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Abstract Methods to numerically quantify uncertainties in

hyperbolic equations can be divided into intrusive and non-

intrusive techniques. Standard intrusive methods such as

Stochastic Galerkin yield oscillatory solutions in the

vicinity of shocks and require a new implementation. The

more advanced Intrusive Polynomial Moment (IPM)

method necessitates a costly solution reconstruction, but

promises bounds on oscillatory over- and undershoots.

Non-intrusive methods such as Stochastic Collocation (SC)

can suffer from aliasing errors, and their black-box nature

comes at the cost of loosing control over the time evolution

of the solution. In this paper, we derive an intrusive

method, which adaptively switches between SC and IPM

updates by locally refining the quadrature set on which the

solution is calculated. The IPM reconstruction of the

solution is performed on the quadrature set and uses suit-

able basis vectors, which reduces numerical costs and

allows non-oscillatory reconstructions. We test the method

on Burger’s equation, where we obtain non-oscillating

solution approximations fulfilling the maximum principle.

Keywords Conservation laws � Hyperbolic � Oscillations �
Aliasing � Collocation � Intrusive � Closure

1 Introduction

Hyperbolic equations play an important role in various

research areas, ranging from the Euler equations in fluid

mechanics to the magnetohydrodynamics (MHD) equa-

tions in plasma physics. The general form of a scalar, one-

dimensional hyperbolic equation is

otuðt; xÞ þ oxf ðuðt; xÞÞ ¼ 0; with uðt ¼ 0; xÞ ¼ uICðxÞ;
ð1Þ

where u : Rþ � R ! R is the unknown solution which

depends on time t 2 Rþ and the spatial variable

x 2 D � R. The physical flux is given by f : R ! R. To

allow discontinuous solutions, the notion of weak solutions

is used. A weak solution fulfillsZ
Rþ�R

u/t þ f ðuÞ/x dxdt

þ
Z
R

uICðxÞ/ð0; xÞ dx ¼ 0; 8/ 2 C1
0ðR2Þ;

ð2Þ

meaning that u does not need to be differentiable in the

spatial variable and time. Since condition (2) allows

multiple possible solutions, the concept of entropy

solutions has been introduced to pick a unique physically

meaningful weak solution. A convex function s : R ! R is

called an entropy function for (1) if the integrability

condition s0ðuÞf 0ðuÞ ¼ F0ðuÞ holds. If a weak solution

fulfills

otsðuðt; xÞÞ þ oxFðuðt; xÞÞ� 0

for all entropy functions s, it is called an entropy solution.

For further details, see [1, Chapter 3.8]. Important

properties of the entropy solution u are
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kuðt; �Þ � vðt; �ÞkL1ðDÞ � kuIC � vICkL1ðDÞ; ð3aÞ

kuðt; �ÞkL1ðDÞ � kuICkL1ðDÞ; ð3bÞ

where v is an entropy solution to (1) with initial condition

vIC [2, Chapter 2.4]. Property (3a), known as L1 stability,

guarantees boundedness of oscillations, playing a key role

in the construction of numerical schemes for solving scalar

problems (1) as this ensures convergence to a unique,

physically meaningful solution [see (1, Chapter 15.3)].

Property (3b) is known as the maximum principle and

ensures bounds on the solution. Numerical schemes which

are constructed to satisfy these bounds can be found in

[3–7].

To incorporate the fact that solutions to (1) are in

practice influenced by uncertainties, various methods to

calculate moments of the solutions such as expected value

and variance have been constructed. Uncertainties can

enter through model parameters as well as initial or

boundary conditions. Since uncertain parameters can be

expressed by uncertain initial conditions [see (8)], this type

of problem is studied in the following. The general form of

a scalar hyperbolic conservation law with uncertain initial

condition is

otuðt; x; nÞ þ oxf ðuðt; x; nÞÞ ¼ 0;

with uðt ¼ 0; x; nÞ ¼ uICðx; nÞ;
ð4Þ

where n 2 H is a random variable with the probability

density function fNðnÞ. To avoid a high-dimensional

solution, one aims at calculating the moments of u for a

given set of basis functions uiðnÞ where i 2 f0; 1; . . .;Ng is

the polynomial order. A common choice of the basis

functions are so-called chaos polynomials [9], which for

smooth data guarantee spectral convergence toward the

exact solution when using the moments as coefficients of a

polynomial approximation, see [10]. The moments are

defined to be

ûiðt; xÞ :¼
Z
H
uðt; x; nÞuiðnÞfNðnÞ dn for i ¼ 0; . . .;N:

ð5Þ

Methods to calculate these moments can be divided into

two classes, namely intrusive and non-intrusive methods. A

standard non-intrusive method is the so-called Stochastic

Collocation (SC) method, see [11–14]. It makes use of a

quadrature rule to calculate the moments, meaning that

ûiðt; xÞ �
XNq

k¼1

uðt; x; nkÞuiðnkÞfNðnkÞwk; ð6Þ

where the solution u needs to be calculated at Nq

quadrature points nk with the corresponding quadrature

weights wk. Since the solution evaluated at a fixed

quadrature point nk is deterministic, the time evolution of

the moments can be described by standard deterministic

solvers applied to equation (4) for fixed n. Hence, the

deterministic function uðt; x; nkÞ in (6) is given by the

solution of

otuðt; x; nkÞ þ oxf ðuðt; x; nkÞÞ ¼ 0;

with uðt ¼ 0; x; nkÞ ¼ uICðx; nkÞ:

Given a numerical scheme to solve the deterministic

problem (1), the implementation of Stochastic Collocation

can be treated as a black-box approach. Furthermore, the

resulting computer program is embarrassingly parallel,

allowing an efficient computation of the SC solution. The

error of this solution is given by the classical quadrature

error. As a consequence, the gPC approximation can suffer

from aliasing effects, see [15, Chapter 2]. Furthermore, the

black-box approach which facilitates the implementation

comes at the cost of lacking control over the solution at

intermediate time steps.

Intrusive methods aim at solving the moment system,

which describes the exact time evolution of the moments.

This system can be derived by multiplying (4) with the

basis functions ui for i ¼ 0; . . .;N as well as the probability

density fN and integrating over n. Using the vector notation

û ¼ ðû0; . . .; ûNÞT and u ¼ ðu0; . . .;uNÞ
T
, the resulting

moment system becomes

otûðt; xÞ þ ox

Z
H
f ðuðt; x; nÞÞuðnÞfNðnÞ dn ¼ 0; ð7aÞ

ûðt ¼ 0; xÞ ¼
Z
H
uICðx; nÞuðnÞfNðnÞ dn: ð7bÞ

This system describes the exact time evolution of the first

N þ 1 moments. However, to actually solve the moment

system (7), one needs to find a closure, as the flux term

depends on the unknown solution u, whereas the only

known variables are the first N þ 1 moments. Hence, one

needs to find a function

Uðû0; . . .; ûNÞ � u ð8Þ

to be able to describe the time evolution of the first N þ 1

moments via the moment system (7). Plugging the closure

(8) into the moment system (7) yields the closed moment

system

otûðt; xÞ þ ox

Z
H
f ðUðûÞÞuðnÞfNðnÞ dn ¼ 0; ð9Þ

which can now be solved as the N þ 1 equations describe

the time evolution of N þ 1 moments. The closure U
should be constructed such that the so-called moment

constraint
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û¼!
Z
H
UðûÞuðnÞfNðnÞ dn

is fulfilled while guaranteeing a hyperbolic moment

system. A well-known closure which satisfies these

two desirable properties for scalar equations is the

Stochastic Galerkin (SG) method [16]

UðûÞ ¼
XN
i¼0

ûiui: ð10Þ

If all integrals appearing in the moment system (9) can be

computet exactly, the method does not suffer from

interpolation errors. Consequently, we replace the

aliasing error of SC methods with a closure error.

Smooth problems can nicely be approximated using the

SG method, see, for example, [17]. Spectral convergence

has been proven in [18] for kinetic equations and in [8] for

Burgers’ equation assuming sufficiently smooth solutions.

However, solutions of hyperbolic equations tend to develop

discontinuities in the physical as well as the random space.

Therefore, the Stochastic Galerkin method generally

converges slowly since the closure (10) suffers from

Gibbs phenomena. The oscillatory over- and undershoots

furthermore violate important properties of the entropy

solution as given in (3), hence violating fundamental

analytic findings for hyperbolic equations. Furthermore, the

implementation of the SG method requires writing an

entirely new code since the deterministic solver cannot be

reused. All these shortcomings of Stochastic Galerkin

indicate that the Stochastic Galerkin method is not suited

for closing the moment system of hyperbolic problems. A

non-oscillatory closure which fulfills the maximum

principle is the Intrusive Polynomial Moment (IPM)

closure [19]. For applications and further properties of

the IPM method, see [8, 19–24]. The IPM closure is

constructed such that

UðûÞ ¼ arg min
u

Z
H
sðuÞfN dn s.t. û ¼

Z
H
uufN dn;

where s(u) is a convex entropy for the deterministic

problem (1). To calculate the closure, one makes use of the

adjoint approach, which lets us rewrite the closure problem

as

UðûÞ ¼ ðs0Þ�1
k̂Tu
� �

; ð11aÞ

k̂ ¼ arg min
k2RNþ1

Z
H
s�ðkTuÞfN dn� kT û

� �
: ð11bÞ

Here, the Legendre transformation of the entropy s�ðkTuÞ
is used. For more details on the adjoint approach, see [25,

Chapter 5]. The need to solve an optimization problem

with N þ 1 parameters to calculate the IPM closure (11)

makes the IPM method numerically expensive, especially

if a large number of moments are needed. However, nice

approximation properties, the hyperbolicity of the IPM

moment system and the maximum principle make IPM an

attractive method for hyperbolic problems.

In this paper, we connect intrusive and non-intrusive

methods to come up with a strategy to combine benefits of

both approaches, i.e., saving computational costs while

achieving a good solution approximation. We review the

connection of collocation and intrusive methods: When

discretizing the moment system (7) with an inaccurate

quadrature rule, the computed solution will match the

collocation result. To avoid the resulting aliasing errors in

regions with high uncertainty, the quadrature is locally

refined, meaning that we switch to intrusive methods.

Consequently, a closure needs to be used. The arising

computationally expensive calculation of a non-oscillatory

closure on the refined quadrature set is performed by

introducing a set of basis vectors spanning the solution at

the quadrature points. By choosing basis functions lying in

the null space of the moment constraint, the numerical

reconstruction costs can be reduced. Computing the closure

on the quadrature points allows choosing reconstructions

with minimal total variation. The resulting method is

intrusive; however, when switching to the collocation

solution, we circumvent the expensive reconstruction step

of the standard intrusive method.

The paper is structured as follows: After the introduction

in Sect. 1, we investigate the numerical approximation of

integrals showing up in the moment system in Sect. 2. This

investigation shows a connection between intrusive and

non-intrusive methods. In Sect. 3, we introduce the

quadrature-based closure (QBC) approach. The imple-

mentation of the closure as well as the quadrature refine-

ment is discussed in Sect. 4. Section 5 shows the

connection between the QBC and the IPM method. In

Sect. 6, we present numerical results, and Sect. 7 summa-

rizes our findings and gives an outlook on future work.

2 Transition from stochastic collocation
to Stochastic Galerkin

We first investigate the moment system (7) discretized in

the random variable n. This gives a connection between

collocation and intrusive methods, which we use to discuss

potential error sources of collocation methods. Further-

more, we use this link to later adaptively switch between a

collocation and an intrusive method. Note that this con-

nection is well known in various areas such as Discontin-

uous Galerkin (DG) (see, for example, [26]) and is

reviewed in this section for the sake of completeness.
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Let us start by looking at the moment system (7), when

making use of the definition of the moments (5), which

gives

ot

Z
H
uðt; x; nÞuiðnÞfNðnÞ dnþ ox

Z
H
f ðuðt; x; nÞÞuiðnÞfNðnÞ dn ¼ 0

for i ¼ 0; . . .;N. This system describes the exact time

evolution of the first N þ 1 moments. In order to calculate

the time evolution numerically, one needs to discretize the

moment system. For now, x and t remain continuous and

we only discretize the integral evaluations with the help of

a quadrature rule

Z
H
gðnÞfNðnÞ dn �

XNq

k¼1

wkgðnkÞfNðnkÞ;

where nk is the kth quadrature point with the corresponding

quadrature weight wk. Approximating the terms of the

moment system with this quadrature yields

ot
XNq

k¼1

wkuðt; x; nkÞuiðnkÞfNðnkÞ

þ ox
XNq

k¼1

wkf ðuðt; x; nkÞÞuiðnkÞfNðnkÞ ¼ 0:

ð12Þ

Now we must choose a suitable number of quadrature

points Nq to capture the correct time evolution of the

moments. First, we see what happens if Nq equals the

number of moments, meaning that Nq ¼ N þ 1. This

appears to be a striking choice, since it means that espe-

cially the time evolution equations for the higher moments

are approximated poorly. Nevertheless, we discuss this

case because it yields the Stochastic Collocation solution:

Proposition 1 Assume a quadrature rule with N þ 1

quadrature points being exact for polynomials p 2 P2N

under the integral density fN exists, i.e.,

Z
H
pðnÞfNðnÞ dn ¼

XNþ1

k¼1

wkpðnkÞfNðnkÞ: ð13Þ

When making use of this quadrature rule to discretize the

exact moment system (7), the resulting time evolution of

the moments is equivalent to the evolution of the Stochastic

Collocation method (6).

Proof Using the quadrature rule (13) to discretize the exact

moment system (7) yields the discrete moment system

ot
XNþ1

k¼1

wkuðt; x; nkÞuiðnkÞfNðnkÞ

þ ox
XNþ1

k¼1

wkf ðuðt; x; nkÞÞuiðnkÞfNðnkÞ ¼ 0:

ð14Þ

Making use of the matrix A 2 RNþ1�Nþ1 with

aik :¼ wkuiðnkÞfNðnkÞ, the discrete moment system can be

rewritten as

XNþ1

k¼1

aik otuðt; x; nkÞ þ oxf ðuðt; x; nkÞÞð Þ ¼ 0: ð15Þ

The inverse of A exists and is given by

A�1 ¼ uiðnjÞ
� �

i;j¼0;...;N
, since

AA�1
� �

ij
¼
XNþ1

k¼1

uiðnkÞujðnkÞfNðnkÞwk ¼
ð13Þ
Z
H
uiðnÞujðnÞfNðnÞ dn ¼ dij:

Multiplication of the discrete moment system (15) with

A�1 decouples this system leading to

otuðt; x; nkÞ þ oxf ðuðt; x; nkÞÞ ¼ 0 for k ¼ 1; . . .;N þ 1;

ð16Þ

which is the Stochastic Collocation (SC) method. h

Remark 1 The extension to multidimensional problems is

straightforward when using tensorized grids. However, this

strategy cannot be applied for sparse grids.

This result shows that the Stochastic Collocation solu-

tion can be seen as the solution of the moment system when

making use of an inaccurate quadrature rule. Consequently,

especially the time evolution of high-order moments is

described poorly due to integration errors when evaluating

the physical flux.

Our goal is to improve the time evolution of the moment

system in regions with high uncertainty. To gain further

accuracy, one needs to add more quadrature points to the

discrete moment system (12). Again defining a matrix A 2
RNþ1�Nq with aik :¼ wkuiðnkÞfNðnkÞ, the discrete moment

system (12) can be rewritten as

XNq

k¼1

aik otuðt; x; nkÞ þ oxf ðuðt; x; nkÞÞð Þ ¼ 0: ð17Þ

In this case, the N þ 1 equations of the moment system no

longer fully determine the time evolution of the solution u,

due to the fact that one needs to know this solution at

Nq [N þ 1 quadrature points. Hence, to obtain a better

integral approximation of the flux, we need to feed addi-

tional information to the moment equations (i.e., define a

closure). In order to actually achieve an improved result

compared to collocation, this information should not vio-

late the moment constraint and at the same time fulfill

properties of the entropy solution (3). Before specifying the

choice of the remaining degrees of freedom, we derive a

method for choosing the degrees of freedom in uðt; x; nkÞ
for k ¼ 1; . . .;Nq without violating the moment constraint.
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Remark 2 The inexact integration of the flux function

when using collocation methods also arises in DG methods

when applying nodal instead of modal schemes: Nodal DG

schemes can be seen as collocation methods. They suffer

from quadrature errors of the physical fluxes, which can

lead to poor results as well as stability issues. A strategy to

avoid these problems has been presented in [26], where the

flux evaluation uses the solution values belonging to a

lower-order polynomial (i.e., high-order coefficients are set

to zero), guaranteeing an exact integration. The approach

taken in this paper is different since we intend to keep all

moments fixed but add quadrature points to obtain an

improved accuracy of integral approximations.

3 Quadrature-based closure approach

The moment constraint computed with the chosen

quadrature rule (13) can be rewritten as

ûðt; xÞ ¼
XNq

k¼1

wkuðnkÞfNðnkÞuðt; x; nkÞ ¼ Auðt; xÞ; ð18Þ

where u :¼ ðuðt; x; n1Þ; . . .; uðt; x; nNq
ÞÞT is the solution

evaluated at the quadrature points. Now the vector u needs

to be chosen such that the moment constraint (18) is

fulfilled.

The main idea of the quadrature-based closure is to find

a suitable basis to span the solution evaluated at the

quadrature points. This facilitates the task of adding

admissible information to the moment system. For this, we

calculate the kernel of A, which is given by

kernðAÞ ¼ spanðv1; . . .; vNq�N�1Þ:

Choosing the vectors vi to represent the solution, one needs

N þ 1 additional linearly independent vectors b0; . . .; bN to

span the entire solution space RNq .1 The solution is now

given by

uðt; xÞ ¼
XNq�N�1

i¼1

aiðt; xÞvi þ
XN
i¼0

biðt; xÞbi; ð19Þ

and hence we shifted the problem of choosing u to

choosing the coefficient vectors a and b. Luckily, the

coefficient vector b is directly given by the moment

constraint: Plugging the solution reconstruction (19) into

the moment constraint (18) leads to

Auðt; xÞ ¼
XN
i¼0

Abibiðt; xÞ ¼ Cbðt; xÞ¼! ûðt; xÞ ð20Þ

with cij ¼
P

l ailblj, where blj :¼ bj
� �

l
. Hence, the

coefficients b are directly given by the moment vector û.

The coefficients a do not influence the moments of the

solution and can therefore be picked freely. These

coefficients resemble the additional information we need

to give to the moment system in order to apply an improved

quadrature rule. Plugging u into the discretized moment

system (12) gives

otûi þ ox
XNq

k¼1

aikf ðukðt; xÞÞ ¼ 0;

uðt; xÞ ¼
XNq�N�1

i¼1

aiðt; xÞvi þ
XN
i¼0

C�1û
� �

i
bi:

It can be seen that we do not have an equation describing

the time evolution of ai. Clearly, the choice of a is

important since it influences the time evolution of û. This is

due to the fact that the vectors vi span the kernel of the

moment constraint, but do not lie in the null space of the

flux term. The degrees of freedom we obtain by adding

more quadrature points to the moment system to improve

the Collocation solution can now easily be picked by

choosing values for a. Our first choice yields the Stochastic

Galerkin solution.

Proposition 2 Representing the solution by (19) while

choosing the degrees of freedom a such that the solution

minimizes

1

2

XNq

k¼1

wku
2
k fNðnkÞ; ð21Þ

yields the Stochastic Galerkin method.

Proof We need to pick a such that we minimize the dis-

crete L2 norm (21), hence

oaj
1

2

X
k

ukð Þ2wk¼
!
0;

meaning that

XNq

k¼1

XNq�N�1

i¼1

aiðt; xÞvki þ
XN
i¼0

biðt; xÞbki

 !
wkvjk¼! 0:

Hence, one needs to choose a such that

XNq�N�1

i¼1

aiðt; xÞvki þ
XN
i¼0

biðt; xÞbki 2 kernðVÞ ¼ spanðbÞ;

therefore ai ¼ 0. It remains to show that1 Since A is a priori known, all basis vectors can be computed before

running the program.
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uk ¼ Bbð Þk¼ BC�1û
� �

k
¼! uðnkÞT û ¼ uSGðnkÞ;

meaning that we must show ðBC�1Þki¼
!
uiðnkÞ. For this, we

note that B can be written as

bki ¼
XNþ1

n¼0

unðnkÞlni;

where ðlniÞn;i ¼: L 2 RNþ1�Nþ1 is a transformation matrix.

Hence,

cji ¼
XNq

k¼1

ajkbki ¼
XNþ1

n¼0

XNq

k¼1

wkujðnkÞfNðnkÞlinunðnkÞ

¼
XNþ1

n¼0

lnidnj ¼ lji:

Defining T 2 RNþ1�Nq with tkn ¼ unðnkÞ yields
BC�1 ¼ TLL�1 ¼ T:

Hence ðBC�1Þki ¼ tki ¼ uiðnkÞ, which concludes the proof.

h

Remark 3 Note that for linear problems (e.g., f ðuÞ ¼ nu),
N þ 1 quadrature points suffice to discretize the SG

moment system in n. Therefore, a has dimension zero,

meaning that the SG and collocation yield the same

result.

The choice of picking the degrees of freedom such that

one minimizes the weighted L2 norm of the solution is

convenient in the context of spectral convergence for

smooth solutions. However, it does not fit to the theory of

hyperbolic equations, which is based on L1 properties.

Particularly, in non-smooth regimes, the minimization of

the L2 norm leads to oscillatory approximations violating

the maximum principle, see Sect. 6.2. Therefore, we

choose the resulting degrees of freedom in accordance with

the L1 stability property (3a). When including the random

variable n, this stability result becomesZ
D

Z
H
uðt; x; nÞ � vðt; x; nÞj jfNðnÞ dn dx

�
Z
D

Z
H
uICðx; nÞ � vICðx; nÞj jfNðnÞ dn dx;

ð22Þ

where u and v are entropy solutions of (4) with two

different initial conditions uIC; vIC. One chooses

vICðx; nÞ ¼ uICðx; nþ hÞ, multiplies (22) with 1 / h, and

lets h go to zero to getZ
D

Z
H
onuðt; x; nÞj jfNðnÞ dn dx�

Z
D

Z
H
onuICðx; nÞj jfNðnÞ dn dx;

which shows that oscillations w.r.t. n are bounded by

oscillations of the initial condition. Therefore, a is now

picked such that the reconstruction has minimal

oscillations: The total variation in n is denoted by

TVðuÞ :¼
Z
H
onuðt; x; nÞj jfNðnÞ dn:

Since we are only interested in the solution on a finite set of

quadrature points, the discrete total variation

TVDðuÞ ¼
XNq

k¼1

wkfNðnkÞ ukþ1 � ukj j

is used. The coefficient vector a is now picked such that

TVDðuÞ is minimized. The full QBC moment system is

then given by

otûi þ ox
XNq

k¼1

aikf ðukðt; xÞÞ ¼ 0; ð23aÞ

uðt; xÞ ¼
XNq�N�1

i¼1

âiðt; xÞvi þ
XN
i¼0

C�1û
� �

i
bi; ð23bÞ

â ¼ arg min
a

TVDðuÞ: ð23cÞ

To demonstrate the non-oscillatory behavior of the

chosen QBC reconstruction (23b) and (23c), we

approximate a shock which is shown in Fig. 1: After

computing the moments of this shock, the solution is

reconstructed on the quadrature points when using the

discrete L2 norm as well as the total variation. The

reconstructions match the first ten moments at 15

quadrature points, i.e., a 2 R5 needs to be determined. A

non-oscillatory discrete solution which nicely represents

the shock on the quadrature points is obtained when

choosing a such that the solution minimizes the discrete

total variation. When minimizing the L2 norm, the solution

at the quadrature points oscillates, destroying the maximum

principle and leading to a poor approximation. Comparing

the solution to the continuous Stochastic Galerkin

reconstruction uSG ¼ ûTu shows that the QBC

Fig. 1 Reconstructions of QBC
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reconstruction ansatz when minimizing the L2 norm

resembles the Stochastic Galerkin solution evaluated at

the quadrature points as shown in Proposition 2.

As discussed in Sect. 2, non-intrusive methods yield a

poor approximation of the exact moment system. There-

fore, our goal is to add quadrature points in regions with

high uncertainty. The QBC allows adding these quadrature

points without violating the moment constraint or intro-

ducing oscillations. In the following section, we discuss the

implementation of the refinement process. Furthermore, we

point out how the QBC moment system (23) can be

implemented efficiently.

4 Implementation and refinement

4.1 Implementation

The implementation of the QBC moment system (23) does

not require writing an entirely new program. In fact, most

of the code of a given finite-volume (FV) implementation

for solving the deterministic problem (1) can be reused.

The key idea of FV solvers is to divide the spatial

domain into cells. The numerical solution is now a col-

lection of intermediate cell values at discrete time steps tn

unj ’
1

Dx

Z xjþ1=2

xj�1=2

uðtn; xÞ dx:

Since only the discrete solution for n ¼ 0 is known, a time

update formula H, updating the solution by a time step of

Dt; needs to be derived. The FV implementation now calls

H repeatedly until the end time tend ¼ NtDt is reached. A

common choice for the update formula is

unþ1
j ¼ Hðunj�1; u

n
j ; u

n
jþ1Þ

where

Hðunj�1; u
n
j ; u

n
jþ1Þ :¼ unj �

Dt
Dx

gðunj ; unjþ1Þ � gðunj�1; u
n
j Þ

� �
:

ð24Þ

The function g is the numerical flux, which needs to be

consistent with the physical flux, i.e., gðu; uÞ ¼ f ðuÞ. For
better readability, we assume that the numerical fluxes only

depend on two states. The extension to higher order stencils

is straightforward.

Our goal is to calculate the solution of the QBC moment

system (23). To solve this system, we again use a finite-

volume approach, meaning that we represent the moments

by

ûnj :¼ Aunj ; ð25Þ

where unj ¼ ðunj;1; . . .; unj;Nq
ÞT with

unj;k ’
1

Dx

Z xjþ1=2

xj�1=2

uðtn; x; nkÞ dx:

One strategy to evolve the moment vector ûnj in time

according to (23) is to reconstruct the solution at every

quadrature point, meaning that we compute u. On the

discrete level, the reconstructed solution is given by

unj ¼
XNq�N�1

i¼1

ânj;ivi þ
XN
i¼0

C�1ûnj

� �
i
bi ð26Þ

where ânj is given by

ânj ¼ arg min
a

TVDðunj Þ:

After that, the reconstructed solution in every cell at each

quadrature point is evolved in time using the time update

function of the FV implementation

unþ1
j;k ¼ Hðunj�1;k; u

n
j;k; u

n
jþ1;kÞ: ð27Þ

The time-updated moments can then be calculated by (25).

This process is repeated until tend is reached. The extension

of a given finite-volume implementation to the QBC

scheme can be achieved according to Fig. 2. We use unD to

denote the field containing the solution at all spatial cells

and quadrature points for time step tn.

precompute A,C,vi and bi

n ← 0

Compute Moments by (25)
and reconstruct solution by (26)

Finite Volume Update according to (24)n ← n+ 1

n < Nt done

un
Δ

un+1
Δ

yes
no

Fig. 2 Integration of the QBC scheme into the finite-volume cycle
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4.2 Refinement

One can now think about which quadrature should be

chosen. For this, we would like to take advantage of the

fact that intrusive methods know the behavior of the

solution in every time step. In contrast to the non-intrusive

black-box approach, adapting the quadrature is possible: If

a cell I� with ‘high uncertainty’ is detected at spatial

position xi and time step tm, we are now able to refine the

quadrature locally by performing the reconstruction step

(26) in I� with a more accurate quadrature, which we

denote by

Z
H
uðnÞ dn �

X�Nq

l¼1

�wluð�nlÞ;

where �Nq [Nq. For ease of notation, the solution at the

new quadrature points is denoted by

�unl;j ’
1

Dx

Z xjþ1=2

xj�1=2

uðtn; xj; �nlÞ dx:

Defining the matrix A 2 RNþ1� �Nq with

�ail ¼ �wluið�nlÞfNð�nlÞ, we compute v; b and C analogous to

before making use of A instead of A. The reconstruction on

the finer quadrature set given a moment vector ûnj becomes

unj ¼
X�Nq�N�1

i¼1

�anj;ivi þ
XN
i¼0

C�1ûnj

� �
i
bi ð28Þ

with

a ¼ arg min
a

TVDðuÞ:

Assume that we wish to perform a time update after each

cell has been reconstructed by either the standard or the

refined quadrature rule. We now update the solution in the

refined cell I� in time by

�umþ1
i;l ¼ Hð�umi�1;l; �u

m
i;l; �u

m
iþ1;lÞ ð29Þ

for l ¼ 1; . . .; �Nq. Here, one notices that solution values of

the neighboring cells of I� also need to be known on the

refined quadrature points. Therefore, cells which have

neighbors with a fine as well as a standard reconstruction

need to be reconstructed on both the fine and the standard

quadrature set. Using Clenshaw–Curtis quadrature sets

allows reconstructing these interface cells only for the fine

quadrature rule since the quadrature points of different

refinement levels are nested. In the following, we present

the QBC algorithm with refinement for non-nested

quadrature rules.

Assume that a spatial grid as depicted in Fig. 3 is given

and on each cell we know the moment vector. The cell

types are then identified by choosing a function which

indicates high uncertainty. Here, we use the highest order

moments to identify non-smooth regimes in the uncertain

domain similar to [27]. Note that this strategy has also been

applied for DG methods [28]. To avoid unwanted artifacts

from even or odd functions, we take the last two moments

and divide by the solution’s squared L2 norm as smooth-

ness indicator. If the indicator in a given cell lies above a

specified value g, i.e.,

jûnN j þ jûnN�1j
uTu

[ g ð30Þ

we indicate it as a fine cell. Cells which are not fine, but

have a neighboring fine cell are transition cells. The cells

which have a transition neighbor and are not fine are called

interface cells. All remaining cells are coarse. In our

example in Fig. 3, the two red cells have a variance lying

above a specified value and are therefore fine (f). The

neighboring cells are identified as transition (t), since they

have fine neighbors, interface (i), since they are not fine

and have a transition neighbor and coarse (c). In a next

step, the reconstructions need to be computed: We do this

on the fine quadrature grid if the cells are fine and on the

coarse grid if they are coarse. For interface and transition

cells, we compute both a coarse and a fine reconstruction.

The next task is to evolve the reconstructions in time. One

needs to perform a coarse time update for coarse and in-

terface cells and a fine time update for the remaining cells,

which are exemplarily illustrated once for each cell type in

Fig. 3. The coarse time update stencil of (27) is depicted by

downward pointing, and the fine stencil of (29) is depicted

by upward pointing arrows. By looking at the dependencies

of the stencils, one sees why it is necessary to reconstruct

both the fine and the coarse solution for interface and

transition cells. We then compute the time-updated

moments using Aunþ1
j on coarse and interface cells and

c c i t f f t i c c ctn

tn+1
fine

tn+1
coarse

Fig. 3 QBC with refinement
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Aunþ1
j on transition and fine cells. The entire process is

then repeated until the end time is reached.

We use the proposed refinement strategy to locally

switch between collocation and standard QBC, i.e., the

coarse quadrature set has N þ 1 quadrature points. If a cell

has high uncertainty, we add quadrature points by our

refinement strategy, to improve the time evolution

approximation of the moment system. We refer to this

method as adaptive QBC. Note that switching to colloca-

tion updates does not mean the proposed method is non-

intrusive. However, we can circumvent the expensive

computation of a closure (i.e., picking a 2 RNq�N�1 by

solving (23c)), since Nq � N � 1 ¼ 0.

5 Interpretation as IPM closure

The derived closure can be interpreted as an Intrusive

Polynomial Moment (IPM) method. This method repre-

sents the solution by the ansatz UME which minimizes the

convex entropy
R
H sðuÞfNðnÞ dn under the moment con-

straints û ¼
R
H uufNðnÞ dn, i.e.,

UMEðûÞ ¼ arg min
u

Z
H
sðuÞfNðnÞ dn

subject to û ¼
Z
H
uufNðnÞ dn:

ð31Þ

A standard computation using duality converts this

problem into an unconstrained finite-dimensional

problem. Indeed, using the Lagrangian L, we have

max
k

min
u

Lðu; kÞ ¼

max
k

min
u

Z
H
sðuÞfNðnÞ dnþ kT û�

Z
H
uufNðnÞ dn

� �� �

¼ min
k

Z
H
s�ðkTuÞfNðnÞ dn� kT û

� �
:

ð32Þ

The Legendre transform s� of the entropy fulfillsZ
H
s�ðkTuÞfNðnÞ dn :¼

Z
H
�sðuMEðkTuÞÞ

þ uMEðkTuÞkTufNðnÞ dn

with uMEðkTuÞ ¼ s0ð Þ�1ðkTuÞ. Calculating the closure by

solving an infinite-dimensional constrained optimization

problem has now been reduced to finding the dual variables

k by solving the dual problem (32). This problem is finite-

dimensional as well as unconstrained. Thus, we have

UðûÞ ¼ uME k̂Tu
� �

with k̂ ¼ arg min
k

Z
H
s�ðkTuÞfNðnÞ dn� kT û

� �

Inserting the IPM closure into (7) leads to the closed

moment system

otûþ ox

Z
H
f ðUMEðûÞÞufNðnÞ dn ¼ 0;

ûð0; xÞ ¼
Z
H
uICðx; �ÞufNðnÞ dn:

This is the system of equations of the IPM method. The

solution to the IPM system has nice properties. First, it

dissipates the entropy

SðtÞ :¼
Z
D

Z
H
sðUMEðûðt; xÞÞÞfNðnÞ dn dx:

Second, the IPM system is hyperbolic provided that the

entropy density s is strictly convex. Additionally, the IPM

method fulfills a maximum principle in the case of scalar

problems. However, these two advantages come at the cost

of solving an optimization problem with N þ 1 unknowns

at each time step in every spatial cell. In the following, we

interpret the quadrature-based closure approach as an

efficient strategy to solve the IPM closure if the number of

quadrature points is only slightly larger than the number of

moments: First, let us revisit the constraint optimization

problem (31). The strategy of the dual ansatz is to

parametrize all possible solutions which are potential

minimizers of the given entropy. To determine the

parameters such that the solution fulfills the moment

constraint, the dual problem is solved. We take the

approach of first ensuring that the moment constraint is

fulfilled and after that, we minimize the entropy: In the

case of orthogonal basis functions, one way to construct an

ansatz which fulfills the moment constraint is

UðûÞ ¼
XN
i¼0

ûiui þ
XM

l¼Nþ1

alul: ð34Þ

Note that we need to truncate the series by choosing a finite

M[N. Consequently, a truncation error is introduced,

meaning that we cannot recover the IPM solution.

However, we can avoid introducing a truncation error by

first discretizing the integrals of the primal problem. In this

case, the solution only needs to be reconstructed on a finite

set of quadrature points. Again using uk :¼ uðt; x; nkÞ, one
obtains
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UðûÞ ¼ arg min
u2RNq

XNq

k¼1

wksðukÞfNðnkÞ subject to û

¼
XNq

k¼1

wkukuðnkÞfNðnkÞ:

Now the task of finding a parameterization which fulfills

the constraint is easy: We again span the solution vector u

as in (19), i.e.,

uðt; xÞ ¼
XNq�N�1

i¼1

aiðt; xÞvi þ
XN
i¼0

biðt; xÞbi:

The coefficient vector b is uniquely defined by the moment

constraint, see (20). Hence, we have a parametrization of

all solutions fulfilling the moment constraint, where the

number of parameters ai is finite, namely Nq � N � 1. We

then choose these parameters such that the discrete entropy

XNq

k¼1

wksðukÞfNðnkÞ

is minimized. In our case, we choose this entropy to be the

total variation. The main difference to the IPM method is

that we construct the closure on the discretized level,

enabling us to find a finite-dimensional parameterization of

all admissible reconstructions from which we pick the one

with the smallest entropy. Consequently, the problem of

finding N þ 1 dual variables k̂ has been shifted to finding

Nq � N � 1 reconstruction parameters a. Hence, the com-

putational costs decrease if Nq � N � 1\N þ 1, i.e., in the

transition between collocation and intrusive methods.

6 Results

In the following, we present results of the QBC method and

compare them to results obtained with the SG method. To

compare these different strategies, we follow [19] and

solve the uncertain Burgers’ equation

otuðt; x; nÞ þ ox
uðt; x; nÞ2

2
¼ 0; ð35aÞ

uðt ¼ 0; x; nÞ ¼ uICðx; nÞ ð35bÞ

on x 2 ½0; 3	 with the uncertain initial condition

uICðx; nÞ :¼
uL; if x\x0 þ rn

uL þ
uR � uL

x0 � x1
ðx0 þ rn� xÞ; if x 2 ½x0 þ rn; x1 þ rn	

uR; else

8>><
>>:

:

ð36Þ

The initial condition is a forming shock with uncertain

position. We choose n to be uniformly distributed in

H ¼ ½�1; 1	. To ensure good integral approximations on

H, we use a Gauss–Legendre quadrature rule. Parameters

of the initial condition and the numerical scheme can be

found in the following table:

Nx ¼ 500 Number of spatial cells

tend ¼ 0:11 End time

x0 ¼ 0:5; x1 ¼ 1:5; uL ¼ 12; uR ¼ 1; r ¼ 0:3 Parameters of initial

condition (36)

N þ 1 ¼ 15 Number of moments

g ¼ 5� 10�4 Barrier (30) for

refinement

The basis vectors vi of the QBC are calculated by per-

forming a singular value decomposition of A; and the

vectors bi are chosen as

bið Þk¼ uiðnkÞ

for i ¼ 0; . . .;N.

6.1 Convergence of expected value

In the following, we study the effects of varying the

number of quadrature points Nq to study the L1 error of the

expected value by

e :¼
Z 3

0

jû0ðtend; xÞ � û0;exðtend; xÞj dx;

Fig. 4 L1 error of the expected value. The adaptive QBC switches

between Collocation (15 quadrature points) and Nq on the x-axis
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where û0;exðtend; xÞ is the expected value (which is equal to

the zeroth moment) of the exact solution at the final time

tend. As discussed in Sect. 2, choosing Nq [N þ 1 neces-

sitates feeding information to the collocation moment

system. The QBC picks these degrees of freedom to min-

imize the total variation, whereas the SG method mini-

mizes the L2 norm. When applying the adaptive QBC, we

can switch between different quadrature rules to locally

refine the set of integration points. In the following, the

number of quadrature points on the coarse level Nc
q equals

the number of moments, i.e., Nc
q ¼ N þ 1 ¼ 15. Hence, we

perform collocation updates on the coarse level. We switch

to intrusive methods whenever the smoothness indicator

lies above a value of 5� 10�4. The number of quadrature

points on the fine level Nq is then varied to study the error

of the expected value.

The resulting errors for different Nq are shown in Fig. 4.

If Nq ¼ 15, all three methods resemble Stochastic Collo-

cation, which is why they all have the same error. The

methods differ in the choice of degrees of freedom when

adding quadrature points. Taking a look at the SG method,

improving the numerical integration has little effect.

Moreover, the resulting error will start to grow after having

added one quadrature point, leaving the SG method with a

poorer approximation as the collocation result. In contrast

to this, the QBC steadily decreases the error when adding

quadrature points. Hence, the choice of degrees of freedom

helps in improving the approximation of the integrals

appearing in the moment system. The adaptive QBC shows

a similar error decrease. Locally switching to collocation

whenever the solution shows low uncertainty decreases the

computational costs while leading to a slightly increased

error.

6.2 Comparison expectation value and variance

In the following, we fix the number of quadrature points at

25. The adaptive QBC switches between collocation as

well as QBC with 25 quadrature points. We start by

looking at the expectation value and the variance in Fig. 5.

The SG method shows a step-like approximation of the

expectation value, whereas QBC and adaptive QBC show

Fig. 5 Expected value and variance for ten moments with 25 quadrature points. The adaptive QBC switches between collocation (15 quadrature

points) and 25 quadrature points. The exact expectation value is plotted in red, and the exact variance is plotted in blue
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only small variations from the exact solution. Furthermore,

one observes that the expected values computed with QBC

and its adaptive version differ only slightly. Consequently,

the poor approximation of integrals in the moment system

in cells with low smoothness indicator does not destroy the

accuracy achieved with the standard QBC. A similar result

can be found when investigating the variance: While the

variance of SG oscillates heavily, both QBC and adaptive

QBC show mitigated oscillations.

Lastly, we take a look at the reconstruction of the

solution at a fixed spatial position x� ¼ 2:1 for the final

time tend. The exact solution is a reversed shock from uR to

uL. Note that since we use a quadrature rule with Nq ¼ 25,

we only need to know the solution at the corresponding 25

quadrature points. A continuous reconstruction of the SG

method can be computed by interpolating the given solu-

tion points with Legendre polynomials. In the QBC case, a

continuous reconstruction can be calculated with the

adjoint approach of IPM (11). Since our interest lies in

computing the solution’s moments, we skip this step.

Figure 6 shows that the SG method has great difficulties

when representing the reversed shock, because this leads to

oscillations. The solution violates the maximum principle

and shows high total variation in n. Both the QBC and

adaptive QBC yield a reconstruction which does not violate

the bounds of the initial condition, namely uR and uL. The

solution nicely captures the exact shock structure. Also

note that the adaptive QBC makes use of 25 instead of 15

quadrature points at the shock position, meaning that the

spatial cell at x� is identified as a fine cell. Consequently,

the shock position is nicely localized.

7 Conclusion and outlook

In this paper, we have presented a method to locally add

quadrature points to the collocation solution in regions with

high uncertainty, allowing a transition from non-intrusive

to intrusive methods. Refining the quadrature set requires

choosing resulting degrees of freedom, which are described

by the kernel of the moment constraint. Using this kernel as

basis functions for our solution led to an efficient way of

choosing the added degrees of freedom. It turned out that

the choice of these parameters is crucial. By choosing the

parameters such that the L2 norm of the solution is mini-

mized, we added characteristics which contradict analytic

findings of hyperbolic equations. The resulting Stochastic

Galerkin solution showed bad approximation results such

as oscillations and violations of the maximum principle.

Nice approximation results which fulfill the maximum

principle were achieved by the quadrature-based closure

(QBC) method, which uses the degrees of freedom to

minimize the total variation. Adaptive refinement of the

quadrature set allows switching between non-intrusive and

the derived intrusive QBC method. The adaptive QBC

yields an efficient computation of moments and recon-

structions, which closely agree with the standard QBC

results.

In future work, we plan to use the presented refinement

strategy solely on collocation methods. Refining the

quadrature set by a reconstruction allows adding colloca-

tion points without having to recalculate the entire solution.

Furthermore, we wish to investigate different functions

indicating high uncertainty such as shock indicators to

refine the solution. Additionally, more than one refinement

levels should be added. To avoid having to introduce new

transition and interface cells especially for high-order

spatial discretizations, one should use a DG implementa-

tion or nested quadrature grids. In addition to that, the

refinement strategy should be tested on sparse quadrature

grids for high-dimensional problems.
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