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Abstract We are going to present a suitable bases to treat

the space- and timefractional diffusion equation with the

Galerkin method to obtain spectral convergence in both,

time and space. Furthermore, by carefully choosing a

Fourier ansatz in space, we can guarantee the resulting

matrices to be sparse, even though fractional order differ-

ential equations are global operator. This is due to the fact

that the chosen basis consists of eigenfunctions of the given

fractional differential operator. Numerical experiments

validate the theoretically predicted spectral convergence

for smooth problems. Additionally, we show that this

method is also capable of computing approximation of the

solution of the wave equation by letting the order of the

spatial and temporal derivative approach two arbitrarily

close.

Keywords Fractional diffusion equation �
Fractional order calculus � Fractional wave equation �
Galerkin method

1 Introduction

In the recent past, modeling with fractional order differ-

ential equations has been of increasing importance due to

its capability to model non local phenomena. Especially the

fractional diffusion equation allows to model dynamic

processes with possibly arbitrary long range interaction.

This has shown to be especially useful in e.g biology [1],

within quantum physics [2], for chemical reactions [3], in

stock market prediction [4], in epidemic models [5] and

many more. All the above shall motivate a reconsideration

of the classical random walk model.

The classical diffusion equation can be derived via

several ways as presented in the literature. To derive the

fractional diffusion equation, it is useful to reconsider the

random walk approach, used to derive the standard diffu-

sion equation. Let x denote the position of a given particle.

For the description of the random walk, we use two

probability density functions. We sample from a function w

the step lengths, i.e. the distance xi � xi�1 and from w the

waiting times ti � ti�1 that a particle waits at a given

position before continuing to move.

In the classical derivation, we implicitly assume that w

and w do not allow arbitrary large jumps or waiting times,

as their probability rapidly tends towards zero for large

arguments. Therefore, the classical random walk is a local

problem in space and time as the influence of particles is

local due to finite jumps and finite waiting times.

However, empirical observations suggest that this is not

true for all processes that can be modeled as a random

walk. For example in 1996, Viswanathan et al. discovered,

that the flight of an albatross can be modeled as a Levy

flight [1], i.e. a random walk that allows large step lengths.

This can be described with a heavy-tailed probability

density function w, which decays slower for large argu-

ments than an exponential ansatz. For Levy flights, Man-

delbrot [6] suggested a distribution for the step length Dx
as

PrðDx[ sÞ ¼
1 for s\1;

s�D for u� 1;

�
ð1Þ
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where D C 1 is related to the factional dimension. Since

the distributions is heavy-tailed, this yields an infinite

variance, different from an exponentially decaying distri-

bution. In Fig. 1 we can see the results of an isotropic 2D

random walk simulation after 1000 steps where the step

length has been sampled from a normal distribution (a) and

a Cauchy distribution (b), which corresponds to the simu-

lation of a Levy flight. Note the large jumps in (b), which

result from the heavy-tailed probability density function.

The qualitative behavior of the Levy process and the

observation by Viswanathan et al. are similar in the case,

that both movements contain steps with significantly larger

length than the more frequent smaller steps. This pattern

can not be observed for the standard Brownian motion.

This observation should motivate a reconsideration of

the classical random walk model. The above described

phenomena has not only been observed in biology, but can

also be found in photon transport in clouds, for correlated

background media or fractals, within quantum physics [2],

for chemical reactions [3], in stock market prediction [4],

in epidemic models [5] and many more. In contrast to

classical kinetic models, these models are no longer

memorylessness, implying that actions performed at a

current state depend on previously performed actions. In

random processes where the memorylessness assumption is

no longer valid and the mean square displacements scales

like hx2i / ta, fractional differential operators can be used

to model the underlying microscopic behavior by fractional

partial differential equations on a macroscopic level. Due

to its non local nature, fractional differential equations are

often harder to solve numerically than integer order dif-

ferential equations. One of the reasons is the fact, that the

sparsity in the used differentiation matrices vanishes and

dense matrices need to be computed and used when using a

finite difference approach. Therefore, applying the same

algorithms that are used for standard differential equations

in an adapted fashion often yields unsatisfactory results.

Methods that exploit the non local structure of the problem,

might be advantageous in their application to fractional

problems.

In this work, we will present a spectral method to solve

the time- and spacefractional diffusion equation for

periodic domains in space. By carefully selecting an

appropriate basis for the spatial ansatz, we can make sure

that the resulting system is still sparse, allowing to invert it

easily. We will further show that the resulting scheme can

be used to approximating solutions to the classical wave

equation by letting a, the index of the temporal derivative,

approach a value of two.

2 The time-fractional master equation

Let us at first derive the fractional diffusion equation in

time based on the approach presented by Scalas et al. [7].

Assume that we consider the probability density functions

wðnÞ and wðsÞ, such that ni and si are both identically

independent distributed random variables. Let p(x, t)

denote the probability of finding a particle at time t at

position x and assume the initial distribution to be the delta

function, i.e. pðx; 0Þ ¼ dðxÞ. The master equation of the

continuous time random walk (CTRW) is then given by

pðx; tÞ ¼ dðxÞWðtÞ þ
Z t

0

wðt � t0Þ
Z 1

�1
wðx� x0Þpðx0; t0Þdx0dt0;

ð2Þ

with

WðtÞ ¼
Z 1

t

wðt0Þdt0 ¼ 1�
Z t

0

wðt0Þdt0; wðtÞ ¼ � o

ot
WðtÞ:

ð3Þ

Thus, the probability of finding a particle at (x, t) equals the

probability of finding a particles at a prior time t0 and

position x0 that moves the distance x� x0 after waiting

t � t0. Furthermore, we have to add the number of particles

that did not jump from the initial position until time t,

which is described by dðxÞWðtÞ. Recall the definition for

the Fourier transformation in space and the Laplace

transformation in time by

F½f ðxÞ�ðjÞ ¼
Z 1

�1
eijxf ðxÞdx ¼: f̂ ðjÞ; ð4Þ

and

(a) (b)

Fig. 1 Random walk of a single

particle with different path-

length distribution. a Normal

distribution. b Levy distribution

Int J Adv Eng Sci Appl Math (2018) 10(1):90–104 91

123



L½f ðtÞ�ðsÞ ¼
Z 1

0

e�stf ðtÞdt ¼: ~f ðsÞ; ð5Þ

with i2 ¼ �1, respectively. If we now apply the Fourier–

Laplace transform of the Master Eq. (2), we obtain

~̂pðj; sÞ ¼ ~WðsÞ 1

1� ŵðjÞ ~wðsÞ
: ð6Þ

Mainardi et al. suggest an equivalent formulation [8]

~UðsÞ s ~̂pðj; sÞ � 1
� �

¼ ½ŵðjÞ � 1� ~̂pðj; sÞ; ð7Þ

where we define

~UðsÞ ¼
~WðsÞ

1� s ~WðsÞ
: ð8Þ

To get back to the space-time domain, we apply the inverse

Fourier–Laplace transformation to obtainZ t

0

Uðt � t0Þ o

ot0
pðx; t0Þdt0 ¼ �pðx; tÞ

þ
Z 1

�1
wðx� x0Þpðx0; tÞdx0:

ð9Þ

In this context, UðtÞ has the role of a ‘‘memory function’’

and the process is no longer Markovien [8], i.e.

memoryless, unless the above function degenerates into a

delta function, such that wðtÞ ¼ c � /ðtÞ with a positive

constant c. If we assume ~UðsÞ ¼ 1, we obtain UðtÞ ¼ dðtÞ
and further ~wðsÞ ¼ 1 � ~WðsÞ ¼ 1

1þs
which yields by

application of the inverse Laplace transformation wðtÞ ¼
1 � UðtÞ ¼ e�t for t� 0. This means, that we have

memoryless exponential decay of the waiting time

distribution and Eq. (9) reduces to

o

ot
pðx; tÞ � pðx; tÞ þ

Z 1

�1
wðx� x0Þpðx0; tÞdx0: ð10Þ

Therefore, with the assumptions of exponential decay, we

reconstruct the classical master equation for a Markovian

continuous time random walk (also called the Kol-

mogorov-Feller equation), which we could use to recon-

struct the classical diffusion equation.

However, we can also consider different approaches for

the memory function UðtÞ. If UðtÞ has power law decay, it

corresponds to possibly arbitrary large waiting times, i.e. a

heavy-tailed probability density function for the waiting

time. With the choice

UðtÞ ¼ t�a

Cð1� aÞ ; t� 0; 0\a\1; ð11Þ

we can model the power law decay. Additionally, since

dðtÞ can formally be written as dðtÞ ¼ t�1=bð0Þ, we see that
UðtÞ ¼ dðtÞ as a ! 1. If we plug UðtÞ from Eq. (11) into

Eq. (9), we get

0 ¼
Z t

0

Uðt � t0Þ o

ot0
pðx; t0Þdt0 þ pðx; tÞ

�
Z 1

�1
wðx� x0Þpðx0; tÞdx0

ð12Þ

¼ 1

Cð1� aÞ

Z t

0

ðt � t0Þ�a o

ot0
pðx; t0Þdt0 þ pðx; tÞ

�
Z 1

�1
wðx� x0Þpðx0; tÞdx0

ð13Þ

¼ oa

ota
pðx; tÞ þ pðx; tÞ �

Z 1

�1
wðx� x0Þpðx0; tÞdx0: ð14Þ

Here we use the definition of the Caputo derivative in the

last step, namely

oa

ota
f ðtÞ ¼ 1

Cð1� aÞ

Z t

0

p0ðt0Þ
ðt � t0Þa dt

0: ð15Þ

Another way of deriving Eq. (14) is done via the Laplace

transformation of the definition of UðtÞ in Eq. (11), given

by ~UðsÞ ¼ 1=s1�a. If we plug this into the formulation of

Mainardi et al. from Eq. (7), we obtain

sa ~̂pðj; sÞ � sa�1 ¼ ½ŵðjÞ � 1� ~̂pðj; sÞ; ð16Þ

for 0\a\1. The Laplace transform of the fractional

differential operator oa=ota is defined as

L½oa=otaf ðtÞ�ðsÞ ¼ sa~f ðsÞ � sa�1~f ð0þÞ; ð17Þ

and we can use the inverse Fourier and Laplace transform

of Eq. (16) to derive

oa

ota
pðx; tÞ þ pðx; tÞ �

Z 1

�1
wðx� x0Þpðx0; tÞdx0 ¼ 0; ð18Þ

with initial condition pðx; 0Þ ¼ dðxÞ. Note, that the

definition UðtÞ ¼ t�a

Cð1�aÞ ; t� 0; 0\a\1 implies

~WðsÞ ¼ sa�1

1þ sa
and ~wðsÞ ¼ 1

1þ sa
for 0\a\1:

ð19Þ

Applying the inverse Laplace transform, this yields

WðtÞ ¼ Eað�taÞ and wðtÞ ¼ � d

dt
Eað�taÞ for 0\a\1:

ð20Þ

Here Ea is again the special case Ea;1, where Ea;b defines

the Mittag-Leffler function. Recall, that the Mittag-Leffler

function interpolates between an exponential decay for

small waiting times and a power law decay for large

waiting times [7], i.e.

Eað�taÞ
expð�ta=Cð1þ aÞÞ for t ! 0;

t�a=Cð1� aÞ for t ! 1:

�
ð21Þ
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3 Diffusion limit

Performing the diffusion limit in space allows us to derive

two different types of equations. Depending on the decay

of the path-length distribution w(x), we can derive the

Laplace operator D for the spatial derivative or a spatial

derivative of fractional order. For simplicity, we assume

wðxÞ ¼ wð�xÞ, i.e. the process is isotropic. The following

derivation follows the approach presented by Gorenflo and

Mainardi [9]. For 0\b\2; b[ 0 and jxj ! 1 we

define

wðxÞ ¼ b

jxjbþ1
; ð22Þ

where we have an asymptotic representation of the Fourier

transform as

ŵðjÞ � 1� gjjjb þ oðjjjbÞ; ð23Þ

as j ! 0, with g ¼ bp
bðbþ 1Þ sinðbp=2Þ for 0\b\2. We

are now going to rescale the process, to be able to perform

the diffusion limit later on. If we replace jumps of length X

by scaled jumps hX, i.e. we replace w(x) with

whðxÞ ¼ wðx=hÞ=h, this can be interpreted as performing

smaller and smaller jumps as h tends to zero. Furthermore,

we accelerate the spatially rescaled process by 1=ðghbÞ, the
re-speeding factor. These two components scale the pro-

cess in space.

Using the subscript h, we can write the rescaled process

of Eq. (18) as

ghb
oa

ota
phðx; tÞ þ phðx; tÞ �

Z 1

�1
whðx� x0Þphðx0; tÞdx0 ¼ 0;

ð24Þ

with Laplace–Fourier transform

ghb sa ~̂phðj; sÞ � sa�1
� �

¼ ½ŵhðjÞ � 1� ~̂phðj; sÞ; ð25Þ

, sa ~̂phðj; sÞ � sa�1
� �

¼ ŵhðjÞ � 1

ghb
~̂phðj; sÞ: ð26Þ

Since

lim
h!0

ŵðhjÞ � 1

ghb
¼ �jjjb; ð27Þ

for 0\b� 2 and j 2 R, we can define qhðjÞ ¼
ŵðhjÞ�1

ghb and

obtain

sa ~̂phðj; sÞ � sa�1
� �

¼ qhðjÞ ~̂phðj; sÞ ð28Þ

and in the limit h ! 0

sa ~̂p0ðj; sÞ � sa�1
� �

¼ �jjjb ~̂p0ðj; sÞ: ð29Þ

Since �jjjb is the Fourier transform of the space-fractional

Riesz derivative ob=ojxjb, we use the inverse Fourier–

Laplace transformation to derive the space-time fractional

diffusion equation

oa

ota
p0ðx; tÞ ¼

ob

ojxjb
p0ðx; tÞ; ð30Þ

p0ðxÞ ¼ dðxÞ: ð31Þ

Some further remarks should be made, concerning the

scaling and the limit h ! 0. By rescaling and accelerating

the complete process, we decrease the jumps, while

simultaneously making the waiting times between the

jumps smaller. For the limit h ! 0 in Eq. (28) we use a

Lemma of Gorenflo [10], that ensures the result of

Eq. (27), which holds with the explicit definition g ¼
bp

bðbþ 1Þ sinðbp=2Þ if 0\b\2 as mentioned before.

According to Lukacs [11], we have convergence in the

distribution of ~̂phðj; sÞ towards ~̂p0ðj; sÞ by the continuity

theorem of probability.

As derived in this section, we can see, that under certain

assumptions on the probability density functions of the

waiting time distribution and the step length distribution

respectively, we are able to derive the fractional diffusion

equation, which generalized the derivative operator from

first or second order to arbitrary order in space and time.

For the case, that b ¼ 2 and a ¼ 1 the derived fractional

diffusion equation coincides with the standard diffusion

equation, given by

o

ot
p0ðx; tÞ ¼

o2

ox2
p0ðx; tÞ; ð32Þ

p0ðxÞ ¼ dðxÞ: ð33Þ

Note, that even though we did not cover the situation,

where a ! 2, it is possible to show, that the fractional

differential equation converges towards the standard wave

equation, i.e.

o2

ot2
p0ðx; tÞ ¼

o2

ox2
p0ðx; tÞ; ð34Þ

pðx; 0Þ ¼ p0ðx; tÞ; ð35Þ

which is covered by various authors in the literature. See

for example the work of Luchko [12], El-Sayed [13],

Mainardi [14] or Metzler and Nonnemacher [15].

4 The spectral Galerkin method

On of the standard methods for solving partial differential

equations is the Galerkin method. As before, we plug in an

ansatz for our solution into the original equation and

require the residual of the projection onto the space
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spanned by the test functions to vanish. Consider the one

dimensional diffusion equation

o

ot
uðx; tÞ � o2

ox2
uðt; xÞ ¼ f ðx; tÞ; ð36Þ

with homogeneous initial and boundary conditions. If we

further consider a space V, we obtain the weak formulation

of Eq. (62) by finding u 2 V such that

Aðu; vÞ ¼ FðvÞ 8v 2 V; ð37Þ

with the bilinear form

Aðu; vÞ ¼ hotu; viV þ hoxu; oxviV ð38Þ

and

FðvÞ ¼ hf ; viV : ð39Þ

We then seek solutions uN 2 VN where VN � V . The weak

problem in the subspace is then to find uN 2 VN such that

AðuN ; vNÞ ¼ FðvNÞ 8vN 2 VN : ð40Þ

If the bilinear form is continuous and coercive and F is

bounded, then it is well known, that by Cea’s lemma the

error of the approximation can be bounded by

jju� uN jj � infvN2VN
jju� vN jj: ð41Þ

This means, that we have the best approximation property

and the error bound only depends on the approximation of

the space. By choosing an appropriate basis we are then

able to achieve spectral convergence simply as a result of

the choice of basis functions.

5 The spectral Galerkin method of fractional
order

We will now review one of the main contributions to fully

spectral numerical methods in the context of fractional

differential equations. In their paper from 2009, Li and Xi

present a space-time spectral method for the solution of the

time fractional heat equation. Let us consider from now on

the one dimensional time fractional diffusion equation

0o
a
t uðx; tÞ � oxxuðt; xÞ ¼ f ðx; tÞ; ð42Þ

with ðx; tÞ 2 X :¼ K	 I ¼ ð�1; 1Þ 	 ð0; TÞ and

homogeneous initial and boundary conditions

uðx; 0Þ ¼ 0; ð43Þ

uð�1; tÞ ¼ uð1; tÞ ¼ 0: ð44Þ

Since we have the homogeneous initial and boundary

conditions, the Riemann–Liouville and Caputo derivative

coincide.

For the spectral expansion in space and time, Li and Xi

provide suitable basis polynomials. Let PMðKÞ and PNðIÞ
define the set of polynomials of degree M in space and N in

time, respectively. Since we assume uðoK; tÞ 
 0 as well as

uðx; 0Þ 
 0, we choose polynomials in space from

P0
MðKÞ ¼ PMðKÞ \ H1

0ðKÞ; ð45Þ

as well as for time

PE
NðIÞ ¼ fv 2 PNðIÞjvð0Þ 
 0g: ð46Þ

For sake of convenience, define the multiindex L ¼ ðM;NÞ
and

SL :¼ P0
MðKÞ � PE

NðIÞ: ð47Þ

Then the Galerkin problem is given by finding uL 2 SL
such that

AðuL; vLÞ ¼ FðvLÞ 8vL 2 SL: ð48Þ

However, it remains to specify the bilinear form in the

context of fractional derivatives. For A to be symmetric,

we need some way to symmetrize the scalar product

h0Da
t u; vi. We therefore cite the following two lemmas

from the original paper.

Lemma 1 For 0\a\1 and u 2 HaðIÞ, v 2 C1
0 ðIÞ we

have

0D
a
t u; v

� �
I
¼ u; tD

a
Tv

� �
I
: ð49Þ

Proof Applying integration by parts to the definition of

the scalar product yields

0D
a
t u; v

� �
I
¼

Z T

0

1

Cð1� aÞ
d

dt

Z t

0

uðsÞ
ðt � sÞa dsvðtÞ dt ð50Þ

¼ 1

Cð1� aÞ

Z t

0

uðsÞ
ðt � sÞa vðtÞ

� �T
0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0;sincev2C1
0

�
Z T

0

1

Cð1� aÞ

Z t

0

uðsÞ
ðt � sÞa dsv0ðtÞ dt

ð51Þ

¼ �
Z T

0

1

Cð1� aÞ

Z t

0

uðsÞ
ðt � sÞa dsv0ðtÞ dt: ð52Þ

By changing the order of integration and by employing the

fact, that for v 2 C1
0 the Riemann–Liouville definition and

the Caputo definition coincide, we further obtain

h0Da
t u; viI ¼ �

Z T

0

1

Cð1� aÞ

Z t

0

uðsÞ
ðt � sÞa dsv0ðtÞ dt ð53Þ

¼ �
Z T

0

1

Cð1� aÞ

Z T

t

v0ðtÞ
ðt � sÞa dtuðsÞ ds ð54Þ

¼ �
Z T

0

1

Cð1� aÞ
d

dt

Z t

0

vðtÞ
ðt � sÞa dtuðsÞ ds ð55Þ
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¼ u; tD
a
Tv

� �
I
: ð56Þ

h

Lemma 2 For all 0\a\1 and u 2 0H
1ðIÞ, v 2 0H

a=2ðIÞ
we have

0D
a
t u; v

� �
I
¼ 0D

a=2
t u; tD

a=2
t v

D E
I
: ð57Þ

Proof The idea is, to use the fact, that 0D
a
t u ¼

0D
a=2
t 0D

a=2
t u and Lemma 1. h

This yields the Galerkin problem that is considered in

the following. Try to find uL 2 SL such that

AðuL; vLÞ ¼ FðvLÞ 8vL 2 SL; ð58Þ

where the bilinear form is given by

Aðu; vÞ ¼ 0o
a=2
t u; to

a=2
T v

D E
X
þ oxu; oxvh iX: ð59Þ

It can then be shown, that in the given context, the

requirements for the Lax-Milgram theorem are satisfied

and convergence and uniqueness, as well as spectral con-

vergence rate by Cae’s lemma are ensured.

6 Choosing a basis

For the Galerkin method, we have to choose appropriate

bases in space and in time to guarantee the spectral con-

vergence. We will firstly consider the expansion in time

and the in space.

6.1 An Ansatz for the temporal expansion

To achieve good convergence time, we use a linear com-

bination of Jacobi polynomials. Note, that we use different

spaces for test and trial functions. Define

/jðtÞ ¼ J
�a=2;0
j

2t

T
� 1


 �
þ J

�a=2;0
j�1

2t

T
� 1


 �
; ð60Þ

wnðtÞ ¼
n

n� a=2
J�a=2;0
n

2t

T
� 1


 �
þ J

�a=2;0
n�1

2t

T
� 1


 �
;

ð61Þ

where both i and j run from 1 to N and J
a;b
k are the standard

Jacobi polynomials. Even though this choice might seem

arbitrary, it can be verified, that these polynomials form a

suitable basis that allows easy evaluation of the involved

integrals in combination with the fractional differential

operators. We note, that both, the set of wnðtÞ and /jðtÞ
form a basis of PE

NðIÞ.

6.2 An Ansatz for the spatial expansion

We will derive a spectral method that also solves the time

space fractional diffusion equation, using a Fourier ansatz

for the spatial variable. This method yields spectral con-

vergence for periodic problems, therefore no longer

requiring homogeneous spatial boundary conditions. Fur-

thermore, we will show that by letting a, the index of the

time derivative, approach two, our method can be used to

approximate solutions of the wave equation.

Summarizing this, we consider problems of the type

0o
a
t uðx; tÞ � o

2b
jxjuðt; xÞ ¼ f ðx; tÞ; ð62Þ

with ðx; tÞ 2 X :¼ K	 I ¼ ð0; 2pÞ 	 ð0; TÞ and
uðx; 0Þ ¼ u0ðxÞ; ð63Þ

uð0; tÞ ¼ uð2p; tÞ: ð64Þ

With a; b 2 ð0; 1Þ and consistency in the initial and

boundary conditions. The space fractional derivative o
2b
jxj

is defined by 2o
2b
jxjuðt; xÞ ¼ o2bx uðt; xÞ þ xo

2buðt; xÞ, i.e. the
symmetric combination of the left- and right-sided

fractional derivative. We can transform this problem into

a problem with homogeneous initial conditions by defining

vðx; tÞ :¼ uðx; tÞ � uðx; 0Þ and substituting uðx; tÞ ¼
vðx; tÞ þ uðx; 0Þ in the original equation to obtain

0o
a
t vðx; tÞ � o

2b
jxjvðt; xÞ ¼ f ðx; tÞ þ o

2b
jxjuðx; 0Þ ¼: ~f ðx; tÞ;

ð65Þ

vðx; 0Þ ¼ 0; ð66Þ

vð0; tÞ ¼ vð2p; tÞ: ð67Þ

Under the assumption, that the problem is periodic, our

initial conditions are symmetric and by denoting that the

fractional differential operator in space is also symmetric,

we can apply Lemma 1 to obtain the bilinear form

Aðu; vÞ ¼ 0o
a=2
t u; to

a=2
T v

D E
X
þ o

b
jxju; o

b
jxjv

D E
X
: ð68Þ

As shown by Zhan and Liu [16], in the case of the Riesz

fractional differential operator, which is up to scaling by a

constant identically to o
2b
jxj , the complex Fourier expansion

polynomials provide a suitable basis of eigenfunctions. Let

us therefore consider the space

PMðKÞ ¼ span eimx=
ffiffiffiffiffiffi
2p

p
;m 2 ð�M;MÞ

n o
: ð69Þ

This choice of basis polynomials is orthonormal with

respect to the standard scalar product on K, i.e.

heimx=
ffiffiffiffiffiffi
2p

p
; einx=

ffiffiffiffiffiffi
2p

p
iK ¼ dmn. Zhan and Liu have shown,

that the terms eimx are eigenfunctions of the considered

differential operator with eigenvalues ðimÞ2b and therefore,

hobjxjeimx=
ffiffiffiffiffiffi
2p

p
; objxje

inx=
ffiffiffiffiffiffi
2p

p
iK ¼ dmnm2b. This property is
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obviously desirable, since we are able to avoid the

calculation of the scalar products by numerical

quadrature rules and we are able to explore sparsity. The

ansatz for approximating u(x, t) is then given by

uðx; tÞ ¼
X1
i¼1

X1
j¼�1

uijfiðxÞ/jðtÞ �

XM
m¼�M

XN
j¼1

uijfmðxÞ/jðtÞ ¼: uLðx; tÞ;
ð70Þ

with fmðxÞ ¼ eimx=
ffiffi
ð

p
2pÞ and /jðtÞ defined as before. For

the convergence to be spectral we need u(x, t) to be

sufficiently smooth. Since we consider a periodic domain

with initial conditions uðx; 0Þ 6
 0, we will see that it is

necessary to require additional smoothness conditions on

u(x, 0), i.e. we want uðnÞðx; 0Þ ¼ uðnÞðx; 2pÞ for as many

orders of the derivative n as possible. This is not only

necessary for spectral convergence of the method, but

also for the approximation by the Fourier series in space,

since we would otherwise encounter the Gibbs

phenomenon.

7 Numerical results

We will now apply the derived method to several problems

and show convergence results as well as the phenomeno-

logical influence of the fractional order of the derivatives in

time and space, respectively. All examples will be based on

the general formulation in Eq. (62)

7.1 Fractional diffusion equations

At first, we will consider a standard scenario in diffusive

processes. Let us omit the source term f at first. For u(x, 0)

we assume a standard normal distribution as the initial

conditions, i.e. uðx; 0Þ ¼ expð�ðx� pÞ2Þ, shown in Fig. 2.

We then solve

0o
a
t vðx; tÞ � o

2b
jxjvðt; xÞ ¼ o

2b
jxj expð�ðx� pÞ2Þ; ð71Þ

vðx; 0Þ ¼ 0; ð72Þ

vð0; tÞ ¼ vð2p; tÞ: ð73Þ

The qualitative influence of the order of the fractional

derivative can be seen in Fig. 3, where all combinations of

equation (62) with a 2 f0; 0:5; 1g and 2b 2 f0; 1:5; 2g are

presented. For a ¼ 0 we only have diffusion in space and

the solution is time invariant, which corresponds to the first

row of plots. It can be seen, that the higher the value for b,
the more spread out the value of v(x) is over the spatial

domain. For a ¼ 0 and 2b ¼ 2 we then recover the equa-

tion ðI þ D2Þv ¼ D2u0ðxÞ.
If we now increase a, we obtain a time-dependent

problem. Similar to the case, where we increase b, an

increase in a causes higher diffusivity in time. For a ¼ 0:5

and 2b ¼ 1:5 we recover the fully time and space fractional

diffusion equation. Setting a ¼ 1 yields the classical time

derivative and together with 2b ¼ 2 we are left with the

classical heat equation.

Since our method is spectral in space and time,

respectively, we also expect spectral convergence of the

solution in both cases. However, we know that the con-

vergence rate of the spectral Galerkin approach depends on

the smoothness of the analytic solution to the problem.

Since the initial conditions have discontinuities in the

derivative at the periodic boundary, this might be a limiting

factor in the convergence rate. From Figs. 4a, 5, 6b we then

see the convergence results in dependency of the temporal

expansion order N, presented in the left column, and the

spatial expansion order M in the right column. The pre-

sented cases are a sample of all of the performed simula-

tions from Fig. 3. We only show the results, for the cases

where either on or two derivatives are of fractional order.

In Fig. 4a, b we set the temporal derivative a ¼ 0:5 and

leave the spatial derivative of integer order. In Fig. 5a, b,

the temporal derivative is the first derivative and we have a

fractional derivative in space with 2b ¼ 1:5. The last row

presents the results for the time and space fractional dif-

fusion equation in Fig. 6a, b. We are able to derive several

conclusions from the given convergence plots. From the

results in Figs. 4a and 6a, the convergence rate in time for

the fractional derivative is significantly slower, than for the

integer order case in Fig. 5a where we converge to machine
Fig. 2 Initial conditions for the results shown in Fig. 3
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precision for even low values of N. The results suggest, that

for non homogeneous initial conditions, the convergence

rate in time is reduced, given a 62 N. This behaviour is in

agreement with the theoretical analysis if we recall, that for

fractional order derivatives, the decay is algebraic and not

exponential. Therefore, any error in the initial conditions is

damped slower in the case where a ¼ 0:5. This is also in

agreement with the observations made for the case, where

Fig. 3 Solution u(x, t) of the diffusion equation for different values of a and 2b

Fig. 4 Convergence result for fixed a ¼ 0:5 and b ¼ 1:0. a Convergence in time. b Convergence in space
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we will later use homogeneous initial conditions, but a

right-hand side that is also non zero as for this simulation,

shown in Figs. 12a, 13 and 14b.

If we now also consider the convergence in space, we

observe that the methods converges fast at first, but then

flattens out for M greater 12. This observation can be

justified with recalling, that our analytic solution is not

smooth enough, due to discontinuities in the derivatives at

the periodic boundary. On the other hand we note, that the

convergence rate is almost independent of the order of the

derivative in space, which means, that our method is able to

Fig. 5 Convergence result for fixed a ¼ 1:0 and b ¼ 0:75. a Convergence in time. b Convergence in space

Fig. 6 Convergence result for fixed a ¼ 0:5 and b ¼ 0:75. a Convergence in time. b Convergence in space
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recover solutions for fractional spatial order derivatives in

the same quality as for the integer order case.

To support our claim, that the spatial convergence rate is

reduced due to discontinuities in the solution, we consider

initial conditions that allow a smoother solution in the next

case. If we multiply the original initial conditions with

xkð2p� xÞk we obtain smooth derivatives at the boundary

up to order k. This smoothed initial conditions can be seen

in Fig. 7, where we also scale the initial conditions with

ð2pÞ�k
to keep the order of magnitude of the solution.

The results for this modified problem are then presented

in Figs. 8a, 9, 10b. Since we do not introduce a new time-

dependent quantity, the convergence in time remains

unchanged in comparison with the original problem.

However, for the convergence in space, we no observe

spectral convergence throughout all expansion orders M.

Again, the convergence in space is independent of the

value for b.
To obtain faster spectral convergence in time, we now

consider a case with solution u(x, t) that fulfils uðx; 0Þ 
 0.

This can be achieved, by introducing homogeneous initial

conditions with a right-hand side f(x, t) that also satisfies

f ðx; 0Þ 
 0. In this example, we consider the case where we

use a right-hand side f(x, t) that combines the smoothed

initial conditions with forcing term to set f ðx; 0Þ 
 0. One

possible f(x, t) that satisfies these requirements is given by

f ðx; tÞ ¼ tkðT � tÞk � xkð2p� xÞk expð�ðx� pÞ2Þ; ð74Þ

and is visualized in Fig. 11. The convergence results for

this computation are given in Figs. 12a, 13, 14b. We note,

that the convergence in space stays almost unchanged.

However, for the convergence in time we now observe

much faster spectral convergence, due to the fact that our

solution vanishes for t ¼ 0. Comparing Figs. 12a and 14a

to 13a, we still observe faster convergence for the integer

order derivative case. A possible, heuristic explanation for

Fig. 7 Initial conditions with continuous derivatives at the periodic

boundary for k ¼ 5

Fig. 8 Convergence result for fixed a ¼ 0:5 and b ¼ 1:0. a Convergence in time. b Convergence in space
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this might be given, by considering fundamental property

of fractional derivatives. Since integer order derivatives are

local operators and fractional derivatives operate globally,

this also influences the way that errors are propagated

throughout the domain.

7.2 Approximating solutions of the wave equation

Since the theoretical analysis of the spectral fractional

Galerkin methods assumes, that a=2 2 ð0; 1Þ and not

a 2 ð0; 1Þ, we can approach values of a ¼ 2 arbitrary close.

Fig. 9 Convergence result for fixed a ¼ 1:0 and b ¼ 0:75. a Convergence in time. b Convergence in space

Fig. 10 Convergence result for fixed a ¼ 1:0 and b ¼ 0:75. a Convergence in time. b Convergence in space
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However, for a ¼ 2 the method breaks down, since the

Jacobi polynomials are not defined for this case. Setting

a ¼ 1:999 and 2b ¼ 2, we approach the classical wave

equation ottuðx; tÞ � oxxuðx; tÞ ¼ f ðx; tÞ. For the case of

zero source term and sinusoidal initial conditions, the

solution of the system is given in Fig. 15 and for a higher

frequency of the initial conditions and a longer domain in

time in Fig. 16. These experiments suggest, that the

method outlined can be used to compute solutions of the

fractional diffusion equation, but also approaching solu-

tions of the fractional wave equation as a ! 2.

A further theoretical analysis of the rate of convergence

and the applicability of the method to a broader variety of

test cases is work in progress and will be investigated in

future work.

Fig. 11 Smooth right hand side

with zero values on spatial and

temporal boundaries

Fig. 12 Convergence result for fixed a ¼ 0:5 and b ¼ 1:0. a Convergence in time. b Convergence in space
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8 Summary

In this work we have derived the fractional diffusion

equation and explained its applicability in the modeling of

diffusion processes in nature that are no longer

memorylessness. This fundamentally changes the under-

lying behavior of the process and make the problem

numerically harder to solve. We chose an appropriate

spatial and temporal ansatz to expand our solution and

make use of the Galerkin method, now applied in the

Fig. 13 Convergence result for fixed a ¼ 1:0 and b ¼ 0:75. a Convergence in time. b Convergence in space

Fig. 14 Convergence result for fixed a ¼ 0:5 and b ¼ 0:75. a Convergence in time. b Convergence in space

102 Int J Adv Eng Sci Appl Math (2018) 10(1):90–104

123



fractional setting, where we used a Fourier expansion in

space. Since these are eigenfunctions of the corresponding

fractional differential operator as well as orthogonal with

another, sparsity in the resulting matrices can be ensured.

Numerical experiments where performed for a variety of

test cases and show the expected spectral convergence for

problems with smooth initial conditions. Furthermore, we

applied the derived method to fractional partial differential

equations that approach the classical and fractional wave

equation by letting the index of the time derivative

approach the value of two arbitrarily close, thus obtaining a

method that handles problems with diffusive characteristics

as well as wave related phenomena. While this was done in

a qualitative manner, these first observations indicate that

the presented method works for a 2 ½0; 2Þ, and not only for

a 2 ½0; 1�. Thus extending the applicability towards the

regime, governed by the wave equation.
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