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Abstract From the point of view of agriculture, ecology,

or environmental engineering, the capability of forecasting

meteorological variables in the long and short term is

crucial. Short-term forecasts enabling the planning of field

work in agriculture, management of mass events, or tour-

ism are important, while long-term forecasts related to

advancing climate change are also very interesting. In the

literature, there are known many approaches that can be

used to forecast climate time series. The most common is

based on the statistical modelling of the corresponding

data, and the prediction is made on the fitted model. There

are known one-dimensional approaches, where single

variables are modeled separately; however, in the last

decade, there appears a new trend which assumes the

importance of the relationship between different time ser-

ies. This is the approach considered in this paper. We

propose to examine the climate data (temperature and

precipitation) using the multidimensional vector autore-

gressive model (VAR). However, because in the time series

we observe non-Gaussian behaviour, the classical VAR

model can not be applied and the multidimensional Gaus-

sian noise is replaced by the a�stable one. This model was

previously analyzed by the authors in the context of

financial data description where also non-Gaussian char-

acteristics are observed. The main goal of this paper is to

answer the question whether there are reasons to go from

the Gaussian model to the generalized models, like

a�stable based. The second purpose is to link total pre-

cipitation data with temperature time series. In the classical

approach, precipitation was treated as a variable not cor-

related with temperature, which, as we will show in the

paper, is inconsistent with reality. We hope the presented in

this paper results open new areas of interest related to

climate data modelling and prediction.
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1 Introduction

From the point of view of agriculture, ecology, or envi-

ronmental engineering, the capability of forecasting mete-

orological variables in the long and short term is very

useful. On the one hand, short-term forecasts enabling the

planning of field work in agriculture, management of mass

events or tourism are important; on the other hand, long-

term forecasts related to the advancing climate change are

also very interesting. These changes depend on many

global factors, the most important of which is the amount

of greenhouse gases in the atmosphere. According to the

analyzes, greenhouse gases (mainly carbon dioxide) are

responsible for the temperature increase observed in many

places around the world. In this case, depending on the

RCP (Representative Concentration Pathways) scenario

[1, 2], the content of these gases in the atmosphere is

forecast using climatic indicators up to the year 2100. The
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ability to model climate variables can be used for fore-

casting as well as for generating synthetic data in any time

horizon and in any resolution using weather generators.

Meteorological variables in the short-term horizon are

usually described using models that take into account a

large number of atmospheric factors [3, 4]. There are

numerous models based on various types of statistical

analysis [3–5], and from the point of view of new tech-

nologies, models based on artificial intelligence are

becoming more and more popular [6]. From the point of

view of generating meteorological data [7], the most pop-

ular models that are in use are models that in the case of

precipitation, the model total precipitation by means of the

first-order Markov chain to determine the occurrence of

wet/dry days, and then for the amount of precipitation, the

multidimensional two-parameter gamma distribution is

used [2, 8, 9]. For other variables such as daily minimum

temperature, maximum temperature, solar radiation, and

wind speed, multivariate autoregression models are usually

used [10]. In the first generators, it was assumed that the

distributions of the described variables could be described

by Gaussian distribution. However, it was soon observed

that this assumption was not correct. In [11], the multi-

variate closed skew-normal distributions [12] were used for

modeling of the residual skewness observed in climate

data.

Following this path, one should ask whether the use of

autoregressive Gaussian models to estimate model param-

eters is correct and whether there are reasons to go from the

Gaussian model to the generalized models. Answering this

question is the first goal of the paper. The second purpose is

to link total precipitation data with temperature time series.

In the first generator, precipitation was treated as a variable

not correlated with temperature, which, as we will show in

the paper, is inconsistent with reality.

To achieve the defined goals, in this paper, we propose a

multidimensional approach for climate data description. To

take into consideration the relation between the examined

climate data (i.e., temperature and total precipitation), we

apply a multidimensional vector autoregressive (VAR)

model. It should be emphasized that this time series can be

used to describe the dependence between analyzed vari-

ables, and at the same time, it takes into account the time

dependence for single components. The VAR model is

considered as the classical multidimensional time series

[13]. However, because the analyzed data exhibit non-

Gaussian behavior, the classical VAR model used in this

paper, is modified to take into consideration the specific

characteristics of the data. Thus, we propose to replace the

Gaussian distributed innovations in the classical model by

a more general class, namely a�stable distributed vari-

ables. This class of distributions was introduced in 20’s

[14, 15]. The stable probability laws are important in

probability theory. According to the Generalized Central

Limit Theorem, the stable laws attract distributions of sums

of random variables with a diverging variance. It is a

generalization of the Central Limit Theorem, which states

that the Gaussian law attracts distributions with finite

variance. The a�stable distribution is considered as the

generalization of the Gaussian one. Although the first

application of this distribution appeared in the work of

Mandelbrot [16], where the financial time series were

analyzed, the a�stable distributions and processes have

found various applications, including economy [17–23],

physics [24–27], signal processing [28–31], computer sci-

ence [32–35], geology and geophysics [36–38], biology

[39–42], and many other fields. The a�stable distributions

are also considered for climate data modelling, see, e.g.,

[43–46]. We also refer the readers to interesting bibliog-

raphy positions [47, 48]. The VAR time series based on the

a�stable distribution was considered, for instance, in

[49–52]. This model takes into consideration the relation-

ship between the multidimensional data, and by using the

a�stable distribution instead of the Gaussian one, it allows

describing the data with the heavy-tailed behaviour.

The paper is organized as follows. In Sect. 2, we present

the used model. Next, in Sect. 3, we describe the analyzed

climate data indicating the relationship between variables.

The relation between temperature and precipitation data is

a starting point to apply the VAR model. The results of the

fitting are presented in Sect. 4. In this section, we also

discuss the prediction results and compare them with the

predictions obtained in the Klimada project. The last sec-

tion concludes the paper.

2 The a�stable vector autoregressive model

In this section, we present the model under consideration.

Because the general methodology was introduced in the

literature, therefore, we remind only the basic information

referring to the appropriate bibliography positions.

The model examined in this paper is called the vector

autoregressive time series (VAR model) with the a-

stable distribution. This time series can be treated as a

generalization of the Gaussian VAR model, [13].

A m-dimensional time series fXðtÞg ¼
fðX1ðtÞ; . . .;XmðtÞÞTg is called a VAR model with the a-

stable distribution, and if for each t 2 Z , it fulfills the

following equation

XðtÞ �H1Xðt � 1Þ � . . .�HpXðt � pÞ ¼ ZðtÞ: ð1Þ

In Eq. (1), the sequence fZðtÞg ¼ fðZ1ðtÞ; . . .; ZmðtÞÞTg
constitutes a sample of independent m-dimensional vectors

with independent components having one-dimensional
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a�stable distribution. More precisely, for each t 2 Z ZjðtÞ
(j ¼ 1; 2; � � � ;m) has a�stable distribution and ZjðtÞ and

ZiðtÞ are independent for i 6¼ j. Moreover, H1; . . .;Hp are

m� m matrices with time-constant coefficients. In our

paper, we consider the special case of the model (1) and

assume p ¼ 1. We remind the one-dimensional random

variable Z has a�stable distribution if its characteristic

function is given by [53, 54]

E expfihZg½ � ¼ exp �rajhja 1 þ ibwðt; hÞð Þ þ ilhf g; ð2Þ

where

wðh; aÞ ¼
�sign hð Þ tan

pa
2

� �
if a 6¼ 1;

2

p
sign hð Þ ln hj j if a ¼ 1;

8><
>:

ð3Þ

and signð�Þ denotes a sign function. The parameter

0\a� 2 is the stability index which is responsible for the

rate of convergence of the distribution tail. More precisely,

for a 6¼ 2 , the probability tail PðZ[ zÞ� z�a and the

corresponding second moment are infinite. Thus, the

smaller a, the convergence is slower, and in the conse-

quence, the a�stable random variables take extreme values

more likely than it in the Gaussian case. The

a�stable distribution for a 6¼ 2 belongs to the so-called

heavy-tailed class of distributions. On the other hand, for

a ¼ 2 , it reduces to the Gaussian distribution, and in this

sense, it can be considered as its generalization. The model

defined as in Eq. ( 1) can be considered as the generali-

sation of the VAR model with Gaussian innovations. The

other parameters of a�stable distribution are: the scale

parameter r[ 0, the skewness parameter �1� b� 1, and

the shift parameter l 2 R. For more details about the

a�stable distribution, we refer to [53, 55–59].

It should be emphasized that for m ¼ 1 , the model

defined in Eq. (1) is the one-dimensional autoregressive

time series (AR model) with a�stable innovations, [60].

For more details about the AR model and multidimensional

VAR model with a�stable innovations, we refer the

readers to the bibliography positions [49–51, 60–62].

In the Gaussian VAR model, one of the classical

methods used for the estimation of the parameters is the

Yule-Walker approach that utilizes the auto-covariance

function [13]. For the VAR model with non-Gaussian

a�stable distribution, this classical measure of dependence

is infinite, and thus, in the literature, there are considered

different approaches to the parameters’ estimation. One of

these is the modified Yule-Walker approach that utilizes

the so-called auto-covariation function, and one of the

dependency measures properly defined for the

a�stable model. This method is described in detail in

[49, 63], and in this paper, it is used for multi-dimensional

VAR models as well as for one-dimensional AR time series

with a�stable innovations. See also [28, 64, 65].

3 Climate data description

The analyzed data are the daily measurements of the

maximum temperature (Tmax), minimum temperature

(Tmin), average temperature (Tavg), and total precipitation

(P) for the city of Wrocław from 1961–2020. The data

come from the Institute of Meteorology and Water Man-

agement (IMGW) [66]. Each variable is described by a

time series of length 21915 data.

Figure 1 shows the graphs of all analyzed data. As can

be easily seen, all data exhibit seasonal behavior. There-

fore, they were divided into individual months, and thus, 12

time series for each variable were obtained. Figures 2, 3,

, 4 and 5 show the behavior of the analyzed variables in the

years 1961–2020 for individual months.

For the temperature data, an upward trend characterizing

the data in individual months is visible; therefore, before

the time series modelling, the long-term trend, based on a

moving average averaging data from the moving 10 years,

was removed. As it is known from various studies [67], this

trend is related to long-term climate changes leading to

global warming.

The first step of our study was to analyze the structure of

the relationship between the individual time series. For this

purpose, the behavior of correlation coefficients for 5-year

windows sliding by one day taking into account all com-

binations of time series was investigated. The period of five

years has been taken as long enough to detect a correlation

while not being affected by the long-term trend. For the

purposes of research, the Pearson, Spearman, and Kendall

correlation coefficients were used, see [68]. The Person

correlation coefficient is essential to study the linear rela-

tionship between two variables; however, its estimatior is

sensitive to outliers. Therefore, this measure is useful,

especially for the Gaussian (or light-tailed) distributed

variables [69]. The Spearman correlation coefficient (called

Spearman rank correlation coefficient) measures a mono-

tonic relationship between variables. Its estimator is

insensitive to large observations and thus in cases when the

analyzed variables are heavy-tailed [70, 71]. The Kendall

correlation coefficient (called also Kendall rank correlation

coefficient) indicates not only the strength, but also the

direction of the dependence. Similarly to the Spearman

correlation coefficient, it is resistant to outliers and is used

especially for non-Gaussian distributed data [72].

In Fig. 6, there are presented the exemplary correlation

coefficients for the sliding 5-year windows for July data
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Fig. 1 The daily measurements

of maximum temperature,

minimum temperature, average

temperature, and total

precipitation for Wrocław from

the period 1961–2020
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temperature for each month in

year for the period 1961–2020
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temperature for each month in

year for the period 1961–2020
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for each month in year for the

period 1961–2020
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and in Fig. 7 for December. The coefficients were calcu-

lated for all combinations of the considered data.

It can be clearly seen that the Spearman and Pearson

coefficients coincide for the temperature data. The Kendall

coefficient is usually lower due to the way it is calculated.

This indicates a linear relationship between the data. The

situation is different for the relationship between the

temperature and precipitation data. In this case, we observe

large discrepancies between the coefficients, which indi-

cates a nonlinear relationship and probably non-Gaussian

behavior. An important observation is the fact that all

considered data are significantly correlated with each other,

which justifies the consideration of multivariate data

modeling using VAR-type models. On the other hand, the
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Fig. 7 The analyzed correlation

coefficients for sliding five-

years windows in December for

each data combination

Table 1 Results of the normality and stability test statistics of non-Gaussian VAR(1) residuals for daily maximum temperatures

H0:Residuals are a-stable distributed H0:Residuals are Gaussian distributed

Month T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

1 1.29 1.67 0.20 0.14 1.45 2.26 4.21 1.86 1.79 12.19

2 1.03 1.45 0.26 0.10 2.78 1.98 3.73 1.32 1.25 8.83

3 1.55 2.32 0.53 0.36 Inf 2.23 3.40 0.85 0.84 6.91

4 1.13 1.90 0.22 0.22 1.49 0.99 1.76 0.16 0.15 1.65

5 1.13 2.01 0.27 0.27 1.63 1.27 2.20 0.31 0.28 2.06

6 1.38 2.05 0.35 0.32 1.75 1.42 2.34 0.39 0.36 2.16

7 1.32 2.34 0.34 0.32 1.85 1.27 2.27 0.31 0.30 1.80

8 0.58 0.91 0.06 0.04 0.40 1.31 1.99 0.34 0.25 2.52

9 1.34 2.04 0.45 0.21 3.14 0.99 1.96 0.31 0.19 3.05

10 1.53 1.94 0.47 0.26 2.33 1.39 2.07 0.42 0.29 2.75

11 1.10 1.58 0.29 0.17 1.41 3.04 5.04 2.97 2.33 18.25

12 0.95 1.63 0.17 0.14 1.80 2.57 4.50 2.42 2.16 Inf
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nonlinear relationship between the data also indicates that

considering a model other than Gaussian may be justified.

4 Model fitting

As a set of four time series was analyzed and the correla-

tion coefficients between all data are significant, an attempt

was made to fit the 4-dimensional VAR(1) model, with a-

stable innovations, described in the previous section, to the

data under consideration. The VAR(1) model was used as

the optimal according to multiple literature positions ana-

lysing this type of data [2, 8, 9].

Due to the fact that in the case of the daily sum of

precipitation, the VAR model based on maximum, mini-

mum, and average temperatures cannot reflect the exact

values and the methodology of forecasting precipitation

has a different nature [2, 8, 9] (which does not change the

fact that precipitation has a significant impact on daily

temperatures), only the estimation of the model and fore-

casts for maximum and minimum temperature is consid-

ered. The two remaining variables will be treated as

auxiliary variables that have a significant impact on the

quality of the forecast

As the relationships between 4-dimensional data are not

always linear, the residuals distribution of the fitted non-

Gaussian 4-dimensional VAR(1) model was investigated

by testing whether these distributions are Gaussian or a-

stable and fitting the a�stable distribution. In the Tables 1

and 3, we present the values of the five statistics used for

testing Gaussian and/or a-stable distributions of the resid-

uals, namely Kolmogorov-Smirnov test (T1), Kuiper test

(T2), Watson test (T3), Cramer-von Mises test (T4), and

Anderson-Darling test (T5), see [73]. In Tables 2 and 4, we

can see the parameters of fitted to residuals series the a-

stable distribution. The results are presented for the mini-

mum and maximum temperature.

In the case of daily maximum temperature, the residuals

distributions of the fitted 4-dimensional non-Gaussian

VAR (1) model are not Gaussian for all considered months.

The results of the stability test statistics show that the

residuals distribution is much closer to a-stable distribution

which indicates a justified use of a non-Gaussian model. In

Table 2, we can observe that the residuals for maximum

temperature, especially for winter months, have heavier

tails than in Gaussian distribution. Additionally, for most

of the analysed months, the residuals b parameter is sig-

nificantly positive, which indicates the right skewness of

this distribution. Thus, in the case of maximum tempera-

tures, we will observe the extreme values more often, with

particular emphasis on the values with high maximum

temperature.

Table 2 Fitted a-stable distribution parameters for residuals of daily

maximum temperatures

Month a r b l

1 1.79 1.65 0.85 0.23

2 1.80 1.75 1.00 0.53

3 1.88 2.10 1.00 0.48

4 1.97 2.23 - 0.14 0.47

5 1.97 2.06 - 1.00 0.45

6 1.97 2.04 - 1.00 0.42

7 1.99 1.94 - 1.00 0.39

8 1.94 2.02 1.00 0.50

9 1.97 2.12 1.00 0.50

10 1.96 2.10 1.00 0.34

11 1.78 1.67 1.00 0.30

12 1.77 1.62 0.91 0.22

Table 3 Results of the normality and stability test statistics of non-Gaussian VAR(1) residuals for daily minimum temperatures

H0:Residuals are a-stable distributed H0:Residuals are Gaussian distributed

Month T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

1 1.26 1.73 0.34 0.16 Inf 3.08 5.54 3.28 2.86 19.82

2 1.43 1.71 0.38 0.19 Inf 2.65 4.81 2.75 2.32 17.45

3 0.83 1.09 0.13 0.05 0.76 1.79 3.03 1.23 0.91 8.76

4 0.83 1.38 0.12 0.12 0.81 0.89 1.32 0.11 0.09 1.24

5 0.77 1.23 0.12 0.09 0.80 0.69 1.16 0.10 0.07 0.96

6 1.36 2.13 0.49 0.26 2.69 1.31 2.32 0.38 0.25 2.59

7 1.13 1.61 0.18 0.09 1.34 0.95 1.50 0.11 0.07 1.09

8 0.72 1.39 0.10 0.09 0.67 1.03 1.81 0.16 0.15 1.30

9 0.83 1.66 0.16 0.16 1.11 0.77 1.51 0.14 0.14 1.11

10 0.97 1.68 0.19 0.17 1.41 1.26 1.82 0.18 0.18 2.25

11 1.07 1.71 0.27 0.24 1.52 1.42 2.70 0.57 0.55 4.09

12 2.05 2.54 1.02 0.47 Inf 2.34 4.20 1.58 1.42 11.41
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In the case of minimum temperature, the lack of Gaus-

sianity of the residuals distributions is not as visible as in

the case of maximum temperature. In some months,

statistics for normality are lower than for stability. How-

ever, generally we can assume that the residuals distribu-

tion is closer to a- stable than to Gaussian. As in the case of

maximum temperatures, the fitted a factor of a-stable dis-

tribution indicates heavier tails in winter months, and a

negative b for almost all months indicates that special

attention should be paid to the more frequent low values of

minimum temperature.

4.1 Prediction

Based on the fitted model, the one-step prediction was

made (one day ahead) for the minimum temperature and

for the maximum temperature. The mean absolute error

(MAE) measure, which is appropriate for non-Gaussian

considerations, was used to measure the forecast error [74]

MAE ¼ 1

n

Xn
k¼1

jtpred � tobsj: ð4Þ

where tpred means the predicted and tobs the observed value.

The mean absolute forecast error was determined for the

last ten years, i.e., for the period 2010–2020. The forecast

errors obtained in this way were compared with the one-

dimensional model of autoregression of the first-order

AR(1) with a-stable innovations for both minimum and

maximum temperature separately. The forecast quality

results are presented in Tables 5 and 6.

The results presented in Tables 5 and 6 show that the

multivariate model has an advantage over the one-dimen-

sional model in the case of forecasting the daily maximum

and minimum temperature values. However, the quality of

the forecast for the minimum temperature is much better.

The mean absolute forecast error for the minimum tem-

perature for all months is about 0.5 degrees Celsius lower

than for the univariate model, while for the maximum

temperature, the difference is between 0.15 and 0.3.

However, from the prognostic point of view, considering

multivariate models, in which the correlation between the

series under consideration is taken into account, is abso-

lutely justified. In addition, it is also justified to use models

with a nonlinear correlation structure and no assumption of

Gaussianity.

Due to the fact that in the case of minimum temperature,

the quality of the forecast is much better, and an attempt

was made to estimate the future minimum temperature

values for the year 2090, assuming the RCP 8.5 scenario

[1, 75]. In the RCP 8.5 scenario, it is assumed that the

warming of the climate related to the content of greenhouse

gases will continue as before. The determined values were

presented with confidence intervals and compared with the

forecast values in the Klimada project [76].

The calculations were made for 10, 000 trajectories

simulated on the basis of the estimated 4-dimensional

VAR(1) model using the Monte Carlo methodology for

each considered month. Figure 8 presents a chart showing

the scenario for the year 2090. In the figure, we can see the

monthly average minimum temperature obtained in the

Klimada project and using the 4-dimensional VAR(1)

model and the 99% and 95% confidence intervals from the

VAR model.

It is worth noting that the forecast based on a simple

VAR model, in the case of the forecast for 2090 of the

average monthly minimum temperature, assuming the RCP

8.5 scenario, gives results not much different from those

from the Klimada project, where the model used is

Table 4 Fitted a-stable distribution parameters for residuals of daily

minimum temperatures

Month a r b l

1 1.74 1.82 - 1.00 - 0.38

2 1.75 1.75 - 1.00 - 0.32

3 1.89 1.80 - 1.00 - 0.41

4 1.96 1.75 - 1.00 - 0.35

5 1.98 1.64 - 1.00 - 0.41

6 1.98 1.53 - 1.00 - 0.33

7 1.99 1.44 - 1.00 - 0.30

8 1.95 1.49 - 0.62 - 0.41

9 1.99 1.78 1.00 - 0.38

10 1.94 1.82 0.15 - 0.29

11 1.90 1.81 - 0.41 - 0.23

12 1.83 1.81 - 1.00 - 0.42

Table 5 MAE of one day ahead prediction for daily maximum

temperatures in case of non-Gaussian, 4-dimensional VAR(1) model

and one-dimensional AR(1) model

Month MAE 4-dimensional VAR(1) MAE AR(1)

1 1.80 1.97

2 2.16 2.19

3 2.40 2.47

4 2.75 2.91

5 2.31 2.54

6 2.41 2.61

7 2.06 2.31

8 2.19 2.34

9 2.21 2.30

10 2.26 2.23

11 1.87 1.97

12 1.91 2.20
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certainly much more sophisticated. What is essential is the

fact that the confidence intervals are shifted downwards

against the mean (the distance between the lower limit of

the confidence interval and the mean is in most cases

greater than the distance between the mean and the upper

limit of the interval). This asymmetry is related to the fact

that non-Gaussian residuals are used for projection (thicker

tails and left asymmetry). This affects the quality of the

projection and the further information that the projection

carries with it. As for the distribution of the structure of

minimum temperatures, it is also worth noting that despite

the asymmetry of the confidence intervals and a slightly

lower average minimum temperature in the winter months,

the percentage of days with a minimum temperature below

0�C in the VAR model is 10%, while in the Klimada

project, it is about 12:6%, which indicates a certain nar-

rowing of the confidence intervals. Projection using the

VAR model shows that in the RCP 8.5 scenario, we can

expect, for example, daily minimum temperatures in

December even around 16�C , which clearly indicates the

already observed upward trend.

5 Conclusions

In this paper, we have analyzed multidimensional climate

data related to temperature (minimum, maximum, and

averaged) and total precipitation. We have demonstrated

the examined time series are related, and the structure of

their relation changes over time. Moreover, we analysis of

three different correlation coefficients clearly indicates

their non-Gaussian behavior. The preliminary research was

the starting point for the proposition of the stochastic

model that shares similar properties as the data. More

precisely, we have proposed the multidimensional VAR

time series with non-Gaussian a�stable innovations. This

model was previously used by the authors for financial data

modelling. We have shown that the proposed model more

precisely reflects the nature of the data, and thus, it is

justified to describe the time series by using non-Gaussian

systems. Moreover, finally we have demonstrated that the

model-based prediction corresponds to the RCP 8.5 sce-

nario-based results. The proposed approach is universal

and can be used in a more general case, e.g., to describe

climate data corresponding to more variables. One of the

main goals was to prove that the non-Gaussian multidi-

mensional model is adequate to the analyzed data. This

objective of this paper is fulfilled, and the obtained results

clearly confirm this.
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income. Int. Econ. Rev. 1(2), 79–106 (1960)

17. Janczura, J., Orzeł, S., Wyłomańska, A.: Subordinated a-
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cross-dependence for bidimensional periodic AR(1) model with

alpha-stable distribution. J. Time Ser. Anal. 41(6), 785–807

(2020)

51. Grzesiek, A., Teuerle, M., Wyłomańska, A.: Cross-codifference
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