+j|k, j = 1,⋯ ,N  to origin for the estimator 
dynamics given by Eq.(7). Hence, it is also a joint estima-
tion and control problem.

Problem 1 
subject to

L(x̂j|k, uj) = x̂T
j|kQx̂

T
j|k + uT

j
RuT

j
 and V(x̂k+N|k) = x̂T

k+N|kPf x̂k+N|k 
are the stage and terminal cost, respectively, with L(0, 0) = 0 
and V(0) = 0 where Pf ≻ 0 , Q ≻ 0 and R ⪰ 0 . XT is the ter-
minal set with origin in its interior.

Although random variables wk , �k and xk = x0 induce a 
stochastic character, ℙ1 is solved in a deterministic manner 
based on the realization of yk.

The main aim of the current work is to explore 1) the 
possibility of having explicit control laws for problem ℙ1 
2) if there exists such control law, then to quantify the 
interaction with the estimator gain K∞ and other estimator 
parameters. In this direction, the following subsection tries 
to analyze ℙ1 further.

3.2  Multiparametric Quadratic Programming Problem

The problem ℙ1 can be transformed into equivalent opti-
mization problem which takes the form of a quadratic 

(6)x̂k+1|k = Ax̂k|k + Buk

(7)x̂k+1|k = Āx̂k|k−1 + Buk + Γyk

(8)

ℙ1 ∶ min
𝜒 ,U

J(𝜒 ,U)

J(𝜒 ,U) = V(x̂k+N|k) +
k+N−1∑
j=k

L(x̂j|k, uj)

(9)Eq.7, x̂k|k−1 ∈ �, x̂k+N|k ∈ XT ⊆ � and uk ∈ �

program (QP). This transformation is achieved by sub-
stituting prediction equations for the dynamics given by 
Eq.(7) in ℙ1 (see Appendix for details) and takes following 
form.

Problem 2 
subject to

where (x̂k|k−1, yk) ∈ � × �  appear as parameters, U is the 
decision vector over the horizon N, H ∈ ℝ

mN×mN is the Hes-
sian which is positive definite (≻ 0) with Fx ∈ ℝ

n×mN and 
Fy ∈ ℝ

q×mN being the linear parts of Ĵ(U, x̂k|k−1, yk) . The 
constraint matrices are of the following sizes-G ∈ ℝ

p×mN , 
W ∈ ℝ

p×1 , Sx ∈ ℝ
p×n and Sy ∈ ℝ

p×q -, respectively.

Remark 1 : Note that in Problem ℙ2 both, the predicted 
state x̂k|k−1 and measurement yk , parametrize the QP prob-
lem. This is in contrast to conventional explicit MPC [7], 
where only the filtered state x̂k|k constitutes the parameter. 
The price paid for an increase in the number of parameters 
is compensated by transparency in the impact of yk on the 
control law.

Excellent algorithms are available to solve problem ℙ2 
online. However, the structure of the problem informs us that 
ℙ2 can be further cast into a standard Multiparametric Quad-
ratic Programming (MpQP) form by suitably transforming 
the decision variable U. The transformation, when estimator 
dynamics are used for prediction, is simple to derive and is 
provided here without giving details. Let

The problem ℙ2 can be cast with transformed variable Z into 
standard MpQP as follows.

Problem 3 
subject to

Now that ℙ1 is transformed into problem ℙ3 , a standard 
MpQP problem, it is clear that explicit solutions to ℙ1 via 
ℙ3 exist in the form of state and measurement-dependent 
affine control laws. Such explicit solutions can be obtained 
offline through the sensitivity analysis of KKT conditions 

(10)
ℙ2 ∶ min

U
Ĵ(U, x̂k|k−1, yk)

Ĵ(U, x̂k|k−1, yk) =
1

2
UTHU + (x̂T

k|k−1Fx + yT
k
Fy)U

(11)GU ≤ W + Sxx̂k|k−1 + Syyk

(12)Z = U + H−1FT
x
x̂k|k−1 + H−1FT

y
yk

(13)
ℙ3 ∶ min

Z
J̄(Z)

J̄(Z) =
1

2
ZTHZ

(14)GZ ≤ W + Exx̂k|k−1 + Eyyk
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(introduced in the next section) for ℙ3 . Moreover, it also 
provides insights into the nature of the explicit control law 
and its interaction with the estimator gain K∞ . The next sec-
tion derives these explicit solutions and attempts to bring out 
certain insights regarding the controller-estimator interac-
tion, that are otherwise only known implicitly.

4  Explicit Control Law and Its Sensitivity To 
Measurement

Certain definitions are introduced for ease of presen-
tation. Let p be the total number of constraints and 
M ≜ {1, 2,⋯ , p} the index set for the constraints in Eq.(11). 
Each candidate active set with its corresponding inactive 
part can be defined as follows.

Definition 1 For index set A ⊂ M the candidate active 
set is defined as

Similarly the corresponding inactive constraints can be 
defined as follows

Definition 2 For index set I = M ⧵A the corresponding 
set of inactive constraints is,

Remark 2 : Since ℙ3 belongs to a class of QP problems the 
maximum number of candidate active sets that can be enu-

merated is 
mN∑
i=0

(
p

i

)
 [10].

With the help of Definition 1, the Lagrangian for problem 
ℙ3 can be written as follows,

Further, if Z∗(x̂k|k−1, yk) is the optimal solution to problem ℙ3 
with (x̂k|k−1, yk) ∈ � × �  , then A(x̂k|k−1, yk) is called as the 
optimal active set such that there exist Lagrange multipliers 
�i ≥ 0 , i ∈ A . Consequently, there is a corresponding solu-
tion U∗(x̂k|k−1, yk) due to Eq.(12) which is optimal for ℙ2.

This optimal solution Z∗(x̂k|k−1, yk) satisfies the following 
equations known as Karush–Kuhn–Tucker (KKT) conditions 
mentioned below.

(15)
A(x̂kk−1,yk ) ≜ {(x̂k|k−1, yk) ∈ � × � |GAZ −WA−

Ex
A
x̂k|k−1 − E

y

A
yk = 0}

(16)
I(x̂k|k−1, yk) ≜ {(x̂k|k−1, yk) ∈ � × � |GIZ ≤ WI+

Ex
I
x̂k|k−1 − E

y

I
yk}

(17)
L(Z, x̂k|k−1, yk) = J̄(Z) + 𝜆T

A
(GAZ −WA−

Ex
A
x̂k|k−1 − E

y

A
yk)

KKT conditions:

Remark 3 : It is assumed that the linear independence 
constraint qualification (LICQ) and strict complementarity 
slackness (SCS) property, respectively, holds for Eq.(18)-
(20). The satisfaction of LICQ and SCS ensures that �i , 
i ∈ A is unique and positive [11]. It indicates that candidate 
active set A is indeed an optimal active set.

In order to gain insights about the interaction of U with 
estimator gain K∞ , Theorem 2 in [7] is restated below 
in context of stationary Kalman filter and linear MPC 
framework.

Theorem 1 : The control law Uj(x̂k|k−1, yk) obtained as an 
explicit solution to problem ℙ2 is a piecewise affine function 
of the predicted state estimate x̂k|k−1 and measurement yk

Proof : To prove that U is a piecewise affine function of 
the predicted state estimate x̂k|k−1 and measurement yk we 
collect the KKT conditions given by Eq.(18)-Eq.(20) for 
problem ℙ3 . Also, let there be NCR active sets each given by 
Eq.(15). Then for the jth active set the first order necessary 
condition given by Eq.(18) can be written as follows.

Now, Eq.(21) with Eq.(15) forms a system of KKT 
equations.

Solving the above system of equations using schur comple-
ment method [11] yields the following solutions.

See the Appendix for F̃z,j , F̃𝜆,j , gAj,z
 and gAj,�

.

(18)𝜕ZL(Z
∗(x̂k|k−1, yk), x̂k|k−1, yk) = 0

(19)
𝜆i(GiZ

∗(x̂k|k−1, yk) −Wi − Ex
i
x̂k|k−1−

E
y

i
yk) = 0, i ∈ A

(20)
𝜆i ≥ 0, i ∈ A

GjZ
∗(x̂k|k−1, yk) ≤ Wj + Ex

j
x̂k|k−1 + E

y

j
yk, j ∈ I

(21)HZj + GT
Aj
�Aj

= 0

(22)

[
H GT

Aj

GAj
0

][
Zj
𝜆Aj

]
=

[
0

WAj
+ Ex

Aj
x̂k|k−1 + E

y

Aj
yk

]

(23)Zj(x̂k|k−1, yk) = F̃z,j(I − K∞C)x̂k|k−1 + F̃z,jK∞yk + gAj,z

(24)
𝜆Aj

(x̂k|k−1, yk) = F̃𝜆,j(I − K∞C)x̂k|k−1 + F̃𝜆,jK∞yk + gAj,𝜆
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The  so lu t ion  Zj(x̂k|k−1, yk) i s  op t imal  when 
𝜆Aj

(x̂k|k−1, yk) ≥ 0 and satisfies Eq.(20) for some parameters, 
say (x̂�

k|k−1, y
�

k
) ∈ � × �  , respectively. Thus we get a region 

of validity (also known as critical region) for Eq.(23).

See the Appendix for H̃j and L̃j . Eq.(28) is obtained after 
removing redundant inequalities form Eq.(27) and it rep-
resents the full dimensional polytope for the jth region of 
validity for Zj(x̂k|k−1, yk) in the predicted estimate state-
measurement space. Similarly, the same result can be shown 
when none of the constraints are active, i.e., A = { } . Fur-
ther, equating Eq.(23) with Eq.(12) gives piecewise affine 
control law Uj(x̂k|k−1, yk) as follows.

Note that Eq.(28) is also valid for Uj(x̂k|k−1, yk) . This control 
law is an explicit solution to problem ℙ2 . This completes the 
proof   ◻

Unlike the standard eMPC where the system states are the 
only parameters [7], here the parametric space is shared by 
predicted state estimates x̂k|k−1 and measurement yk , which 
is evident from Eq.(28). Moreover the critical regions given 
by Eq.(28) are also parameterized by the estimator gain K∞ 
along with x̂k|k−1 and yk . Therefore it will be interesting to 
see the effect of estimator gain on the parametric partition 
of x̂k|k−1 and yk which also happens to be the feasible space.

Remark 4 : Excellent methods exist in literature for 1) 
computing active sets offline and 2) implementation of ℙ3 
in an explicit framework (see [12] for a survey of these meth-
ods). The online algorithms for explicit implementation are 
known as point location algorithms.

From the previous theorem we have Eq.(29) that con-
nects uk with K∞ , x̂k|k−1 and yk . It is obvious that noise in 
measurement can have a detrimental effect on controller per-
formance. Hence, it is important to assess the sensitivity of 

(25)− F̃𝜆,j(I − K∞C)x̂k|k−1 − F̃𝜆,jK∞yk ≤ gAj,𝜆

(26)

(GIj
F̃x,j − ẼIj

)(I − K∞C)x̂k|k−1 + (GIj
F̃x,j − ẼIj

)K∞yk ≤

WIj
− GIj

gAj,z

(27)H̃j(I − K∞C)x̂k|k−1 + H̃jK∞yk ≤ L̃j, j = 1,⋯ ,NCR

(28)H̃x,j(K∞)x̂k|k−1 + H̃y,j(K∞)yk ≤ L̃j, j = 1,⋯ ,NCR

(29)Uj(x̂k|k−1, yk) = Ũj(I − K∞C)x̂k|k−1 + ŨjK∞yk + gAj,z

(30)Ũj = F̃z,j − 2H−1B̃TQ̃Â

control law Uj(x̂k|k−1, yk) to such measurements. Sensitivity 
of the control law to the measurement can be defined using 
Eq.(29) as follows,

where Sy,j ∈ ℝ
mN×q , this is the sensitivity of Uj(x̂k|k−1, yk) to a 

measurement yk . We begin by recalling Eq.(29) for assessing 
the sensitivity of Uj(x̂k|k−1, yk) to measurement yk . Then dif-
ferentiating Uj(x̂k|k−1, yk) with respect yk yields the following 
expression for Sy,j.

where Ũj is given by Eq.(30). Thus, Eq. (32) shows that the 
control sequence is linearly related to the estimator gain K∞ 
Now, using Eq.(32) we can rewrite Eq.(29) as shown below.

Eq. (33) connects measurement sensitivity Sy,j with the con-
trol law Uj(x̂k|k−1, yk) . From this connection it is clear that the 
impact of yk on the control law diminishes for lower values 
of sensitivity Sy,j , i.e., for lower values of K∞ and vice versa. 
One may similarly quantify the sensitivity of the control 
law to the estimator parameters such as K∞,P∞,Rw,Rv by 
calculating partial derivatives using Eq.(29) and applying 
chain rule of differentiation.

Remark 5 : Sensitivity S0

y,j
 corresponds to the first element 

of Uj(x̂k|k−1, yk) that is applied to the system given by Eq.(2)

For knowing the correct critical region index say j = j∗ , 
Eq.(28) needs to be satisfied say for point ( ̂x�

k|k−1 , y
′

k
 ). Once j∗ 

is known Eq.(33) is evaluated at that point to obtain optimal 
value for u0 the first element of Uj(x̂

�

k|k−1, y
�

k
) . This procedure 

is implemented online with the help of a point location algo-
rithm. For the sake of completeness one such algorithm which 
is simple in implementation, known as sequential search [7, 
12], is presented next.

Algorithm 1 : Sequential search

Input:x̂k|k−1, yk
Output:u0, j∗

stopflag← 1, j← 1
while stopflag == 1 and j ≤ NCR do

if H̃x,j(K∞)x̂k|k−1 + H̃y,j(K∞)yk ≤ L̃j then

Evaluate Eq.(33) at (x̂k|k−1, yk)

u0 ← first element of Uj(x̂k|k−1, yk) and j∗ ← j
stopflag ← 0

end if
end while

(31)Sy,j = 𝜕ykUj(x̂k|k−1, yk)

(32)Sy,j = ŨjK∞

(33)Uj(x̂k|k−1, yk) = Ũj(I − K∞C)x̂k|k−1 + Sy,jyk + gAj,z
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Next section demonstrates the impact of estimator gain K∞ 
on critical regions and control laws with the help of an example.

5  Example

Consider the two tank plant dynamics given in [13].The 
plant is linearized at (6, 6, 8.98) has a noisy measurement 
with state noise as given below.

−6 ≤ x
(1)

k
≤ 25 and − 6 ≤ x

(2)

k
(k) ≤ 25

−8.9823 ≤ uk ≤ 11.0177 and − 6 ≤ yk ≤ 25

The state and input weighting is Q =

[

0.0250 0
0 0.8000

]

 and 

R = 0.5 , respectively, with N = 5.
To highlight the effects of estimator gain, three differ-

ent scenarios of state and measurement noise covariance 
matrices are used to compute the respective estimator gains. 

1) For a high estimator gain KH
∞
=

[
0.9819

0.9630

]
 the state and 

measurement noise covariances are QH
w
= 0.0892I2 and 

RH
�
= 0.0036.

2) For an intermediate estimator gain KI
∞
=

[
0.5623

0.6080

]
 the 

state and measurement noise covariances are 
QI

w
= 0.0321I2 and RI

�
= 0.0323.

3) For a low estimator gain KL
∞
=

[
0.0904

0.1243

]
 the state and 

measurement noise covariances are QL
w
= 0.0036I2 and 

RL
�
= 0.0896.

Effect of Estimator gain on feasible parametric space 
(x̂k|k−1, yk) : The constraints in Eq.(14) were obtained for 
three different gains KH

∞
 , KI

∞
 and KL

∞
 . The total number of 

constraints thus obtained is p = 2(n(N + 1) + mN) hav-
ing mN decision variables with x̂k|k−1 and yk being param-
eters. To show the effect of gain on the partitioned space 
its total volume (VTot) is computed. The total volume also 
signifies the amount of available feasible space and is 
computed in a Monte-Carlo fashion using the expression 

(34)yk =
[
0 1

]
xk + �k

(35)xk+1 =

[
0.7424 0

0.2211 0.7424

]
xk +

[
0.3441

0.0487

]
uk + wk

VTot = (NP − NF)Vcube∕NP , where NP is total number of 
parametric points (x̂k|k−1, yk) randomly realized from the 
interval bounds for the state and measurement and NF is 
the number of those points (x̂k|k−1, yk) that do not belong to 
the critical regions Eq.(28). The total volume therefore signi-
fies the amount of feasible parametric space available. These 
were computed using NP = 50000 uniformly distributed val-
ues of x̂k|k−1 and yk . For the sake of comparison, total vol-
ume (VTot) of the partitioned space corresponding to different 
values of N (from 1 to 10) involving these three gains, were 
computed. Across prediction horizon VTot remains constant 

Table 1  Volume of each 
critical region for different 
estimator gains

Critical Region Volumes

Gains VA1
(units) VA2

(units) VA3
(units) VA4

(units) VA5
(units)

KH
∞

1.4269 × 104 0.0004 × 104 0.348 × 104 0.2163 × 104 0.0004 × 104

KI
∞

1.8762 × 104 0.0004 × 104 0.3964 × 104 0.1443 × 104 0.0001 × 104

KL
∞

2.2178 × 104 0.0024 × 104 0.4731 × 104 0.1954 × 104 0.0001 × 104
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Fig. 1  VTot v/s N 
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but decreases as the gain varies from KL
∞

 to KH
∞

 as shown in 
Fig. 1. However, for N = 5 and 7 volume pertaining to criti-
cal regions Aj, j = 1, 3, 4 varies with N and the estimator 
gains as shown in Table 1 and Fig. 2.

For the two tank example the number of states is n = 2 , 
number of inputs m = 1 and prediction horizon N = 5 having 
total number of constraints p = 34 with 5 decision variables 
for each of the three gains. The two tank example is chosen 
because the partitioned space involves only three parameters, 
i.e., 2 predicted state estimates x̂k|k−1 and 1 measurement yk 
which makes the partitioned space easy to visualize. Three 
fully partitioned spaces were obtained for respective gains 
each having NCR = 5 critical regions as shown in Figs. 3, 
4 and 5. Each of these partitioned space has an empty set { } 
w i t h  t h e  f o l l o w i n g  s e t  o f  c o n s t r a i n t s 
({15}, {30}, {30, 31}, {30, 31, 32}) that are active. The criti-
cal regions given by Eq.(28) corresponding to each of these 
sets are represented by different colours in Figs. 3, 4 and 5. 
The partitions have their total volumes as 19926units 
(NF = 16557) , 24174units (NF = 9428) and 28888units 
(NF = 1515) , respectively. The un-partitioned space for the 
above example is a cube of side 31units having volume 
Vcube = 29791units  .  T h e  i n d i v i d u a l  v o l u m e 
VAj

, j = 1, 2, 3, 4, 5 for each critical region for the three gains 
is given in Table.1. Note that the total volume of these three 
partitions is less than the volume of the un-partitioned space 
and that reflects the effect of the estimator gains ( KH

∞
 , KI

∞
 , 

KL
∞

 ) on the feasible space as shown in Figs. 3, 4 and 5. More-
over, Fig. 1 stresses that the volume VTot decreases with 
increase in estimator gain K∞ , which also means that volume 
of the partitioned space sets limit over the full state estimate 
information x̂k|k−1 and measurement yk , that will be available 

Fig. 3  Critical regions (NCR = 5) for KH
∞

Fig. 4  Critical regions (NCR = 5) for KI
∞

Fig. 5  Critical regions (NCR = 5) for KL
∞
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for the control input uk and the statistics of Table 1 empha-
sizes it. The shrunken parametric space shown in Figs. 3, 
4 and 5 basically points out that there is no admissible con-
trol input available for some parameters. 

Effect of Estimator gain on uk : It is The MPC problem 
ℙ1 is solved in MpQP fashion for 150 sampling instants with 

N = 5 and initial condition x0 =
[
2

2

]
.

The control inputs are obtained for KH
∞

 , KI
∞

 and KL
∞

 , 
respectively. To assess the sensitivity of control uk to meas-
urement yk the following norm ‖S0

y,j
yk‖∞ is computed across 

the gains and for each control law given by Eq. (33) as given 
in Table 2. Table 2 and Fig. 6 emphasize that for lower gain 
values the impact of yk on Uj(x̂k|k−1, yk) given by Eq.(33) 
diminishes. For assessing the impact of uk on the system 
given by Eq.(34)-(35) mean squared error between system 
output yk and the origin is computed as given in Table 3. 
Figure 6 and Table 3 indicate that as the MSE values across 
gains decreases the ability to control system output yk 
improves.

The parametric space and the control law computations 
are performed using MPT3 Toolbox [14]

6  Conclusion

Any practical use of MPC requires simultaneous imple-
mentation of state estimation, including estimation of dis-
turbance or fault parameters. Since online implementation 
of MPC conventionally uses numerical methods for solving 
the QP, the effect of the estimator parameters on the con-
troller performance is unclear. In this work, an attempt has 
been made to analytically quantify the effect by making use 
of multiparametric methods to obtain an explicit solution 

of the joint estimator-MPC problem. The resulting solu-
tion is affine in the predicted state and measurement. It is 
shown that the estimator gain directly impacts the size of the 
critical regions in MPC. Our future work will consider the 
explicit solution of simultaneous state and parameter estima-
tion along with MPC. This will enable an explicit verifiable 
solution for various fault scenarios.
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Appendix

Prediction Equations: While Eq.(7) propagates in future, 
all future measurements within prediction horizon N are 
considered to be constant and equal to yk . The prediction 
equations for the estimator dynamics are as follows.

w h e r e  B̃ =

⎡
⎢⎢⎢⎢⎣

�n×m ⋯ ⋯ �n×m

B ⋱ ⋮

AB B ⋱ ⋮

⋮ ⋱ �n×m

AN−1B ⋯ AB B

⎤⎥⎥⎥⎥⎦
 ,  Â =

⎡
⎢⎢⎢⎢⎢⎢⎣

In×n
A

A2

A3

⋮

AN

⎤⎥⎥⎥⎥⎥⎥⎦

 , 

Ã = Â(I − K∞C) and Γ̃ = ÂK∞

The prediction equations in Eq.(1) are linear in K∞.
Constraint Equations: The constraint matrices for 

Eq.(11) are as follows.

G =

⎡
⎢⎢⎢⎣

B̃

−B̃

ImN×mN
−ImN×mN

⎤⎥⎥⎥⎦
 , Sx = S(I − K∞C),

Sy = SK∞ , S =

⎡⎢⎢⎢⎣

−Â

Â

�mN×n

�mN×n

⎤⎥⎥⎥⎦
 and W =

⎡
⎢⎢⎢⎣

X

−X

U

−U

⎤⎥⎥⎥⎦
Objective Function: The matrices corresponding to 

Ĵ(U, x̂k|k−1, yk) are as follows.
H = 2(B̃TQ̃B̃ + R̃)  ,  Fx = 2(I − K∞C)

T ÂTQ̃B̃  a n d 
Fy = 2KT

∞
ÂTQ̃B̃

where Q̃ = diag(Q,Q,⋯ ,Q,Pf ) and R̃ = diag(R,R,
⋯ ,R,R).

(1)𝜒 = Ãx̂k|k−1 + B̃U + Γ̃yk

Table 2  ∞-norm of each S0

y,j
 for different estimator gains

Gains ‖S0

y,1
‖∞ ‖S0

y,2
‖∞ ‖S0

y,3
‖∞ ‖S0

y,4
‖∞ ‖S0

y,5
‖∞

KH
∞

0.6227 2.1184 0 0 1.0796 × 10−16

KI
∞

0.3745 1.2131 0 0 6.4966 × 10−17

KL
∞

0.0686 0.1949 0 0 1.1915 × 10−17

Table 3  output yk mean squared error (MSE) values for different 
estimator gains

System variable MSE(KH
∞
) MSE(KI

∞
) MSE(KL

∞
)

yk 0.4342 0.0669 0.0353
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Constraint Matrices for Standard MpQP: The con-
straint matrices for the RHS of Eq.(14) are given below

Ex = Ẽ(I − K∞C) , Ey = ẼK∞ and
Ẽ = (S + 2GH−1B̃TQ̃Â)

Details related to Theorem 1: The matrices correspond-
ing to Eq.(23) are as follows.

FAj,zx
= F̃z,j(I − K∞C) , FAj,zy

= F̃z,jK∞ and gj,z = H−1

GT
j
(Gj

H−1GT
j
)−1Wj

.
where F̃x,j = H−1GT

Aj
(GAj

H−1GT
Aj
)−1ẼAj

.
The matrices corresponding to Eq.(24) are as follows.
FAj,𝜆x

= F̃𝜆,j(I − K∞C) , FAj,𝜆y
= F̃𝜆,jK∞ and gj,� = −

(Gj
H−1GT

j
)−1Wj

where F̃𝜆,j = (GAj
H−1GT

Aj
)−1ẼAj

.
The matrices corresponding to Eq.(28) are as follows.
H̃Aj,x

= H̃j(I − K∞C) , H̃Aj,y
= H̃jK∞ and L̃j =

[

gj ,�

Wj
− Gj

gj ,z

]

where H̃j =

[
−(GAj

H−1GT
Aj
)−1ẼAj

GIj
H−1GT

Aj
(GAj

H−1GT
Aj
)−1ẼAj

− ẼIj

]
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