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Abstract In this article, we study queuing systems with

three classes of impatient customers which differ across the

classes in their distribution of service times and patience

times. The customers are served on a first-come, first-

served (FCFS) policy independent of their classes. Such

systems are common in customer call centers, which often

segment their arrivals into classes of callers whose requests

differ in complexity and criticality. First of all, we consider

an M=G=1þM queue and then analyze the M=M=mþM

system. Using the virtual waiting time process, we obtain

performance measures such as the percentage of customers

receiving service in each class, the expected waiting times

of customers in each class, and the average number of

customers waiting in the queue. We use our characteriza-

tion to perform a numerical analysis of the M=M=mþM

system. Finally, we compare the performance of a system

based on numerical solution with the steady-state perfor-

mance measures of a comparable M=M=mþM system.

Keywords Impatient customer � Virtual waiting time �
M=M=mþM queue � Steady state analysis

Mathematics Subject Classification 60K25 � 68M20 �
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1 Introduction

In this article, we consider a queue system with three dif-

ferent classes of impatient customers which are indepen-

dent in their arrival and service time distributions. As the

customers have limited patience, customers may abandon

the system whenever their waiting time exceeds the

patience time. In a call center, such situations (abandon-

ment without service) are frequent which motivates us to

categorize the customers into the three different classes, as

it may lead to improved performance of the system. For

example, credit card call center service requests can be

categorized into credit limit, pin change, and fraudulent

activity on a credit card holder’s account. Here customer

representatives can respond to credit limit inquiries

quickly, for pin change they might ask for verification

details, effectively it may take a few minutes. But on the

other hand, the representative who responds to a fraudulent

activity call needs more time as compared to other cate-

gories. Customer’s requests vary; therefore, call centers

train their subset of employees to handle only a certain type

of service requests. Based on the customer’s request, the

automatic call distributor will divert their call to a suit-

able representative. Depending on the type of service

requests, each class of customers is independent of each

other with respect to their distribution of patience times and

service times. Therefore, a subset of employees may serve

a queue that receives arrivals from different classes that

vary from each other in their service requirements and their

callers’ patience levels. Here, note that call centers some-

times may assign tags to their customers like most valued,

valued, or ordinary to priorities the customers. However,

we have to consider the callers’ request on a first-come,

first-served (FCFS) basis independent of their class. In this

paper, we analyzed the performance of the FCFS queue
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system with three classes of customers that may differ from

each other in both their distribution of patience times and

their distribution of service times.

Studies for describing the performance of queue systems

with a single class of ‘‘impatient customers’’ have included

analytical characterizations (Daley [10], Baccelli and

Hebuterne [3], Stanford [16]) and approximations to per-

formance (Garnett et al. [11], Zeltyn and Mandelbaum

[18], Iravani and Balcıoğlu [13]). Literature has many

studies of two-class systems, where most of the systems

have prioritized one customer over the other. Choi et al. [9]

study the underlying Markov process of an M/M/1 queue

with impatient customers of higher priority. Brandt and

Brandt [5] extend the approach in [9] for the generally

distributed first-class customers in two-class M/M/1 sys-

tem. Iravani and Balcıoğlu [14] use the level-crossing

technique proposed by Brill and Posner [7, 8] to study two

M/GI/1 systems, where they consider a preemptive-resume

discipline where customers’ classes have exponentially

distributed patience times and then consider a non-pre-

emptive discipline where customers in the first class have

exponentially distributed patience times, but customers in

the other class have patience. Iravani and Balcıoğlu [13]

obtain the waiting time distributions for each class and the

probability that customers in each class will abandon them.

Adan et al. [1] design heuristics to determine the staffing

levels required to meet target service levels in an over-

loaded FCFS multiclass system with impatient customers.

Van Houdt [12] considers a MAP/PH/1 multiclass queue

where customers in each of the classes have a general

distribution of patience times. Van Houdt [12] derive a

numerical method for analyzing the performance of the

system by reducing the joint workload and arrival pro-

cesses to a fluid queue and expresses the steady-state

measures using matrix analytical methods. His method

provides an exact characterization of the waiting time

distribution and abandonment probability under a discrete

distribution of patience times, and approximations of the

same performance measures under a continuous distribu-

tion of patience times. Sakuma and Takine [15] study the

M/PH/1 system and assume that customers in each class

have the same deterministic patience time.

Our work is mainly focused on the system in which

three classes of impatient customers are served on an FCFS

basis, independent of their class. Ivo Adan et.al. [2] study a

similar system with two classes of impatient customers,

they analyze this process to obtain performance measures

such as the percentage of customers receiving service in

each class, the expected waiting times of customers in each

class, and the average number of customers waiting in the

queue. We consider two systems

(M=M=1þM;M=M=mþM) with three classes of impa-

tient customers, which are served according to an FCFS

discipline. To analyze the performance of these systems,

we used the virtual waiting time process, see Benes [4],

Takács et al. [17] and Ivo Adan et al. [2]. In a virtual

waiting time process, the service times of customers who

will eventually abandon the system are not considered. By

analyzing this process, we find performance characteristics

such as the percentage of customers who receive service in

each class, the expected waiting times of customers in each

class, and the average number of customers waiting in the

queue from each class. A related formula for the virtual

waiting time in a single class M=G=1þ PH queue is given

by Brandt and Brandt [6], it is not suitable for direct

computation as it consists of an exponentially growing

number of terms. We next perform a numerical analysis of

the M=M=mþM system under many arrival rates, mean

service times, and mean patience times. Our analysis

explains that accounting for differences across classes in

the distribution of customers’ service times and patience

times is critical, as the performance of our system differs

considerably from a system where only the service time

distribution varies across classes. The results of our

numerical analysis have several administrative implica-

tions including service level forecasting, revenue man-

agement, and the evaluation of server productivity. Finally,

we compare the performance of a system based on

numerical results of a comparable M=M=mþM system.

This article is organized as follows: In Sect.2, we study

theM=G=1þM queue. In Sect. 3, we study theM=M=mþ
M queue system, including a special case where the three

classes have the same mean service time. In Sect. 4, we

derive steady-state performance measures. In Sect. 5, we

present our numerical analysis, and in Sect. 6, conclusion

is given.

2 M=G=1þM system

Firstly we consider a single-server queueing system with

three classes of impatient customers; see Figure 1. Assume

that the arrival of Class i ði ¼ 1; 2; 3Þ customers is

according to the independent Poisson process with rate ki
and needs independent and identically distributed (iid)

service times with CDF Gið:Þ and mean si. The customers

are impatient, and the patience time distribution for Class
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i ði ¼ 1; 2; 3Þ customers is exponential with parameter hi
and are independent. That is customers from Class i

abandon the system after an exponential amount of time

with parameter hi if their queuing time is longer than their

patience time. For this system, our main aim is to deter-

mine performance characteristics such as the long-run

fraction of customers entering service, server utilization,

and the expected waiting time for the service. Since the

customers are impatient in each class, the system will

always be stable even if the total arrival rate exceeds the

service rate.

It is natural to analyze this system through its queue

length process. However, keeping the information of the

number of customers from each class is not enough. We

would also require the information of the class of each

customer at each position in the queue since patience times

depend on customer class. This provides the Markov pro-

cess intractable. Therefore, we used the virtual queueing

time process below as in [2].

Let W(t) be the virtual queueing time at time t. W(t)

decreases with a rate 1 at all times, provided that it is

positive. If an arrival from Class i customers occurs at time

t and WðtÞ ¼ w, the arrival leaves the system without

service with probability 1� e�hiw , or enters for the service

with probability e�hiw, and require a random amount of

service with CDF Gið�Þ. Hence, the distribution of SiðtÞ, the
size of the upward jump at time t due to an arrival from

Class i customers, given WðtÞ ¼ w, is given by

PðSiðtÞ� yjWðtÞ ¼ wÞ ¼ 1� e�hiw þ e�hiwGiðyÞ; ð1Þ

and thus

Eðe�sSiðtÞjWðtÞ ¼ wÞ ¼1� e�hiw þ e�hiw ~GiðsÞ;

where ~Gið�Þ is the Laplace-Stieltjes transform (LST) of

Gið�Þ. Let

wðs; tÞ ¼Eðe�sWðtÞÞ;
p0ðtÞ ¼PðWðtÞ ¼ 0Þ;

/ðs; tÞ ¼wðs; tÞ � p0ðtÞ;

and

wðsÞ ¼ lim
t!1

wðs; tÞ ¼ Ee�sW ;

p0 ¼ lim
t!1

p0ðtÞ ¼ PðW ¼ 0Þ;

/ðsÞ ¼wðsÞ � p0;

where W is the limit (in distribution) of W(t) as t ! 1. In

the interval ðt; t þ h�, an arrival of type i occurs with

probability kihþ oðhÞ , and no event occurs with

probability 1� ðk1 þ k2 þ k3Þhþ oðhÞ as h ! 0. Then,

we obtain

Fig. 1 Single-server model
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wðs; t þ hÞ ¼ ð1� k1h� k2h� k3hÞ/ðs; tÞesh

þ ð1� k1h� k2h� k3hÞp0ðtÞ

þ
X3

i¼1

kihð/ðs; tÞ � /ðsþ hi; tÞ

þ wðsþ hi; tÞ ~GiðsÞÞ þ oðhÞ:

puttingesh ¼ 1þ shþ oðhÞ and rearranging terms and

dividing by h, and then letting h ! 0, we find

d

dt
wðs; tÞ ¼s/ðs; tÞ �

X3

i¼1

kiwðsþ hi; tÞð1� ~GiðsÞÞ:

Now let t ! 1. Then, d
dtwðs; tÞ ! 0;wðs; tÞ ! wðsÞ and

/ðs; tÞ ! /ðsÞ,so

0 ¼s/ðsÞ �
X3

i¼1

kiwðsþ hiÞð1� ~GiðsÞÞ:

Dividing by s and using

HiðsÞ ¼ ki
1� ~GiðsÞ

s
;

we finally get

wðsÞ ¼ p0 þ
X3

i¼1

wðsþ hiÞHiðsÞ: ð2Þ

Note that, the LST of the equilibrium distribution of the

service times of customers from Class i is HiðsÞ=ðkisiÞ.
Repeated application of (2) shows that its solution can

be written as

wðsÞ ¼ p0cðsÞ; ð3Þ

where

cðsÞ ¼
X1

i¼0

X1

j¼0

X1

k¼0

ci;j;kðsÞ:

The terms ci;j;kðsÞ satisfy the recurrence relation

ci;j;kðsÞ ¼ H1ðsþ ði� 1Þh1 þ jh2 þ kh3Þci�1;j;kðsÞ
þ H2ðsþ ih1 þ ðj� 1Þh2 þ kh3Þci;j�1;kðsÞ
þ H3ðsþ ih1 þ jh2 þ ðk � 1Þh3Þci;j;k�1ðsÞ;

with c0;0;0ðsÞ ¼ 1 and ci;j;kðsÞ ¼ 0 if i\0 or j\0 or k\0.

The recursive procedure to obtain equation (3) as well as

convergence properties of the series c(s) will be explained

in detail in Sect. 3, where we analyze the multi-server

system with three classes. Now, to find p0, we use wð0Þ ¼
1 in equation (2), we get

p0 ¼ 1�
X3

i¼1

wðhiÞkisi ¼ 1� p0
X3

i¼1

cðhiÞkisi;

) p0 ¼ 1þ
X3

i¼1

cðhiÞkisi

" #�1

:

In Sect. 4, we shall see that many performance measures

can be computed in terms of wðhiÞ.

Fig. 2 m-server model
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3 M=M=mþM system

Now we consider a FCFS multi-server system with

m servers serving 3 classes of impatient customers; see

Figure 2.

3.1 Model

Unlike in Section 2, we assume that customers from Class i

arrive according to a Poisson process with rate ki, need iid

ExpðliÞ service times, and have iid ExpðhiÞ patience times

ði ¼ 1; 2; 3Þ. Whenever service does not begin before the

patience time expires, the customer leaves without service.

3.2 Virtual queueing time process

We assume that W(t) be the virtual queueing time at time t

in this system. This is the queueing time that would be

experienced by a virtual customer arriving at time t. Let

NiðtÞ be the number of servers serving a Class i customer

just after time t þWðtÞ but before the next customer (if

there is one) entering service at time t þWðtÞ. This tells

that NiðtÞ is the number of servers busy with a Class i

customer just before a customer arriving at time t enters for

service. So we observe that N1ðtÞ þ N2ðtÞ þ N3ðtÞ is

always at most m� 1.

The above definition allows us to determine the size of

the upward jump of the virtual queuing time if an arriving

customer at time t decides to join the queue (since his

patience exceeds W(t)). The jump is the minimum of the

service time of the arriving customer and the residual

service times of the customers in service at the moment he

enters service at time t þWðtÞ. As we will explain below,

fðWðtÞ;N1ðtÞ;N2ðtÞ;N3ðtÞÞ; t� 0g is a Markov process

with upward jumps, the size of which depends on W(t), and

a continuous downward deterministic drift of rate 1

between jumps.

Assume that WðtÞ ¼ 0 and ðN1ðtÞ;N2ðtÞ;N3ðtÞÞ ¼
ði; j; kÞ: Then, (i, j, k) is the number of busy servers of

classes 1, 2 and 3 at time t. For 0� iþ jþ k�m� 1; the

transition rates of services in state (0, i, j, k) are given by

qð0;i;j;kÞ;ð0;i�1;j;kÞ ¼ il1;

qð0;i;j;kÞ;ð0;i;j�1;kÞ ¼ jl2;

qð0;i;j;kÞ;ð0;i;j;k�1Þ ¼ kl3;

and for 0� iþ jþ k\m� 1, the transitions rates of

arrivals are

qð0;i;j;kÞ;ð0;iþ1;j;kÞ ¼ k1;

qð0;i;j;kÞ;ð0;i;jþ1;kÞ ¼ k2;

qð0;i;j;kÞ;ð0;i;j;kþ1Þ ¼ k3:

Now we have all transitions from states ð0; i; j; kÞ; 0� iþ
jþ k�m� 1; except for the transition rates of arrivals in

states with iþ jþ k ¼ m� 1: These transition rates are

explained below

Fig. 3 Path p
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Now assume that the state of the quad-variate process at

time t is (w, i, j, k) with w� 0 and iþ jþ k ¼ m� 1: This

explains that just after time t þ w we will have i busy

servers of Class 1 , j busy servers of Class 2 and k busy

servers of Class 3. Consider an arrival from Class 1 at time

t. This customer has to wait w amount of time for service to

begin. He abandons the system before his service starts

with probability 1� e�h1w, in which case the state does not

change, and he enters for service at time t þ w with

probability e�h1w. Then, the next departure occurs after an

Expððiþ 1Þl1 þ jl2 þ kl3Þ time X and the departure at

time t þ wþ X is from Class 1 with probability

ðiþ 1Þl1=ððiþ 1Þl1 þ jl2 þ kl3Þ, from Class 2 with

probability jl2=ððiþ 1Þl1 þ jl2 þ kl3Þ and from Class 3

with probability kl3=ððiþ 1Þl1 þ jl2 þ kl3Þ. In the first

case, the state jumps at time t from (w, i, j, k) to

ðwþ X; i; j; kÞ. In the second and third cases, the state

jumps to ðwþ X; iþ 1; j� 1; kÞ and

ðwþ X; iþ 1; j; k � 1Þ, respectively. In the case of a Class

2 and 3 arrival, the process is similar.

Hence, we get the following transition rates from states

(w, i, j, k) with w� 0 and iþ jþ k ¼ m� 1;

qðw;i;j;kÞ; ð½wþx;wþxþdxÞ;iþ1;j�1;kÞ

¼ k1e
�h1wððiþ 1Þl1 þ jl2 þ kl3Þ

� e�ððiþ1Þl1þjl2þkl3Þxdx

� jl2
ðiþ 1Þl1 þ jl2 þ kl3

¼ k1e
�h1wjl2

� e�ððiþ1Þl1þjl2þkl3Þxdx;

similarly;

qðw;i;j;kÞ; ð½wþx;wþxþdxÞ;i;j;kÞ

¼ k1e
�h1wðiþ 1Þl1e�ððiþ1Þl1þjl2þkl3Þxdx

þ k2e
�h2wðjþ 1Þl2e�ðil1þðjþ1Þl2þkl3Þxdx

þ k3e
�h3wðk þ 1Þl2e�ðil1þjl2þðkþ1Þl3Þxdx;

qðw;i;j;kÞ; ð½wþx;wþxþdxÞ;iþ1;j;k�1Þ

¼ k1e
�h1wkl3e

�ððiþ1Þl1 þ jl2 þ kl3Þxdx:
qðw;i;j;kÞ; ð½wþx;wþxþdxÞ;i�1;jþ1;kÞ

¼ k2e
�h2wil1e

�ðil1þðjþ1Þl2þkl3Þxdx:

qðw;i;j;kÞ; ð½wþx;wþxþdxÞ;i�1;j;kþ1Þ

¼ k3e
�h3wil1e

�ðil1þjl2þðkþ1Þl3Þxdx:

qðw;i;j;kÞ; ð½wþx;wþxþdxÞ;i;jþ1;k�1Þ

¼ k2e
�h2wkl3e

�ðil1þðjþ1Þl2þkl3Þxdx:

qðw;i;j;kÞ; ð½wþx;wþxþdxÞ;i;j�1;kþ1Þ

¼ k3e
�h3wjl2e

�ðil1þjl2þðkþ1Þl3Þxdx:

Between upward jumps, the virtual waiting time process

W decreases continuously and deterministically at a rate 1,

while it is positive. When W reaches 0 in state (0, i, j, k),

the process will stay in this state until either an service

completion or arrival occurs.

3.3 Steady-state analysis

We first begin with the following notations. Let

wi;jðs; tÞ ¼ Eðe�sWðtÞ;N1ðtÞ ¼ i;N2ðtÞ ¼ j;

N3ðtÞ ¼ m� 1� i� jÞ; 0� iþ j�m� 1;

pi;j;kðtÞ ¼ PðWðtÞ ¼ 0; N1ðtÞ ¼ i; N2ðtÞ ¼ j;

N3ðtÞ ¼ kÞ; 0� iþ jþ k�m� 1;

/i;jðs; tÞ ¼ wiðs; tÞ
� pi;j;m�1�i�jðtÞ; 0� iþ j�m� 1;

and is the identity matrix where ðWðtÞ;N1ðtÞ;N2ðtÞ;N3ðtÞÞ
converges to ðW ;N1;N2;N3Þ in distribution as t ! 1. We

begin with the balance equations for the steady-state

probabilities pi;j;k. Let

pn ¼ ½pi;j;k�; 0� i; j; k� n; iþ jþ k ¼ n; and 0� n\m:

where

p0 ¼ ½p0;0;0�;
p1 ¼ ½p0;0;1p0;1;0p1;0;0�;
p2 ¼ ½p0;0;2p0;1;1p0;2;0p1;0;1p1;1;0p2;0;0�;
p3 ¼ ½p0;0;3p0;1;2p0;2;1
p0;3;0p1;0;2

p1;1;1p1;2;0p2;0;1p2;1;0p3;0;0�;

..

.

pn ¼ ½p0;0;np0;1;n�1 � � � p0;n;0p1;0;n�1p1;1;n�2 � � �
p1;n�1;0 � � � pn�1;0;1pn�1;1;0pn;0;0�

Then, the balance equations can be written in vector-matrix

form as

p0ðk1 þ k2 þ k3Þ
¼ p1M1;

pnðk1 þ k2 þ k3Þ
þ pnDn

¼ pn�1Kn�1 þ pnþ1Mnþ1;

1� n\m� 1;

ð4Þ

where the
ðnþ1Þðnþ2Þ

2
� ðnþ1Þðnþ2Þ

2
matrix

Dn ¼ diag½ðn� i� jÞl3 þ jl2 þ il1�, 0� iþ j� n (here

i, j as in the /ðsÞ), the matrix of the order
ðnþ1Þðnþ2Þ

2
�
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ðnþ2Þðnþ3Þ
2

; Kn ¼ ½kn;u;v� and the matrix Mn ¼ ½ln;i;j;k� of the
order

ðnþ1Þðnþ2Þ
2

� nðnþ1Þ
2

is given by

kn;u;v ¼

k1; v ¼ uþ m

k2; v ¼ uþ 1; 1� u�ðm� 1Þ;
v ¼ uþ 2; m� u�ðm� 1Þ þ ðm� 2Þ;
..
.

v ¼ uþ ðm� 1Þ; u ¼ ðm� 1Þ þ ðm� 2Þ þ � � � þ 2þ 1

k3; v ¼ u; 1� u�ðm� 1Þ;
v ¼ uþ 1; m� u�ðm� 1Þ þ ðm� 2Þ;
..
.

v ¼ uþ ðm� 2Þ; u ¼ ðm� 1Þ þ ðm� 2Þ þ � � � þ 2þ 1

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

;

ln;ði;j;kÞ;ði�1;j;kÞ ¼ il1; 1� i� n;

ln;ði;j;kÞ;ði;j�1;kÞ ¼ jl2; 0� j� n;

ln;ði;j;kÞ;ði;j;k�1Þ ¼ kl3; 0� k� n:

Further, we can write above balance equations as

pn ¼ pnþ1Rnþ1; 0� n\m� 1: ð5Þ

The
ðnþ2Þðnþ1Þ

2
� ðnþ1Þn

2
matrices Rn, recursively written as

R1 ¼ M1ðk1
þ k2 þ k3Þ�1

Rnþ1 ¼ Mnþ1ððk1 þ k2 þ k3ÞI
þ Dn � RnKn�1Þ�1; 1� n\m� 1

where I is the identity matrix.

Now we shall derive differential equations for the time-

dependent LSTs wi;jðs; tÞ and then take t to 1 to obtain the

steady state equations. For small h[ 0; we have

wi;jðs; t þ hÞ ¼ ð1� k1h� k2h� k3hÞ/i;jðs; tÞesh

þ ð1� k1h� k2h� k3h� ðil1 þ jl2
þ ðm� 1� i� jÞl3ÞhÞpi;j;m�1�i�jðtÞ
þ k1hð/i;jðs; tÞ � /i;jðsþ h1; tÞÞ
þ k2hð/i;jðs; tÞ � /i;jðsþ h2; tÞÞ
þ k3hð/i;jðs; tÞ � /i;jðsþ h3; tÞÞ

þ k1hwi;jðsþ h1; tÞ
ðiþ 1Þl1

sþ ðiþ 1Þl1 þ jl2 þ ðm� 1� i� jÞl3
þ k1hwi;jðsþ h1; tÞ

jl2
sþ ðiþ 1Þl1 þ jl2 þ ðm� 1� i� jÞl3

þ k1hwi�1;jðsþ h1; tÞ
ðm� i� jÞl3

sþ il1 þ jl2 þ ðm� i� jÞl3
þ k2hwi;jðsþ h2; tÞ

il1
sþ il1 þ ðjþ 1Þl2 þ ðm� 1� i� jÞl3

þ k2hwi;jðsþ h2; tÞ
ðjþ 1Þl2

sþ il1 þ ðjþ 1Þl2 þ ðm� 1� i� jÞl3

þ k2hwi;j�1ðsþ h2; tÞ
ðm� i� jÞl3

sþ il1 þ jl2 þ ðm� i� jÞl3

þ k3hwiþ1;jðsþ h3; tÞ
ðiþ 1Þl1

sþ ðiþ 1Þl1 þ jl2 þ ðm� 1� i� jÞl3

þ k3hwi;jþ1ðsþ h3; tÞ
ðjþ 1Þl2

sþ il1 þ ðjþ 1Þl2 þ ðm� 1� i� jÞl3

þ k3hwi;jðsþ h3; tÞ
ðm� i� jÞl3

sþ il1 þ jl2 þ ðm� i� jÞl3
þ k1hpi�1;j;m�1�i�jðtÞ
þ k2hpi;j�1;m�1�i�jðtÞ
þ k3hpi;j;m�2�i�jðtÞ þ oðhÞ;

where pi;j;kðtÞ ¼ 0; ifi\0orj\0ork\0. Also substituting

esh ¼ 1þ shþ oðhÞ, rearranging terms, dividing by h and

then taking limit as h ! 0, we get

d

dt
wi;jðs; tÞ ¼ s/i;jðs; tÞ

� k1wi;jðsþ h1; tÞ � k2wi;jðsþ h2; tÞ
� k3wi;jðsþ h3; tÞ
� ðil1 þ jl2 þ ðm� 1� i� jÞl3ÞhÞpi;j;m�1�i�jðtÞ

þ k1wi;jðsþ h1; tÞ
ðiþ 1Þl1

sþ ðiþ 1Þl1 þ jl2 þ ðm� 1� i� jÞl3
þ k1wi;jðsþ h1; tÞ

jl2
sþ ðiþ 1Þl1 þ jl2 þ ðm� 1� i� jÞl3

þ k1wi�1;jðsþ h1; tÞ
ðm� i� jÞl3

sþ il1 þ jl2 þ ðm� i� jÞl3
þ k2wi;jðsþ h2; tÞ

il1
sþ il1 þ ðjþ 1Þl2 þ ðm� 1� i� jÞl3

þ k2wi;jðsþ h2; tÞ
ðjþ 1Þl2

sþ il1 þ ðjþ 1Þl2 þ ðm� 1� i� jÞl3

þ k2wi;j�1ðsþ h2; tÞ
ðm� i� jÞl3

sþ il1 þ jl2 þ ðm� i� jÞl3

þ k3wiþ1;jðsþ h3; tÞ
ðiþ 1Þl1

sþ ðiþ 1Þl1 þ jl2 þ ðm� 1� i� jÞl3

þ k3wi;jþ1ðsþ h3; tÞ
ðjþ 1Þl2

sþ il1 þ ðjþ 1Þl2 þ ðm� 1� i� jÞl3

þ k3wi;jðsþ h3; tÞ
ðm� i� jÞl3

sþ il1 þ jl2 þ ðm� i� jÞl3
þ k1pi�1;j;m�1�i�jðtÞ
þ k2pi;j�1;m�1�i�jðtÞ
þ k3pi;j;m�2�i�jðtÞ

For the steady state, as t ! 1 the system attains steady

state so that d
dtwi;jðs; tÞ ! 0; wi;jðs; tÞ !

wi;jðsÞ; /i;jðs; tÞ ! /i;jðsÞ and pi;j;kðtÞ ! pi;j;k. Therefore,

we have

0 ¼ s/i;jðsÞ � k1wi;jðsþ h1Þ � k2wi;jðsþ h2Þ � k3wi;jðsþ h3Þ
� ðil1 þ jl2 þ ðm� 1� i� jÞl3Þpi;j;m�1�i�j

þ k1wi;jðsþ h1Þ
ðiþ 1Þl1

sþ ðiþ 1Þl1 þ jl2 þ ðm� 1� i� jÞl3
þ k1wi;jðsþ h1Þ

jl2
sþ ðiþ 1Þl1 þ jl2 þ ðm� 1� i� jÞl3

þ k1wi�1;jðsþ h1Þ
ðm� i� jÞl3

sþ il1 þ jl2 þ ðm� i� jÞl3
þ k2wi;jðsþ h2Þ

il1
sþ il1 þ ðjþ 1Þl2 þ ðm� 1� i� jÞl3

þ k2wi;jðsþ h2Þ
ðjþ 1Þl2

sþ il1 þ ðjþ 1Þl2 þ ðm� 1� i� jÞl3

þ k2wi;j�1ðsþ h2Þ
ðm� i� jÞl3

sþ il1 þ jl2 þ ðm� i� jÞl3

þ k3wiþ1;jðsþ h3Þ
ðiþ 1Þl1

sþ ðiþ 1Þl1 þ jl2 þ ðm� 1� i� jÞl3

þ k3wi;jþ1ðsþ h3Þ
ðjþ 1Þl2

sþ il1 þ ðjþ 1Þl2 þ ðm� 1� i� jÞl3

þ k3wi;jðsþ h3Þ
ðm� i� jÞl3

sþ il1 þ jl2 þ ðm� i� jÞl3
þ k1pi�1;j;m�1�i�j

þ k2pi;j�1;m�1�i�j

þ k3pi;j;m�2�i�j

ð6Þ

The above equations can be written in vector-matrix form.

For this, let
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a1,u,v =

A1,u,u if v = u, 1 ≤ u ≤ m(m+1)
2 ,

if v = u + m, 1 ≤ u < m,
if v = u + m − 1, m < u < m + (m − 1),

A1,u,v if v = u + m − 2, (m − 1) < u < m + (m − 1) + (m − 2),
...

if v = (u + m − (m − 1)),
m + (m − 1) + · · · + 3 < u < m + (m − 1) + · · · + 3 + 2

,

A2,u,u :=λ2
s + (m − 1 − i − j)μ3

s + iμ1 + (j + 1)μ2 + (m − 1 − i − j)μ3

A2,u,v := − λ2
(m − i − j)μ3

s + iμ1 + jμ2 + (m − i − j)μ3

a2,u,v=

A2,u,u if u = v, 1 ≤ u ≤ m(m+1)
2

A2,u,v if v = u + 1, u �= m, u �= m + (m − 1),
· · · , u �= m + (m − 1) + (m − 2) + · · · + 3 + 2.

,

and

A3,u,u :=λ3
s + iμ1 + jμ2

s + iμ1 + jμ2 + (m − i − j)μ3

A3,u+1,u := − λ3
(j + 1)μ2

s + iμ1 + (j + 1)μ2 + (m − 1 − i − j)μ3

A3,u,v := − λ3
(i + 1)μ1

s + (i + 1)μ1 + jμ2 + (m − 1 − i − j)μ3

a3,u,v =

A3,u,u if v = u, 1 ≤ u ≤ m(m+1)
2 ,

A3,u+1,u if u = u + 1, u �= m, u �= m + (m − 1),
· · · , u �= m + (m − 1) + (m − 2) + · · · + 3 + 2.

if u = v + m, 1 ≤ u < m,
if u = v + m − 1, m < u < m + (m − 1),

A3,u,v if u = v + m − 2, (m − 1) < u < m + (m − 1) + (m − 2),
...

if u = (v + m − (m − 1)),
m + (m − 1) + · · · + 3 < u < m + (m − 1) + · · · + 3 + 2
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wðsÞ ¼ ½w0;0;w0;1;w0;2; � � � ;
w0;m�1;w1;0; � � � ;w1;m�2; � � � ;wm�1;0�

/ðsÞ ¼ wðsÞ � pm�1

/ðsÞ ¼ ½/0;0;/0;1;/0;2; � � � ;
/0;m�1;/1;0; � � � ;/1;m�2; � � � ;/m�1;0�

Here matrix wðsÞ is of the order 1� mðmþ1Þ
2

: Then for
mðmþ1Þ

2
� mðmþ1Þ

2
matrices AlðsÞ; ðl ¼ 1; 2; 3Þ we have

s/ðsÞ ¼ pm�1Dm�1 � pm�2Km�2 þ
X3

l¼1

wðsþ hlÞAlðsÞ

s/ðsÞ ¼ pm�1Dm�1 � pm�1Rm�1Km�2 þ
X3

l¼1

wðsþ hlÞAlðsÞ

ð7Þ

where nonzero entries of the matrix AlðsÞ ¼ ½al;u;v� for l ¼
1; 2; 3 are given by

A1;u;u :¼ k1
sþ ðm� 1� i� jÞl3

sþ ðiþ 1Þl1 þ jl2 þ ðm� 1� i� jÞl3
;

A1;u;v :¼ �k1
ðm� i� jÞl3

sþ il1 þ jl2 þ ðm� i� jÞl3
;

that is,

where i and j as in the vth entry of wðsÞ or /ðsÞ: Consider
next

DðsÞ :¼ I þ Dm�1 � Rm�1Km�2

s
;

HlðsÞ :¼
AlðsÞ
s

; s[ 0; l ¼ 1; 2; 3

ð8Þ

For s[ 0, we can divide (7) by s, and using (8), we obtain

wðsÞ ¼ pm�1DðsÞ þ
X3

l¼1

wðsþ hlÞHlðsÞ: ð9Þ

Let

Di;j;kðsÞ ¼Dðsþ ih1 þ jh2 þ kh3Þ
wi;j;kðsÞ ¼wðsþ ih1 þ jh2 þ kh3Þ

Then (9) gives us for i; j; k� 0

wi;j;kðsÞ
¼ pm�1Di;j;kðsÞ þ wiþ1;j;kðsÞH1ðsþ ih1 þ jh2 þ kh3Þ
þ wi;jþ1;kðsÞH2ðsþ ih1 þ jh2 þ kh3Þ
þ wi;j;kþ1ðsÞH3ðsþ ih1 þ jh2 þ kh3Þ

ð10Þ

To obtain wðsÞ ¼ w0;0;0ðsÞ, we apply equation (10):

w0;0;0ðsÞ
¼ pm�1D0;0;0ðsÞ þ w1;0;0ðsÞH1ðsÞ
þ w0;1;0ðsÞH2ðsÞ þ w0;0;1ðsÞH3ðsÞ
¼ pm�1ðD0;0;0ðsÞ þ D1;0;0ðsÞH1ðsÞ
þ D0;1;0ðsÞH2ðsÞ þ D0;0;1ðsÞH3ðsÞÞ
þ w2;0;0ðsÞH1ðsþ h1ÞH1ðsÞ þ w0;2;0ðsÞH2ðsþ h2ÞH2ðsÞ
þ w0;0;2ðsÞH3ðsþ h3ÞH3ðsÞ
þ w1;1;0ðsÞðH2ðsþ h1ÞH1ðsÞ þ H1ðsþ h2ÞH2ðsÞÞ
þ w1;0;1ðsÞðH3ðsþ h1ÞH1ðsÞ þ H1ðsþ h3ÞH3ðsÞÞ
þ w0;1;1ðsÞðH3ðsþ h2ÞH2ðsÞ þ H2ðsþ h3ÞH3ðsÞÞ

Therefore, after n iterations we get

wðsÞ ¼ pm�1

X

iþjþk\n

Di;j;kðsÞCi;j;kðsÞ þ
X

iþjþk¼n

wi;j;kðsÞCi;j;kðsÞ

ð11Þ

The
mðmþ1Þ

2
� mðmþ1Þ

2
matrices Ci;j;kðsÞ are defined as

follows: A sequence of grid points p ¼
fði0; j0; k0Þ; ði1; j1; k1Þ; � � � ðin; jn; knÞg is called path from

ði0; j0; k0Þ to ðin; jn; knÞ if each of steps

ðilþ1; jlþ1; klþ1Þ � ðil; jl; klÞ; l ¼ 0; 1 � � � ; ðn� 1Þ, is either

(1, 0, 0), (0, 1, 0) or (0, 0, 1). For the path p

CpðsÞ ¼ Hðin�1;jn�1;kn�1ÞðsÞ � � �Hði1;j1;k1ÞðsÞHði0;j0;k0ÞðsÞ
Hðil;jl;klÞ ¼
H1ðsþ ilh1 þ jlh2 þ klh3Þ; ifðilþ1; jlþ1; klþ1Þ � ðil; jl; klÞ ¼ ð1; 0; 0Þ
H2ðsþ ilh1 þ jlh2 þ klh3Þ; if ðilþ1; jlþ1; klþ1Þ � ðil; jl; klÞ ¼ ð0; 1; 0Þ
H3ðsþ ilh1 þ jlh2 þ klh3Þ; ifðilþ1; jlþ1; klþ1Þ � ðil; jl; klÞ ¼ ð0; 0; 1Þ

8
><

>:

For the path p ¼ fi0; j0; k0g, set CpðsÞ ¼ 1. Let Pði; j; kÞ be
the set of all paths from (0, 0, 0) to (i, j, k). Then Ci;jðsÞ is
defined by

Ci;j;kðsÞ ¼
X

p2Pði;j;kÞ
CpðsÞ

For iþ jþ k[ 0; the mðmþ1Þ
2

� mðmþ1Þ
2

matrices Ci;j;kðsÞ can
be recursively calculated from

Ci;j;kðsÞ ¼
X

p2Pði�1;j;kÞ
Hi�1;j;kCpðsÞ

þ
X

p2Pði;j�1;kÞ
Hi;j�1;kCpðsÞ

þ
X

p2Pði;j;k�1Þ
Hi;j;k�1CpðsÞ

¼ H1ðsþ ði� 1Þh1 þ jh2 þ kh3ÞCi�1;j;kðsÞ
þ H2ðsþ ih1 þ ðj� 1Þh2 þ kh3ÞCi;j�1;kðsÞ
þ H3ðsþ ih1 þ jh2 þ ðk � 1Þh3ÞCi;j;k�1ðsÞ

ð12Þ
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where C0;0;0ðsÞ ¼ I and Ci;j;kðsÞ is all zero matrix if i\0 or

j\0 or k\0.

Lemma 3.1 For each d[ 0; the seriesP1
i¼0

P1
j¼0

P1
k¼0 Ci;j;kðsÞ is absolutely and uniformly

convergent for all s[ d:

Proof Fix d[ 0: It suffices to prove that there are con-

stants M and r\1 such that for all s[ d and

iþ jþ k� 0,

jCi;j;kðsÞj�MriþjþkE; ð13Þ

where E is the all-one matrix and the inequality is com-

ponent-wise. In this bound s 6¼ 0, since H1ðsÞ and H2ðsÞ,
thus by (12) also Ci;j;kðsÞ, are unbounded as s approaches to

0. Now fix r\1. Since HlðsÞ� klE
s ðl ¼ 1; 2; 3Þ, there exists

an N � 0 such that, for s[ d and iþ jþ k�N;

jHlðsþ ih1 þ jh2 þ kh3Þj �
2r

3ðmÞðmþ 1ÞE; l ¼ 1; 2; 3

ð14Þ

Recurrence relation (12) implies that, for each

i; j; k� 0; Ci;j;kðsÞ is bounded for s[ d: Hence, there is a

(sufficiently large) M such that (13) is valid for s[ d and

the finitely many iþ jþ k�N. By induction we now prove

that (13) is valid for all iþ jþ k�N. Suppose it holds for

all iþ jþ k ¼ n (also true for n ¼ N). From (12) and (14),

we get, for s[ d and iþ jþ k ¼ nþ 1,

jCi;j;kðsÞj
� jH1ðsþ ði� 1Þh1 þ jh2 þ kh3ÞjjCi�1;j;kðsÞj
þ jH2ðsþ ih1 þ ðj� 1Þh2 þ kh3ÞjjCi;j�1;kðsÞj
þ jH3ðsþ ih1 þ jh2 þ ðk � 1Þh3ÞjjCi;j;k�1ðsÞj

� 2r

3mðmþ 1ÞEðjCi�1;j;kðsÞj þ jCi;j�1;kðsÞj þ jCi;j;k�1ðsÞjÞ

� 2r

3mðmþ 1Þ 3MrnE2 ¼ Mrnþ1E;

where the last inequality follows from the induction

hypothesis. h

Since Di;j;kðsÞ are uniformly bounded for every

s[ d[ 0 and iþ jþ k� 0, we get the following.

Corollary 3.1.1 The seriesP1
i¼0

P1
j¼0

P1
k¼0 Di;j;kðsÞCi;j;kðsÞ is absolutely and uni-

formly convergent for all s[ d[ 0.

Proof Using that jwi;j;kðsÞj � 1, the second term in (11) is

bounded and given by

X

iþkþk¼n

wi;j;kðsÞCi;j;kðsÞ
�����

������
X

iþkþk¼n

jCi;j;kðsÞj

Therefore it vanishes as n ! 1 by virtue of the absolute

convergence of the series of Ci;j;kðsÞ. Hence, taking as n !
1 in (11), we get, from Corollary 3.1.1,

wðsÞ ¼ pm�1CðsÞ; ð15Þ

where

CðsÞ ¼
X1

i¼0

X1

j¼0

X1

k¼0

Di;j;kðsÞCi;j;kðsÞ: ð16Þ

in particular, we have

wðhlÞ ¼ pm�1CðhlÞ; l ¼ 1; 2; 3: ð17Þ

To complete the LST of the virtual queueing time, we need

to evaluate pm�1. For this, first we set s ¼ 0 in (7), and we

obtain

0 ¼ pm�1Dm�1 � pm�1Rm�1Km�2 þ
X3

l¼1

wðhlÞAlð0Þ

¼ pm�1Dm�1 � pm�1Rm�1Km�2 þ pm�1

X3

l¼1

CðhlÞAlð0Þ

ð18Þ

where the second equality follows from (17). To uniquely

determine pm�1, we finally need the normalizing equation

Xm�1

n¼0

pneþ /ð0Þe ¼ 1; ð19Þ

where e is the vector of all-one and pn is given by (5) for

0� n\m� 1. However, equation (19) requires the

computation of /ð0Þ, which is the complicated step.

Taking the derivatives on both sides of (7) and setting

s ¼ 0, we get

/ð0Þ ¼
X3

l¼1

wðhlÞA0
lð0Þ þ w0ðhlÞAlð0Þ

� �
: ð20Þ

Here, prime indicates derivative with respect to s. Thus, to

calculate /ð0Þ we need w0ðsÞ at s ¼ h1; s ¼ h2 and s ¼ h3:
For this, we can use (15,16). After differentiating (15), we

obtain

w0ðsÞ ¼ pm�1C
0ðsÞ ¼ pm�1

X1

i¼0

X1

j¼0

X1

k¼0

D0
i;j;kðsÞCi;j;kðsÞ þ Di;j;kðsÞC0

i;j;kðsÞ
� �

:

ð21Þ

The terms Ci;j;kðsÞ can be recursively computed by taking

the derivative of (12):
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C0
i;j;kðsÞ ¼ H0

1ðsþ ði� 1Þh1 þ jh2 þ kh3ÞCi�1;j;kðsÞ
þ H1ðsþ ði� 1Þh1 þ jh2 þ kh3ÞC0

i�1;j;kðsÞ
þ H0

2ðsþ ih1 þ ðj� 1Þh2 þ kh3ÞCi;j�1;kðsÞ
þ H2ðsþ ih1 þ ðj� 1Þh2 þ kh3ÞC0

i;j�1;kðsÞ
þ H0

3ðsþ ih1 þ jh2 þ ðk � 1Þh3ÞCi;j;k�1ðsÞ
þ H3ðsþ ih1 þ jh2 þ ðk � 1Þh3ÞC0

i;j;k�1ðsÞ;

where C0
i;j;kðsÞ is all zero matrix if i ¼ j ¼ k ¼ 0 or if i\0

or j\0 or k\0. Term-by-term differentiation of (16) is

justified by the following two lemmas. h

Lemma 3.2 For each d[ 0; the seriesP1
i¼0

P1
j¼0

P1
k¼0 C

0
i;j;kðsÞ is absolutely and uniformly

convergent for all s[ d:

Proof The proof is similar to the proof of Lemma 3.1. It is

sufficient to show that there are constants M and r\1 such

that, for all s[ d and iþ jþ k� 0;

jC0
i;j;kðsÞj�MriþjþkE; ð22Þ

Now fix r\1. Since HlðsÞ� klE=sðl ¼ 1; 2; 3Þ, and

H0
lðsÞ� klE=s2ðl ¼ 1; 2; 3Þ there is an N � 0 such that, for

s[ d and iþ jþ k�N;

jHlðsþ ih1 þ jh2 þ kh3Þj �
2r

6ðmÞðmþ 1ÞE; l ¼ 1; 2; 3

ð23Þ

and

jH0
lðsþ ih1 þ jh2 þ kh3Þj �

2r

6ðmÞðmþ 1ÞE; l ¼ 1; 2; 3

ð24Þ

Recursions (12)) and (22) imply that, for each i; j; k� 0

Ci;j;kðsÞ and C0
i;j;kðsÞ are bounded for s[ d. Hence, there is

a (sufficiently large) M such that both (13) and (22) are

valid for s[ d and the finitely many iþ jþ k�N.

Following the induction steps in the proof of Lemma 3.1,

it follows that (13) is valid for all iþ jþ k�N. We now

show that (22) also holds for all iþ jþ k�N. Suppose that

(22)) holds for all iþ jþ k ¼ N (also holds for n ¼ N).

From (22), (23) and (24), we get, for iþ jþ k ¼ nþ 1,

jCi;j;kðsÞ� jH0
1ðsþ ði� 1Þh1 þ jh2 þ kh3ÞjjCi�1;j;kðsÞj

þ jH1ðsþ ði� 1Þh1 þ jh2 þ kh3ÞjjC0
i�1;j;kðsÞj

þ jH0
2ðsþ ih1 þ ðj� 1Þh2 þ kh3ÞjjCi;j�1;kðsÞj

þ jH2ðsþ ih1 þ ðj� 1Þh2 þ kh3ÞjjC0
i;j�1;kðsÞj

þ jH0
3ðsþ ih1 þ jh2 þ ðk � 1Þh3ÞjjCi;j;k�1ðsÞj

þ jH3ðsþ ih1 þ jh2 þ ðk � 1Þh3ÞjjC0
i;j;k�1ðsÞj

� 2r

6mðmþ 1ÞEðjCi�1;j;kðsÞj þ jC0
i�1;j;kðsÞj

þ jCi;j�1;kðsÞj
þ jC0

i;j�1;kðsÞj þ jCi;j;k�1ðsÞj þ jC0
i;j;k�1ðsÞjÞ

� 2r

6mðmþ 1Þ 6MrnE2 ¼ Mrnþ1E;

where the last inequality follows from the mathematical

induction hypothesis. h

Lemma 3.3 For each s[ 0; the derivative of C(s) exists

and is equal to

C0ðsÞ ¼
X1

i¼0

X1

j¼0

X1

k¼0

D0
i;j;kðsÞCi;j;kðsÞ þ Di;j;kðsÞC0

i;j;kðsÞ
� �

:

Proof Fix s[ 0. First note that the series converges by

Lemmas 3.1-3.2 and the fact that Di;j;k and D0
i;j;k are uni-

formly bounded for all iþ jþ k� 0. It suffices to prove

that, for each sequence fhng converging to 0 such that

sþ hn [ 0 for all n,

lim
n!1

Cðsþ hnÞ � CðsÞ
hn

¼
X1

i¼0

X1

j¼0

X1

k¼0

B0
i;j;kðsÞ

where Bi;j;kðsÞ ¼ Di;j;kðsÞCi;j;k: Let hn be a sequence. Thus,

there is a d[ 0 such that sþ hn [ d for all n. According to

(13) and (22) and that the fact that Di;j;kðsþ hnÞ and

D0
i;j;kðsþ hnÞ are uniformly bounded for all n and iþ jþ

k� 0; there are constants M and r\1 such that, for all n

and iþ jþ k� 0;

jB0
i;j;kðsÞj �MriþjþkE: ð25Þ

We need to show that for each �[ 0 there is an N such that,

for n[N,
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Cðsþ hnÞ � CðsÞ
hn

�
X1

i¼0

X1

j¼0

X1

k¼0

B0
i;j;kðsÞ

�����

�����

¼
X1

i¼0

X1

j¼0

Bi;j;kðsþ hnÞ � Bi;j;kðsÞ
hn

� B0
i;j;kðsÞ

� ������

�����\�:

ð26Þ

Let �[ 0. For given n and i; j; k� 0, it follows from the

mean value theorem that there is an 0\g\1 such that

ðBi;j;kðsþ hnÞ � Bi;j;kðsÞÞ=hn ¼ B0
i;j;kðsþ ghnÞ. Hence by

(25)

Bi;j;kðsþ hnÞ � Bi;j;kðsÞ
hn

� B0
i;j;kðsÞ

����

����

� jB0
i;j;kðsþ ghnÞj þ jB0

i;j;kðsÞj
� 2MriþjþkE:

Note that M and r do not depend on n, i, j, k. So there is a

constant K such that, for all n,

X

iþjþk�K

Bi;j;kðsþ hnÞ � Bi;j;kðsÞ
hn

� B0
i;j;kðsÞ

����

����\
�

2
: ð27Þ

Further, for given i; j; k� 0; ðBi;j;kðsþ hnÞ � Bi;j;kðsÞÞ=hn
converges to B0

i;j;kðsÞ as an tends to infinity. Hence, there is

an N such that, for n[N

X

0� iþjþk\K

Bi;j;kðsþ hnÞ � Bi;j;kðsÞ
hn

� B0
i;j;kðsÞ

����

����\
�

2
: ð28Þ

Combining (27) and (28) yields (26).

Substituting (17) and (21) with s ¼ hl in (20) gives

/ð0Þ ¼ pm�1

X3

l¼1

CðhlÞA0
lð0Þ þ C0ðhlÞAlð0Þ

� �

and the normalization equation (19) can be rewritten as

Xm�1

n¼0

pneþ pm�1

X3

l¼1

CðhlÞA0
lð0Þ þ C0ðhlÞAlð0Þ

� �
e ¼ 1:

ð29Þ

h

The following theorem summarizes the above findings.

Theorem 3.4 The steady-state LST wðsÞ of the virtual

queuing time satisfies

wðsÞ ¼ pm�1CðsÞ

where CðsÞ is defined by (16) and the probability vectors pn
for 0� n�m� 1 are the solution to the system of linear

equations (5), (18) and (29).

3.4 Special case l1 ¼ l2 ¼ l3 ¼ l

We now suppose l1 ¼ l2 ¼ l3 ¼ l. Now we are dealing

with easy problem, since we do not need to keep track of

N1ðtÞ;N2ðtÞ and N3ðtÞ separately, only

NðtÞ ¼ N1ðtÞ þ N2ðtÞ þ N3ðtÞ. Define

wðsÞ ¼ lim
t!1

Eðs�sWðtÞ;NðtÞ ¼ m� 1Þ

¼Eðs�sW ;N ¼ m� 1Þ;

pi ¼ lim
t!1

PðWðtÞ ¼ 0;NðtÞ ¼ iÞ

¼PðW ¼ 0;N ¼ iÞ; 0� i�m� 1;

/ðsÞ ¼wðsÞ � pm�1:

Then the balance equation (4) can be written as

pn�1ðk1 þ k2 þ k3Þ ¼ pnnl; 1� n�m� 1; ð30Þ

and (9) reduces to

wðsÞ ¼ pm�1 þ wðsþ h1Þ
k1

sþ ml
þ wðsþ h2Þ

k2
sþ ml

þ wðsþ h3Þ
k3

sþ ml
:

The solution of this equation is given by (15)

wðsÞ ¼ pm�1cðsÞ;

where

cðsÞ ¼
X1

i¼0

X1

j¼0

X1

k¼0

ci;j;kðsÞ

For iþ jþ k[ 0; the terms ci;j;kðsÞ are determined from

recursion

ci;j;kðsÞ ¼
k1

sþ ði� 1Þh1 þ jh2 þ kh3 þ ml
ci�1;j;kðsÞ

þ k2
sþ ih1 þ ðj� 1Þh2 þ kh3 þ l

ci;j�1;kðsÞ

þ k3
sþ ih1 þ jh2 þ ðk � 1Þh3 þ l

ci;j;k�1ðsÞ;

with c0;0;0 ¼ 1 and ci;j;k ¼ 0, if i\0 or j\0 or k\0. The

normalization equation becomes

1 ¼
Xm�1

n¼0

pn þ /ð0Þ ¼
Xm�1

n¼0

pn þ wðh1Þ
k1
kl

þ wðh2Þ
k2
kl

þ wðh3Þ
k3
kl

:

Together with (30), this yields, for n ¼ 0; 1; � � � ;m� 1;

pn ¼ 1� wðh1Þ
k1
kl

� wðh2Þ
k2
kl

� wðh3Þ
k3
kl

� � qn

n!Pm�1
j¼0

qj

j!

where q ¼ k1þk2þk3
l .
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4 Performance measures

Now we show how many useful performance measures in

steady-state can be computed in terms of the LST evaluated

at h1; h2 and h3. Suppose the M=M=mþM system is in a

steady state. An arrival faces a queuing time of W. If the

arrival is from Class i, the customer will enter service if

his/her impatience time Ti is longer than W. For Class 1,

this probability is given by the following (and similarly for

Class 2 and 3, by replacing h1 by h2 and h3, respectively):

PðT1 [WÞ ¼ Eðe�h1WÞ
¼

X

iþjþk�m�1

Eðe�h1W ;N1 ¼ i;N2 ¼ j;N3 ¼ kÞ

¼
X

n\m�1

pne

þ wðh1Þe:

Here, we are using that W=0 and EðehW ;N1 ¼ i;N2 ¼
j;N3 ¼ kÞ ¼ pijk when iþ jþ k\m� 1: Next, using

Little’s law, we see that the expected number of servers

busy serving Class 1 customers is given by

k1PðT1 [WÞ 1

l1
¼ k1

l1

X

n\m�1

pneþ wðh1Þe
 !

and the steady state throughput equals

X3

i¼1

kiPðTi [WÞ ¼
X3

i¼1

ki
X

n\m�1

pneþ wðhiÞe
 !

:

Now we compute the expected time of a Class 1 customer

waiting for service. This is given by

EðminðW ; T1ÞÞ ¼EðEðminðW ; T1ÞjWÞÞ ¼ E
1� e�h1W

h1

� �

¼ 1� Eðe�h1WÞ
h1

¼ 1� PðT1 [WÞ
h1

:

By Little’s law, we get the following for the expected

number of Class i customers waiting for service

EðLqi Þ ¼ kiEðminðW ; TiÞÞ ¼
ki
hi
ð1� PðTi [WÞÞ:

At last, we compute the expected conditional waiting time

of Class i customers entering service follows from

EðW jTi [WÞ ¼ EðW ; Ti [WÞ
PðTi [WÞ ;

where

EðW ; Ti [WÞ ¼ EðWe�hiWÞ ¼ � d

ds
Eðe�sWÞ

����
s¼hi

¼ �w0ðhiÞe:

These formulae simplify significantly when applied to the

M=G=1þM system. In particular, the probability that the

server is busy serving a Class i customer is given by

qi ¼ kisiwðhiÞ;

where wðsÞ is as defined in Eq. (2). The probability that the

server is busy is given by

q ¼ wðh1Þk1s1 þ wðh2Þk2s2 þ wðh3Þk3s3:

In steady state, the throughput is equal to

wðh1Þk1 þ wðh2Þk2 þ wðh3Þk3:

and the reneging rate by

ð1� wðh1ÞÞk1 þ ð1� wðh2ÞÞk2 þ ð1� wðh3ÞÞk3:

The expected number of Class i; ði ¼ 1; 2; 3Þ customers

waiting for service in a steady state is given by

EðLqi Þ ¼
ki
hi
ð1� wðhiÞÞ:

The expected number of Class i; ði ¼ 1; 2; 3Þ customers in

the system in steady state is given by

EðLiÞ ¼ EðLqi Þ þ kisiwðhiÞ:

This implies that, in the special case when si ¼ 1
hi

EðLiÞ ¼
ki
hi
:

This is expected since in this case, the system behaves like

an infinite server queue for each class of customers.

5 Numerical analysis

For numerical analysis we have considered three different

systems based on their patience time distribution as

follows:

System 1: In this system, we considered the distribution

of patience time across the classes are same that is 2
3
unit

(h1 ¼ h2 ¼ h3 ¼ 1:5).

System 2: In this system, we considered the distribution

of patience time are different across the classes. For Class 1

patience time is 1 unit (h1 ¼ 1), Class 2 patience time is 2
3

unit h2 ¼ 1:5 and for Class 3 it is 1
2
unit h3 ¼ 2:

System 3: In system 3, we considered that patience time

distribution for Class 1 and Class 2 customers are same but

differs from Class 3. Here taking

ðh1 ¼ 1:5 ; h2 ¼ 1:5; h3 ¼ 2Þ.
In all of the systems, we consider requests from Class 1

have a mean service time of 1 unit l1 ¼ 1, requests from

Class 2 have a mean service time of 3
2
units ðl2 ¼ 1:5Þ, and

requests from Class 3 have a mean service time of 1
2
units

ðl3 ¼ 2Þ. The arrival rate of customers across the classes
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remain same (k1 ¼ k2 ¼ k3) and vary from 6 to 20

throughout the calculations. And we hold number of ser-

vers in the system for this analysis is 5.

In Table [1,2,3], we present three steady state perfor-

mance measures from the above systems. The measures

include the percentage of customers who receive service,

the system throughput, and the mean waiting time of all

customers. We discuss each of these measures:

• Percentage all customers receiving service: The

percentage of all customers who receive service is

highest in System 2 while lowest in System 1; see

Table 1. We observe that when the arrival rate is high,

all systems are approximately equally efficient. Also

recall that patience time in System 1 for Class 3 is

higher than that is in System 2 and System 3.

Consequently, a higher number of Class 3 customers

are served in System 1 compared to System 2 and

System 3. Since the patience time of Class 1 customers

is highest in System 2, a maximum number of

customers from Class 1 will be served in System 2.

Also for Class 3 customers the patience time is the

same in System 2 and System 3; approximately equal

proportion of customers from Class will be served in

these two systems. That means the manager of the

system can decide for which class of customers should

be served at priority.

• System throughput: We observed in Table 2 that the

percentage of all customers receiving service is highest

(lowest) in System 2 (System 1). Therefore, it is not

surprising at all that the system throughput is highest

(lowest) in System 2 (System 1). Initially, increasing

the arrival rate in the system increases server utilization

and hence system throughput. However, the gains in

throughput due to an increase in server utilization

diminish and are eventually offset by a reduction in the

effective service rate of the system. The service rate of

the system is decreasing, as the number of Class 1

customers are increasing and taking longer time to

serve. The result has potential implications for systems

with limited service capacity that generate revenue

based on system throughput.

• Mean waiting time of all customers: We observed

that the mean waiting time is lowest in System 3 while

highest in System 2; see Table 3. This is because the

patience time of Class 1 customer is highest in System

2 which needs a longer time to serve. At the low arrival

rate, all systems serve in approximately equal time,

Table 1 Percentage of all customers receiving service

k System 1 System 2 System 3

ðh1 ¼ h2 ¼ h3 ¼ 1:5Þ ðh1 ¼ 1; h2 ¼ 1:5; h3 ¼ 2Þ ðh1 ¼ 1:5 ; h2 ¼ 1:5; h3 ¼ 2Þ

6 89.91741 90.45176 89.92555

8 77.75133 78.28859 77.71657

10 66.07731 66.49367 66.04104

12 56.50889 56.79464 56.4871

14 48.99 49.17586 48.98113

16 43.08472 43.20405 43.08357

18 38.38565 38.46308 38.38809

20 34.58333 34.63463 34.58692

Table 2 System throughput

k System 1 System 2 System 3

ðh1 ¼ h2 ¼ h3 ¼ 1:5Þ ðh1 ¼ 1; h2 ¼ 1:5; h3 ¼ 2Þ ðh1 ¼ 1:5 ; h2 ¼ 1:5; h3 ¼ 2Þ

6 5.395044 5.427106 5.395533

8 6.220106 6.263087 6.217326

10 6.607731 6.649367 6.604104

12 6.781067 6.815357 6.778452

14 6.8586 6.88462 6.857358

16 6.893555 6.912648 6.893372

18 6.909417 6.923355 6.909857

20 6.916667 6.926925 6.917384
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while at the higher arrival rate System 3 has signif-

icantly less waiting time for service. Here it is

interesting that in System 3, the percentage of all

customers receiving service is lesser than that is in

System 2 while having a lesser mean waiting time. This

result again has ramifications for service level fore-

casting as the average waiting time of all customers is

another common measure of service level.

6 Conclusion

In this article, we analyzed a queuing system with three

classes of impatient customers who arrive according to

PPðkiÞ ði ¼ 1; 2; 3Þ and are served on the basis of FCFS.

We also determine the performance measures such as the

percentage of all customers receiving service in each class,

the mean waiting time of customers in each class and the

expected conditional waiting time for each class of cus-

tomers. After numerical analysis, we found that it may very

effective in call centers since in call centers usually

patience time of customers differs from each other. And a

subset of servers can be trained to handle a class of cus-

tomers. Overall this system has many managerial

implications.
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Table 3 Mean waiting time—all customers

k System 1 System 2 System 3

ðh1 ¼ h2 ¼ h3 ¼ 1:5Þ ðh1 ¼ 1; h2 ¼ 1:5; h3 ¼ 2Þ ðh1 ¼ 1:5 ; h2 ¼ 1:5; h3 ¼ 2Þ
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