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Abstract Real data modeling often requires the use of

non-Gaussian models. A natural extension of the Gaussian

distribution is the a-stable one. The dependence structure

description of the a-stable-based models poses a substantial

challenge due to the infinite variance. The classical second

moment-based measures cannot be applied in this case. To

overcome this issue one can use the alternative dependence

measures. The measures of dependence can be applied to

estimate the parameters of the model. In this paper, we

propose a new estimation method for the parameters of the

bidimensional autoregressive model of order 1. The pro-

cedure is based on fractional lower order covariance. The

use of this method is reasonable from the theoretical point

of view. The practical aspect of the method is justified by

showing the efficiency of the procedure on the simulated

data. Moreover, the new technique is compared with the

classical Yule–Walker method based on the covariance

function.

Keywords Estimation � a-stable distribution �
Modified Yule–Walker method � Multidimensional model

1 Introduction

The models based on the time series approach are con-

sidered to be the most natural for the modeling of discrete

empirical data. An important class of univariate stationary

time series which plays a pivotal role in the statistical

analysis of time series data is the family of autoregressive

models (AR), moving average models (MA) and general

autoregressive moving average models (ARMA) combin-

ing both AR and MA parts [1–5]. However, many empir-

ical data observed in practice should be rather considered

as components of multivariate models with both internal

dependence within each component and cross-dependence

between different components. One of the most popular

examples of the multivariate models is the vector autore-

gressive time series (VAR) generalizing the univariate

autoregressive process to the multidimensional case

[4, 6–11]. In the classical definition, the vector autore-

gressive model is assumed to be a second-order model

because of the finite second moment of the innovations.

Nevertheless, the common assumption of the Gaussian

distributed innovations is not always reflected in real data

analysis.

A lot of real phenomena exhibit non-Gaussianity which

can be visible in the impulsive character of the time series.

A useful class of distributions that can be applied to model

the data manifesting impulsive behavior is a class of the

heavy-tailed distributions for which the tails are not expo-

nentially bounded [12–18]. One of the classical examples of

a heavy-tailed distribution is the a-stable one which can be

considered as an extension of the Gaussian distribution. In

most of the cases (with the exception of the Gaussian case)

the second moment of an a-stable distributed random

variable is infinite. The models based on the a-stable dis-

tribution are present in many applications both for one-
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dimensional and multi-dimensional data [19–24]. Because

of the infinite variance, the analysis of the a-stable-based

models poses an important challenge to the researchers. The

application of such processes requires the use of non-clas-

sical methods for statistical investigation and estimation

[25–32]. In particular, the structure of dependence for the a-

stable-based models cannot be described by the covariance

or correlation functions which are based on the second

moment of the given process. However, in the literature,

one can find the alternative measures that can replace the

classical ones in the case of infinite variance. The most

popular are: codifference, covariation and fractional lower

order covariance, see [33–44].

In this paper, we propose a new estimation procedure for

the parameters of the bidimensional autoregressive model

of order 1 with a-stable distributed noise. The classical

Yule–Walker method used to estimate the parameters of

the vector autoregressive models are based on covariance

[4, 45–48]. As it was mentioned, the covariance function is

not defined for the infinite variance models and for that

reason we propose to replace it by one of the measures

adequate for a-stable-based models. In the literature this

type of approach, based on the covariation function, was

applied to the univariate time series, see [29, 49]. In this

paper, the novel estimation method is based on the frac-

tional lower order covariance (also called FLOC). The

measure, considered as an extension of the covariance

function to the a-stable case, has found many interesting

applications, see [50–52]. It is important to mention that

the estimators obtained on the basis of FLOC are given in

an explicit form. The use of the introduced method is

reasonable from the theoretical point of view. However, we

are also going to present the practical aspect of the method

by showing the efficiency of the procedure on the simu-

lated data and by comparing the new technique with the

classical Yule–Walker method. We are going to show that

the method works more effective, especially for small data

samples.

The rest of the paper is organized as follows. In Sect. 2

we recall the definition and main properties of the uni-

variate and bivariate a-stable distribution together with

dependence measures for the infinite variance processes. In

Sect. 3 we define the bidimensional a-stable autoregressive

model of order 1. A new estimation technique for the

parameters of the considered process is presented in

Sect. 4. The efficiency of the estimators is tested on sim-

ulated data using Monte Carlo simulations in Sect. 5. In

Sect. 6 the performance of the procedure is compared with

the classical Yule–Walker method. Section 7 contains the

conclusions.

2 Stable distribution

In this section, we present the stable distribution (also

called a-stable) which can be considered as the extension

of the classical Gaussian distribution. In the one-dimen-

sional case, there are three equivalent definitions of the

stable distributed random variables. Here, we present the

definition which is based on the characteristic function. A

random variable Z is said to have stable distribution if its

characteristic function is given by [53]

E½exp ihZ� ¼
exp �rajhja 1 � ibsignðhÞ tan pa=2ð Þf g þ ilhf g for a 6¼ 1;

exp �rjhjf1 þ ibsignðhÞ 2

p
logðjhjg þ ilh

� �
for a ¼ 1:

8>><
>>:

ð1Þ

The parameters of the distribution are a 2 ð0; 2�—stability

index, r[ 0—scale parameter, b 2 ½�1; 1�—skewness

parameter and l 2 R—shift parameter. For b ¼ l ¼ 0 the

random variable Z has symmetric stable distribution. It is

worth to mention that in most of the cases, except the

Gaussian case with a ¼ 2, the variance of Z is infinite,

which leads to many problems in the estimation and sta-

tistical investigation of the a-stable-based models.

In the multidimensional case, similary to the one-di-

mensional distribution, a stable random vector can be

defined via chracteristic function. Let Sd ¼ fs : jjsjj ¼ 1g
be a unit sphere in Rd. A random vector Z ¼
ðZ1; Z2; . . .; ZdÞ is said to be stable if its characteristic

function is given by [53]

E½expfihh;Zig�

¼

exp �
R
Sd
jhh; sija 1 � isignðhh; siÞ tan

pa
2

� �� �
CðdsÞ þ ihh; l0i

n o
for a 6¼ 1;

exp �
R
Sd
jhh; sijð1 þ i

2

p
signðhh; siÞ logðhh; siÞÞÞCðdsÞ þ ihh; l0i

� �
for a ¼ 1;

8>>><
>>>:

ð2Þ
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where Cð�Þ is a finite spectral measure on the unit sphere

Sd, l0 2 Rd is a shift vector and h�; �i is the inner product.

The information about the shape and scale of the multidi-

mensional a-stable distribution are included in the spectral

measure Cð�Þ. It is important to mention that the pair

ðC; l0Þ is unique and together with the stability parameter

fully describes d-dimensional multivariate stable distribu-

tion. Moreover, a necessary and sufficient condition for a

stable vector to be symmetric is that l0 ¼ 0 and Cð�Þ is a

symmetric measure on Sd. The characteristic function of a

symmetric a-stable vector takes the following form

E½expfihh;Zig� ¼ exp �
Z
Sd

jhh; sijaCðdsÞ
� �

: ð3Þ

2.1 Depedence measures for stable distributed

random variables

In the case of stable distribution, the classical dependence

measures, known as covariance or correlation, cannot be

applied to describe the dependence between random vari-

ables due to the infinite variance for a 6¼ 2. In the literature,

one can find the alternative measures that can replace the

classical ones for the a-stable-based models, like for

example codifference, covariation and fractional lower

order covariance. Here, we present the definitions of the

covariation and the fractional lower order covariance. The

second measure, applied to the estimation procedure later

in this paper, can be considered as an extension of the

covariation. For more details on the codifference function

see [38, 40, 53–55].

2.1.1 Covariation

The definition of the covariation involves the spectral

measure of a random vector (X, Y). Let us consider a

bidimensional symmetric stable vector with the stability

index 1\a� 2 and the spectral measure Cð�Þ. The

covariation of X on Y is defined as [53, 56]

CVðX; YÞ ¼
Z
S2

s1s
ha�1i
2 CðdsÞ; ð4Þ

where ahpi is called the signed power and it is equal to

ahpi ¼ jajpsignðaÞ:

Let us notice that the covariation can be applied only for

the symmetric stable random vectors with 1\a� 2. In the

Gaussian case it reduces to the classical covariance,

namely 2CVðX; YÞ ¼ CovðX; YÞ, and for independent

random variables CVðX; YÞ ¼ 0. Moreover, the

covariation is not symmetric in its arguments. It can be

proven, see [53], that the covariation is related to the joint

moment of (X, Y) and therefore Eq. (4) can be equivalently

written as

CVðX; YÞ ¼ EðXY hp�1iÞ
EðjY jpÞ raY ; ð5Þ

where rY is the scale parameter of the random variable Y

and 1� p\a.

Covariation function can be applied to measure the

interdependence of a stochastic process fXðtÞg, see

[57–59] or to describe the spacio-temporal dependence

structure of the bidimensional process fðX1ðtÞ;X2ðtÞÞg, see

[60].

In the literature, one can find several methods to esti-

mate the covariation function [29, 49, 61].

2.1.2 Fractional lower order covariance

The fractional lower order covariance is a natural extension

of the classical covariance. For a bidimensional symmetric

stable random vector (X, Y) the fractional lower order

covariance is defined as follows [62]

FLOCðX; Y;A;BÞ ¼ EðXhAiYhBiÞ; ð6Þ

with the parameters A;B� 0 satisfying Aþ B\a. The

measure can be applied to any symmetric stable vector,

even with 0\a\1. It is worth mentioning that the value of

the fractional lower order covariance depends on the choice

of A and B. In the Gaussian case, it reduces to the classical

covariance when A ¼ B ¼ 1. For independent random

variables FLOCðX; Y ;A;BÞ ¼ 0.

Note that for 1\a\2, A ¼ 1 and B ¼ p� 1, where

1� p\a, we obtain the following relation between the

fractional lower order covariance and the covariation

function

FLOCðX; Y; 1; p� 1Þ ¼ CVðX;YÞEðjYjpÞ
raY

: ð7Þ

Fractional lower order covariance can be applied to

describe the interdependence of a stochastic process

fXðtÞg, see [61]. However, it can be also used as a

measure of the spatio-temporal dependence of the

bidimensional process fðX1ðtÞ;X2ðtÞÞg. The estimator of

the cross-fractional lower order covariance is similar to the

auto-FLOC estimator given in [62] and it has the following

form
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dFLOCðX1ðtÞ;X2ðt þ kÞ;A;BÞ

¼
PL2

n¼L1
jx1ðnÞjAjx2ðnþ kÞjBsignðx1ðnÞx2ðnþ kÞÞ

L2 � L1

;

ð8Þ

where fx1ð1Þ;x1ð2Þ; . . .;x1ðNÞg and fx2ð1Þ;x2ð2Þ; . . .;x2ðNÞg
are sample trajectories of the length N corresponding to the

bivariate process fðX1ðtÞ;X2ðtÞÞg and L2 ¼minðN;N�kÞ,
L1 ¼maxð0;�kÞ.

3 Bidimensional autoregressive model of order 1

We start with the classical definitions of the second-order

white noise and of the general bidimensional autoregres-

sive model of order 1 (also called bidimensional AR(1)

model).

Definition 1 The bidimensional time series fZðtÞg is

called white noise with mean 0 and covariance matrix R if

fZðtÞg is weak-sense stationary with mean vector 0 and

covariance matrix function given by [4]

c hð Þ ¼ E Zðt þ hÞZðtÞT
� �

¼
R if h ¼ 0;

0 otherwise :

�
ð9Þ

Definition 2 The time series X tð Þf g ¼ X1 tð Þ;X2 tð Þf g is a

bidimensional AR(1) model if X tð Þf g is weak-sense sta-

tionary and if for every t it satisfies the following equation

[4]

X tð Þ �H X t � 1ð Þ ¼ Z tð Þ; ð10Þ

where fZ tð Þg is a bidimensional white noise and H is a

2 � 2 matrix of the coefficients given by

H ¼
a1 a2

a3 a4

� 	
: ð11Þ

Let us notice that the Eq. (10) can be equivalently

written as the following system of recursive equations

X1 tð Þ � a1 X1 t � 1ð Þ � a2 X2 t � 1ð Þ ¼ Z1 tð Þ; ð12aÞ

X2 tð Þ � a3 X1 t � 1ð Þ � a4 X2 t � 1ð Þ ¼ Z2 tð Þ: ð12bÞ

In this paper, we extend Definition 2 by considering the

infinite-variance noise instead of the classical white noise.

We assume that the bidimensional noise fZðtÞg is a

symmetric stable vector in R2 defined in Eq. (3) with

stability index a\2, shift vector l0 ¼ 0 and the spectral

measure Cð�Þ. We additionally assume that ZðtÞ is

independent from Zðt þ hÞ for all h 6¼ 0. In the following

part of the paper we call fZðtÞg a symmetric stable noise

(called also a symmetric a-stable noise).

Moreover, provided that all the eigenvalues of the

matrix H are less than 1 in absolute value, which is

equivalent to the following condition

detðI � zHÞ 6¼ 0 for all z 2 C such that jzj � 1;

the time series fX tð Þg given in Eq. (10) can be presented in

the following casual representation [4]

XðtÞ ¼
Xþ1

j¼0

HjZ t � jð Þ: ð13Þ

By introducing the following notation for the matrix taken

to the j-th power

Hj ¼
a

jð Þ
1 a

jð Þ
2

a
jð Þ

3 a
jð Þ

4

" #
;

and by writing the Eq. (13) in vector notation we obtain the

following

X1 tð Þ ¼
Pþ1

j¼0 a
jð Þ

1 Z1 t � jð Þ þ a
jð Þ

2 Z2 t � jð Þ
� �

;

X2 tð Þ ¼
Pþ1

j¼0 a
jð Þ

3 Z1 t � jð Þ þ a
jð Þ

4 Z2 t � jð Þ
� �

:

8><
>: ð14Þ

4 Estimation of bidimensional AR(1) parameters
based on FLOC

In this section, we present a new estimation method for the

parameters of bidimensional AR(1) model with

stable noise. This procedure can be considered as a mod-

ification of the Yule–Walker (Y-W) method presented in

[4]. However, it is based not on the covariance function, as

in the classical Y-W method, but on the fractional lower

order covariance. The use of FLOC is supported by the fact

that, on the contrary to the covariance function, FLOC is

well defined for the stable distributed random variables and

thus it can successfully substitute the covariance function

in the case of the infinite second moment. The theorem

below presents the estimators of the bidimensional AR(1)

model’s parameters.

Theorem 1 Let us assume that fXðtÞg ¼ fX1ðtÞ;X2ðtÞg is

a bidimensional autoregressive model of order 1 defined as

the system of recursive equations (12a) and (12b), where

fZðtÞg is a bidimensional symmetric stable noise with

a[ 1. The parameters of the matrix H given in Eq. (11)

can be estimated using the following formulas
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ba1 ¼ N

N � 1

PN�1
n¼1 x1ðnþ 1Þjx1ðnÞjBsignðx1ðnÞÞPN

n¼1 jx1ðnÞjBþ1

� ba2

PN
n¼1 x2ðnÞjx1ðnÞjBsignðx1ðnÞÞPN

n¼1 jx1ðnÞjBþ1

ba2 ¼ N

N � 1

PN�1
n¼1 x1ðnþ 1Þjx1ðnÞjBsignðx1ðnÞÞPN

n¼1 jx1ðnÞjBþ1

 "

�
PN�1

n¼1 x1ðnþ 1Þjx2ðnÞjBsignðx2ðnÞÞPN
n¼1 x1ðnÞjx2ðnÞjBsignðx2ðnÞÞ

!#

PN
n¼1 x2ðnÞjx1ðnÞjBsignðx1ðnÞÞPN

n¼1 jx1ðnÞjBþ1

 

�
PN

n¼1 jx2ðnÞjBþ1

PN
n¼1 x1ðnÞjx2ðnÞjBsignðx2ðnÞÞ

!�1

ba3 ¼ N

N � 1

PN�1
n¼1 x2ðnþ 1Þjx2ðnÞjBsignðx2ðnÞÞPN

n¼1 jx2ðnÞjBþ1

 "

�
PN�1

n¼1 x2ðnþ 1Þjx1ðnÞjBsignðx1ðnÞÞPN
n¼1 x2ðnÞjx1ðnÞjBsignðx1ðnÞÞ

!#

PN
n¼1 x1ðnÞjx2ðnÞjBsignðx2ðnÞÞPN

n¼1 jx2ðnÞjBþ1

 

�
PN

n¼1 jx1ðnÞjBþ1

PN
n¼1 x2ðnÞjx1ðnÞjBsignðx1ðnÞÞ

!�1

ba4 ¼ N

N � 1

PN�1
n¼1 x2ðnþ 1Þjx2ðnÞjBsignðx2ðnÞÞPN

n¼1 jx2ðnÞjBþ1

� ba3

PN
n¼1 x1ðnÞjx2ðnÞjBsignðx2ðnÞÞPN

n¼1 jx2ðnÞjBþ1

where fx1ð1Þ; x1ð2Þ; . . .; x1ðNÞg and

fx2ð1Þ; x2ð2Þ; . . .; x2ðNÞg are sample trajectories of the

length N corresponding to the bivariate process

fðX1ðtÞ;X2ðtÞÞg and B is the estimation parameter satis-

fying 0�B\a� 1.

Proof Let us take the following notation

SiðtÞ ¼ signðXiðtÞÞ for i ¼ 1; 2

and

FLOCðXiðtÞ;XjðsÞ;A;BÞ ¼ E XiðtÞhAiXjðsÞhBi
h i

for i; j ¼ 1; 2:

At first, let us multiply the Eq. (12a) by S1ðtÞS1ðt � 1Þ. We

obtain the following equation

X1ðtÞS1ðtÞS1ðt � 1Þ � a1X1ðt � 1ÞS1ðtÞS1ðt � 1Þ
� a2X2ðt � 1ÞS1ðtÞS1ðt � 1Þ ¼ Z1ðtÞS1ðtÞS1ðt � 1Þ:

Then, due to the fact that X1ðtÞS1ðtÞ ¼ jX1ðtÞj and X1ðt �
1ÞS1ðt � 1Þ ¼ jX1ðt � 1Þj the above equation takes a form

given by

jX1ðtÞjS1ðt � 1Þ � a1jX1ðt � 1ÞjS1ðtÞ
� a2X2ðt � 1ÞS1ðtÞS1ðt � 1Þ ¼ Z1ðtÞS1ðtÞS1ðt � 1Þ:

Let us multiply the above equation by jX1ðtÞjA�1jX1ðt �
1ÞjB where A;B� 0 and Aþ B\a. We obtain the

following

jX1ðtÞjAjX1ðt � 1ÞjBS1ðt � 1Þ
� a1jX1ðt � 1ÞjBþ1jX1ðtÞjA�1

S1ðtÞ
� a2X2ðt � 1ÞjX1ðtÞjA�1jX1ðt � 1ÞjBS1ðtÞS1ðt � 1Þ

¼ Z1ðtÞjX1ðtÞjA�1jX1ðt � 1ÞjBS1ðtÞS1ðt � 1Þ:

Then, after multiplying the above equation by S1ðtÞ and

using the fact that S1ðtÞð Þ2¼ 1 we have

jX1ðtÞjAjX1ðt � 1ÞjBS1ðt � 1ÞS1ðtÞ
� a1jX1ðt � 1ÞjBþ1jX1ðtÞjA�1

� a2X2ðt � 1ÞjX1ðtÞjA�1jX1ðt � 1ÞjBS1ðt � 1Þ
¼ Z1ðtÞjX1ðtÞjA�1jX1ðt � 1ÞjBS1ðt � 1Þ:

Now, by taking the expectations on the both sides of the

above equation we obtain the following

FLOCðX1ðtÞ;X1ðt � 1Þ;A;BÞ

� a1E jX1ðt � 1ÞjBþ1jX1ðtÞjA�1
h i

� a2E X2ðt � 1ÞjX1ðtÞjA�1jX1ðt � 1ÞjBS1ðt � 1Þ
h i

¼ E Z1ðtÞjX1ðtÞjA�1jX1ðt � 1ÞjBS1ðt � 1Þ
h i

:

ð15Þ

Let us notice that the right hand side of the above equation

is equal to zero only for A ¼ 1. In this case, we have

E Z1ðtÞjX1ðt � 1ÞjBS1ðt � 1Þ
� �
¼ E Z1ðtÞ½ �E jX1ðt � 1ÞjBS1ðt � 1Þ

� �
¼ 0;

since E½Z1ðtÞ� ¼ l ¼ 0 for a[ 1. Let us consider A ¼ 1

and 0�B\a� 1 which simplifies the Eq. (15) as follows

FLOCðX1ðtÞ;X1ðt � 1Þ; 1;BÞ � a1E jX1ðt � 1ÞjBþ1
h i

� a2FLOCðX2ðt � 1Þ;X1ðt � 1Þ; 1;BÞ ¼ 0:

ð16Þ

Now, in the second step, we multiply the Eq. (12a) by

S1ðtÞS2ðt � 1Þ. That leads to the following equation

X1ðtÞS1ðtÞS2ðt � 1Þ � a1X1ðt � 1ÞS1ðtÞS2ðt � 1Þ
� a2X2ðt � 1ÞS1ðtÞS2ðt � 1Þ ¼ Z1ðtÞS1ðtÞS2ðt � 1Þ:
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Now, let us use the fact that X1ðtÞS1ðtÞ ¼ jX1ðtÞj and

X2ðt � 1ÞS2ðt � 1Þ ¼ jX2ðt � 1Þj. The above equation takes

the following form

jX1ðtÞjS2ðt � 1Þ � a1X1ðt � 1ÞS1ðtÞS2ðt � 1Þ
� a2jX2ðt � 1ÞjS1ðtÞ ¼ Z1ðtÞS1ðtÞS2ðt � 1Þ:

Then, after multiplying the above equation by

jX1ðtÞjA�1jX2ðt � 1ÞjB, where A;B� 0 and Aþ B\a, we

obtain

jX1ðtÞjAjX2ðt � 1ÞjBS2ðt � 1Þ
� a1X1ðt � 1ÞjX1ðtÞjA�1jX2ðt � 1ÞjBS1ðtÞS2ðt � 1Þ
� a2jX1ðtÞjA�1jX2ðt � 1ÞjBþ1

S1ðtÞ
¼ Z1ðtÞjX1ðtÞjA�1jX2ðt � 1ÞjBS1ðtÞS2ðt � 1Þ:

Let us multiply the above equation by S1ðtÞ. By applying

the fact that S1ðtÞð Þ2¼ 1 we have the following

jX1ðtÞjAjX2ðt � 1ÞjBS1ðtÞS2ðt � 1Þ
� a1X1ðt � 1ÞjX1ðtÞjA�1jX2ðt � 1ÞjBS2ðt � 1Þ
� a2jX1ðtÞjA�1jX2ðt � 1ÞjBþ1

¼ Z1ðtÞjX1ðtÞjA�1jX2ðt � 1ÞjBS2ðt � 1Þ:

Now, we take the expectations on the both sides of the

above equation which leads to the following expression

FLOCðX1ðtÞ;X2ðt � 1Þ;A;BÞ

� a1E X1ðt � 1ÞjX1ðtÞjA�1jX2ðt � 1ÞjBS2ðt � 1Þ
h i

� a2E jX1ðtÞjA�1jX2ðt � 1ÞjBþ1
h i

¼ E Z1ðtÞjX1ðtÞjA�1jX2ðt � 1ÞjBS2ðt � 1Þ
h i

:

ð17Þ

Again, because of the fact that the right hand side of the

above equation is equal to zero only for A ¼ 1, we consider

A ¼ 1 and 0�B\a� 1 and the Eq. (17) simplifies to

FLOCðX1ðtÞ;X2ðt � 1Þ; 1;BÞ
� a1FLOCðX1ðt � 1Þ;X2ðt � 1Þ; 1;BÞ

� a2E jX2ðt � 1ÞjBþ1
h i

¼ 0:

ð18Þ

Then, using the analogous procedure for the Eq. (12b) we

finally obtain the following system of four equations

FLOCðX1ðtÞ;X1ðt � 1Þ; 1;BÞ � a2FLOCðX2ðt � 1Þ;X1ðt � 1Þ; 1;BÞ
� a1E jX1ðt � 1ÞjBþ1

� �
¼ 0;

FLOCðX1ðtÞ;X2ðt � 1Þ; 1;BÞ � a1FLOCðX1ðt � 1Þ;X2ðt � 1Þ; 1;BÞ

� a2E jX2ðt � 1ÞjBþ1
� �

¼ 0;

FLOCðX2ðtÞ;X1ðt � 1Þ; 1;BÞ � a4FLOCðX2ðt � 1Þ;X1ðt � 1Þ; 1;BÞ

� a3E jX1ðt � 1ÞjBþ1
� �

¼ 0;

FLOCðX2ðtÞ;X2ðt � 1Þ; 1;BÞ � a3FLOCðX1ðt � 1Þ;X2ðt � 1Þ; 1;BÞ
� a4E jX2ðt � 1ÞjBþ1

� �
¼ 0:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð19Þ

By solving (19) for a1, a2, a3 and a4, we obtain

a1 ¼
FLOCðX1ðtÞ;X1ðt � 1Þ; 1;BÞ

EðjX1ðt � 1ÞjBþ1Þ
� a2

FLOCðX2ðt � 1Þ;X1ðt � 1Þ; 1;BÞ
EðjX1ðt � 1ÞjBþ1Þ

;

a2 ¼
FLOCðX1ðtÞ;X1ðt � 1Þ; 1;BÞ

EðjX1ðt � 1ÞjBþ1Þ
� FLOCðX1ðtÞ;X2ðt � 1Þ; 1;BÞ

FLOCðX1ðt � 1Þ;X2ðt � 1Þ; 1;BÞ

 !

FLOCðX2ðt � 1Þ;X1ðt � 1Þ; 1;BÞ
EðjX1ðt � 1ÞjBþ1Þ

� EðjX2ðt � 1ÞjBþ1Þ
FLOCðX1ðt � 1Þ;X2ðt � 1Þ; 1;BÞ

 !�1

;

a3 ¼
FLOCðX2ðtÞ;X2ðt � 1Þ; 1;BÞ

EðjX2ðt � 1ÞjBþ1Þ
� FLOCðX2ðtÞ;X1ðt � 1Þ; 1;BÞ

FLOCðX2ðt � 1Þ;X1ðt � 1Þ; 1;BÞ

 !

FLOCðX1ðt � 1Þ;X2ðt � 1Þ; 1;BÞ
EðjX2ðt � 1ÞjBþ1Þ

� EðjX1ðt � 1ÞjBþ1Þ
FLOCðX2ðt � 1Þ;X1ðt � 1Þ; 1;BÞ

 !�1

;

a4 ¼
FLOCðX2ðtÞ;X2ðt � 1Þ; 1;BÞ

EðjX2ðt � 1ÞjBþ1Þ
� a3

FLOCðX1ðt � 1Þ;X2ðt � 1Þ; 1;BÞ
EðjX2ðt � 1ÞjBþ1Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð20Þ

After replacing the theoretical fractional lower order

covariance and the theoretical fractional moments with

their empirical equivalents we obtain the estimators. h

5 Monte Carlo simulations

In this section, we verify the effectiveness of the estimators

presented in Theorem 1 using the generated trajectory of

bidimensional AR(1) model. We analyze the time series

fXðtÞg ¼ fX1ðtÞ;X2ðtÞg satisfying the following system of

equations

X1 tð Þ � 0:6 X1 t � 1ð Þ � 0:2 X2 t � 1ð Þ ¼ Z1 tð Þ;
X2 tð Þ � 0:7 X1 t � 1ð Þ þ 0:3 X2 t � 1ð Þ ¼ Z2 tð Þ;

�
ð21Þ

where fZðtÞg ¼ fZ1ðtÞ; Z2ðtÞg is the bidimensional sub-

Gaussian noise with the characteristic function given by

E exp ih1Z1 tð Þ þ ih2Z2 tð Þf gð Þ

¼ exp � 1

2
h2

1R11 þ 2h1h2R12 þ h2
2R22


 �� �
;

ð22Þ

where a\2, R11 ¼ 0:1, R12 ¼ 0:05 and R22 ¼ 0:3. We

mention here that the sub-Gaussian vector is an example of

a symmetric stable random vector presented in Sector 2. It

is defined as a combination of a Gaussian vector and a
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totally skewed stable random variable, for more details we

refer to [53]. Exemplary trajectory of fXðtÞg given by

Eq. (21) is presented in Fig. 1.

To test the proposed estimation procedure, we use the

Monte Carlo method. We generate M ¼ 10;000 trajectories

of time series of length N and for each trajectory we cal-

culate the estimators ba1 , ba2 , ba3 and ba4 given in Theorem 1

performing the method for different values of B parameter.

We consider the trajectories of length N ¼ 100, N ¼ 500

and N ¼ 1000 with a ¼ 1:5. After performing the Monte

Carlo simulations we obtain the vectors of estimated

parameters, namely

ba1 ¼ðba1
1; ba2

1; ba3
1; . . .; baM1 Þ;

ba2 ¼ðba1
2; ba2

2; ba3
2; . . .; baM2 Þ;

ba3 ¼ðba1
3; ba2

3; ba3
3; . . .; baM3 Þ;

ba4 ¼ðba1
4; ba2

4; ba3
4; . . .; baM4 Þ:

To find the parameter B which leads to the best estimate of

theoretical parameters, we take into account both the center

and the dispersion of the above vectors. Namely, we

calculate the median of the vectors and the absolute value

of the difference between the quantiles of order 0.95 (q0:95)

and 0.05 (q0:05), which can be consider as the 90%
confidence interval. Moreover, we calculate the mean

absolute error defined as

error ¼ 1

M

XM
m¼1

bami � ai
�� �� for i ¼ 1; 2; 3; 4: ð23Þ

Tables 1, 2 and 3 present the results obtained for the tra-

jectories of the length N ¼ 100, N ¼ 500 and N ¼ 1000,

respectively. Regardless of the length of the data, for all the

parameters it is clear that the medians are very close to the

theoretical values and the empirical confidence intervals

are getting narrower for larger values of B. Moreover, in

Tables 1, 2 and 3 the results corresponding to the minimum

mean absolute errors are highlighted. For all considered

trajectory’s lengths, the calculated errors are getting

smaller as B is getting closer to a� 1. The range of the

estimated values is also visible on the boxplots presented in

Fig. 2. It is important to mention that we applied the same

procedure for the time series given by Eq. (21) with a ¼
1:2 and a ¼ 1:8 considering the trajectories of the length

N ¼ 100, N ¼ 500 and N ¼ 1000. In all the cases we

obtain the same results indicating that the best choice of the

estimation parameter is to take B very close to a� 1.

In the case of real data analysis we often do not know

the theoretical value of the parameter a and thus we do not

know how to choose parameter B to be close to a� 1. In

order to verify which value of B is the most suitable when

the theoretical value of a is unknown, we carry out the

following test. In the simulation procedure, we draw the

parameter a from uniform distribution assuming that

1\a\2. Then, we generate the model given in Eq. (21)

and we estimate the unknown parameters a1, a2, a3 and a4.

As the best choice of the estimation parameter, we consider

the value of B with the median corresponding to the vector

of estimator’s values closest to the theoretical parameter.

Moreover, we calculate the mean absolute error defined in

(23). In the procedure, we performed 10,000 simulations

and the length of the trajectory is equal to 1000. In Table 4

we present the medians and the errors corresponding to the

best choice of parameter B. We also mention that for all

choices of B between 0.6 and 0.95 the calculated errors

normalized by the parameters’ theoretical values are

smaller than 10%. Since the errors are small the proposed

estimation method can be successfully used even in the

case when we do not know the theoretical value of

parameter a.

6 Comparison of FLOC-based estimators
and classical Yule–Walker method

In this section, we compare FLOC-based estimators intro-

duced in Theorem 1 with the Yule–Walker method. The

classical Yule–Walker estimators (denoted also as Y-W

estimators) are based on the covariance function and due to

that they are defined only for the second-order models, see

[4], and therefore the method should not be applied for the

models that are based on the a-stable distribution. For this

reason, the use of the FLOC-based method is fully justified

from a theoretical point of view. However, here we would

also like to focus on the practical aspect by comparing the

results corresponding to both the classical and the intro-

duced method to emphasize the difference between these

two approaches.
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Fig. 1 Sample trajectory of time series given by Eq. (21) with

a ¼ 1:8
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To perform the comparison we simulate M ¼ 1000

trajectories of the bidimensional sub-Gaussian AR(1) time

series fXðtÞg presented in the previous section in Eq. (21).

Next, we estimate the parameters a1, a2, a3 and a4 using

the Yule–Walker method and the introduced FLOC-based

method. For the FLOC-based estimators, according to the

results obtained in the previous section, we choose the

parameter B to be close to ða� 1Þ, more precisely we take

B ¼ a� 1:05. By performing the simulations we obtain the

following vectors of estimated parameters

Table 1 The table presenting the results of the estimation method applied to the bidimensional AR(1) model given by Eq. (21) with a ¼ 1:5

B 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

a1 ¼ 0:6

Median 0.5953 0.5945 0.5929 0.5951 0.5941 0.5926 0.5908 0.5922 0.5924 0.5909

jq0:95 � q0:05j 0.4675 0.4329 0.4070 0.3821 0.3583 0.3419 0.3330 0.3079 0.2944 0.2934

Error 0.1183 0.1106 0.1033 0.0975 0.0920 0.0870 0.0829 0.0787 0.0735 0.0734

a2 ¼ 0:2

Median 0.1948 0.1903 0.1951 0.1951 0.1939 0.1959 0.1969 0.1956 0.1952 0.1966

jq0:95 � q0:05j 0.4017 0.3687 0.3511 0.3248 0.3058 0.2936 0.2733 0.2652 0.2502 0.2433

Error 0.1046 0.0945 0.0907 0.0844 0.0806 0.0745 0.0700 0.0669 0.0611 0.0596

a3 ¼ 0:7

Median 0.6852 0.6920 0.6910 0.6874 0.6907 0.6856 0.6866 0.6882 0.6891 0.6857

jq0:95 � q0:05j 0.8047 0.7638 0.7413 0.7027 0.6694 0.6422 0.6065 0.5818 0.5566 0.5387

Error 0.2018 0.1943 0.1793 0.1733 0.1629 0.1572 0.1477 0.1435 0.1346 0.1298

a4 ¼ �0:3

Median - 0.3024 - 0.3019 - 0.3007 - 0.3030 - 0.2996 - 0.2990 - 0.2957 - 0.3035 - 0.2990 - 0.2980

jq0:95 � q0:05j 0.6425 0.5901 0.5406 0.5101 0.4825 0.4554 0.4291 0.4101 0.3844 0.3722

Error 0.1614 0.1499 0.1376 0.1315 0.1227 0.1152 0.1093 0.1044 0.0951 0.0919

The best results are marked in bold

The length of a trajectory is equal to 100. Simulations were performed 10,000 times

Table 2 The table presenting the results of the estimation method applied to the bidimensional AR(1) model given by Eq. (21) with a ¼ 1:5

B 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

a1 ¼ 0:6

Median 0.5977 0.5999 0.5996 0.5991 0.5991 0.5978 0.5986 0.5993 0.5983 0.5982

jq0:95 � q0:05j 0.2530 0.2304 0.2191 0.2017 0.1887 0.1733 0.1628 0.1520 0.1458 0.1393

Error 0.0650 0.0575 0.0555 0.0506 0.0477 0.0438 0.0407 0.0379 0.0364 0.0347

a2 ¼ 0:2

Median 0.1975 0.1991 0.1991 0.1988 0.1988 0.1994 0.1991 0.1989 0.1996 0.1998

jq0:95 � q0:05j 0.2139 0.2007 0.1874 0.1684 0.1595 0.1479 0.1393 0.1281 0.1230 0.1188

Error 0.0560 0.0497 0.0491 0.0435 0.0411 0.0375 0.0351 0.0319 0.0303 0.0291

a3 ¼ 0:7

Median 0.6997 0.6966 0.6993 0.6971 0.6981 0.6967 0.6976 0.6971 0.6971 0.6970

jq0:95 � q0:05j 0.4518 0.4225 0.3842 0.3634 0.3397 0.3178 0.3007 0.2820 0.2686 0.2511

Error 0.1142 0.1061 0.0967 0.0898 0.0837 0.0779 0.0723 0.0692 0.0666 0.0608

a4 ¼ �0:3

Median - 0.2988 - 0.3003 - 0.3009 - 0.2996 - 0.3007 - 0.3009 - 0.2994 - 0.2994 - 0.3003 - 0.2989

jq0:95 � q0:05j 0.3607 0.3356 0.3098 0.2800 0.2582 0.2399 0.2215 0.2027 0.1935 0.1807

Error 0.0904 0.0842 0.0789 0.0699 0.0647 0.0604 0.0547 0.0505 0.0480 0.0450

The best results are marked in bold

The length of a trajectory is equal to 500. Simulations were performed 10,000 times
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ba1;YW ¼ ðba1
1;YW ; . . .; baM1;YWÞ;

ba1;FLOC ¼ ðba1
1;FLOC; . . .; baM1;FLOCÞ;

ba2;YW ¼ ðba1
2;YW ; . . .; baM2;YWÞ;

ba2;FLOC ¼ ðba1
2;FLOC; . . .; baM2;FLOCÞ;

ba3;YW ¼ ðba1
3;YW ; . . .; baM3;YWÞ;

ba3;FLOC ¼ ðba1
3;FLOC; . . .; baM3;FLOCÞ;

ba4;YW ¼ ðba1
4;YW ; . . .; baM4;YWÞ;

ba4;FLOC ¼ ðba1
4;FLOC; . . .; baM4;FLOCÞ;

and on the basis of these values, we calculate the statistics

describing the error of the estimation defined in the

following way

SYW ¼ 1

4

X4

i¼1

j
ffiffiffiffi
N

p
ðbai;YW � aiÞj; ð24Þ

Table 3 The table presenting the results of the estimation method applied to the bidimensional AR(1) model given by Eq. (21) with a ¼ 1:5

B 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

a1 ¼ 0:6

Median 0.5984 0.5988 0.5989 0.5997 0.5991 0.5997 0.5995 0.5996 0.5992 0.5992

jq0:95 � q0:05j 0.2023 0.1800 0.1651 0.1550 0.1460 0.1328 0.1232 0.1146 0.1111 0.1018

Error 0.0526 0.0460 0.0422 0.0389 0.0362 0.0345 0.0305 0.0288 0.0274 0.0255

a2 ¼ 0:2

Median 0.1994 0.1986 0.2002 0.1988 0.1991 0.1992 0.1989 0.2001 0.1991 0.2000

jq0:95 � q0:05j 0.1734 0.1542 0.1427 0.1323 0.1235 0.1102 0.1047 0.1004 0.0930 0.0881

Error 0.0464 0.0394 0.0365 0.0339 0.0313 0.0298 0.0261 0.0255 0.0233 0.0213

a3 ¼ 0:7

Median 0.6977 0.7006 0.6986 0.6989 0.6988 0.6985 0.6998 0.6969 0.6977 0.6981

jq0:95 � q0:05j 0.3592 0.3239 0.2986 0.2810 0.2577 0.2383 0.2285 0.2156 0.2023 0.1855

Error 0.0894 0.0811 0.0755 0.0699 0.0641 0.0596 0.0551 0.0521 0.0486 0.0458

a4 ¼ �0:3

Median - 0.3010 - 0.3004 - 0.3005 - 0.2996 - 0.2998 - 0.3000 - 0.3017 - 0.2997 - 0.2996 - 0.2999

jq0:95 � q0:05j 0.2917 0.2617 0.2402 0.2218 0.2019 0.1840 0.1682 0.1575 0.1466 0.1367

Error 0.0739 0.0653 0.0602 0.0551 0.0501 0.0476 0.0422 0.0396 0.0365 0.0337

The best results are marked in bold

The length of a trajectory is equal to 1000. Simulations were performed 10,000 times
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Fig. 2 Boxplots presenting 1000 estimated values of the parameters

for bidimensional AR(1) model given in Eq. (21) with a ¼ 1:5. The

estimation parameter B is equal to 0.45

Table 4 The table presenting the best choice of B parameter for the estimation method applied to the bidimensional AR(1) model given by

Eq. (21) with a drawn from uniform distribution assuming 1\a\2

a1 a2 a3 a4

B 0.95 0.8 0.7 0.7

Median 0.5999 0.2000 0.6998 - 0.3000

Error 0.0145 0.0134 0.0358 0.0224

Normalized error (%) 2.4167 6.7000 5.1142 7.4667

The length of a trajectory is equal to 1000. Simulations were performed 10,000 times
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SFLOC ¼ 1

4

X4

i¼1

j
ffiffiffiffi
N

p
ðbai;FLOC � aiÞj; ð25Þ where bai;YW and bai;FLOC are the mean values of the vectors

ai;YW and ai;FLOC , respectively, and N is the length of the

trajectory.

1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

S
Y
W

1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

S
F
LO

C

1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

S
Y
W

1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

S
F
LO

C

1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

S
Y
W

1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

S
F
LO

C

Fig. 3 Values taken by the statistics SYW (left panels) and SFLOC
(right panels) corresponding to the trajectories of bidimensional sub-

Gaussian AR(1) model given by Eq. (21) for different values of the

parameter a. Upper, middle and bottom panels correspond to the

trajectories of length N ¼ 100, N ¼ 500 and N ¼ 1000, respectively.

The statistics were calculated 100 times on the basis of M ¼ 1000

trajectories

226 Int J Adv Eng Sci Appl Math (2019) 11(3):217–229

123



For the simulated trajectories, we calculate the

statistics given in Eq. (24) and in Eq. (25) 100 times and

we presented their values on the boxplots in Fig. 3. The

upper, middle and bottom panels correspond to the tra-

jectories of length N ¼ 100, N ¼ 500 and N ¼ 1000,

respectively. We consider the stability index a to be
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Fig. 4 Values taken by the statistics SYW (left panels) and SFLOC
(right panels) corresponding to the trajectories of bidimensional

AR(1) model with a1 ¼ 0:6, a2 ¼ 0:2, a3 ¼ 0:7 and a4 ¼ �0:3 with

independent stable distributed noise components for different values

of the parameter a. Upper, middle and bottom panels correspond to

the trajectories of length N ¼ 100, N ¼ 500 and N ¼ 1000, respec-

tively. The statistics were calculated 100 times on the basis of M ¼
1000 trajectories
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between 1.5 and 1.95 with the step equal to 0.05. One

can observe that for all considered values of a and N the

median of SYW is greater than the median of SFLOC
which means that the FLOC-based method outperforms

the Yule–Walker method in the sense of the considered

statistics. The distinction between these two methods is

the most visible for the trajectories of length N equal to

100 where the difference between the values taken by

SYW are the values taken by SFLOC is the largest. To

demonstrate that the tendency shown in Fig. 3 is general

and both statistics behave in an analogous manner also

for models other than models with sub-Gaussian noise

we consider another time series. Namely, Fig. 4 presents

the boxplots of 100 values taken by the statistics SYW
and SFLOC corresponding to M ¼ 1000 trajectories of

bidimensional AR(1) time series fXðtÞg with a1 ¼ 0:6,

a2 ¼ 0:2, a3 ¼ 0:7 and a4 ¼ �0:3 and the noise fZðtÞg
consisting of two independent symmetric a-stable dis-

tributed components fZ1ðtÞg and fZ2ðtÞg with the scale

parameters r1 ¼ 0:1 and r2 ¼ 0:5, respectively. The

results are analogous to the case of the sub-Gaussian

noise.

Summarising, the graphs presented in Figs. 3 and 4

indicate that the FLOC-based method works better than the

classical Yule–Walker method especially when we esti-

mate the parameters with very little data available.

7 Conclusions

In this paper, we have introduced a new estimation

method for the bidimensional AR(1) model with

stable distribution. This method is based on the alterna-

tive measure of dependence adequate for infinite vari-

ance processes, namely fractional lower order covariance.

The proposed technique is an extension of the classical

Yule–Walker method, commonly used estimation algo-

rithm based on the covariance function of the underlying

process. The application of the FLOC measure is justi-

fied from the theoretical point of view in the considered

case (the theoretical covariance does not exist) however

by simulation study we have proved it is reasonable to

use the new technique taking under account the practical

aspects. Especially for small sample sizes, the FLOC-

based technique is more effective in contrast to the

classical Yule–Walker method. This paper is the con-

tinuation of the authors’ previous research where the

alternative measures of dependence were applied to

describe the dependence structure for heavy-tailed based

processes.
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for bidimensional VAR(1) models with infinite variance 27.

(2019) Located at: arXiv:1902.02142

56. Cambanis, S., Miller, G.: Linear problems in pth order and

stable processes. SIAM J. Appl. Math. 41(1), 43–69 (1981)

57. Nowicka, J.: Asymptotic behavior of the covariation and the

codifference for ARMA models with stable innovations. Com-

mun. Stat. Stoch. Models 13(4), 673–685 (1997)
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