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Abstract Shape memory polymers (SMPs) are soft active

materials that have an ability to retain a temporary shape,

and revert back to their original shape when triggered by a

suitable stimulus, typically an increase in temperature.

These materials are finding wide use in a variety of fields

such as biomedical and aerospace engineering; hence it is

important to model their mechanical behavior. Crystalliz-

able shape memory polymers (CSMPs) is an important

subclass of SMPs, and their temporary shape is fixed by a

crystalline phase, while return to the original shape is due

to the melting of this crystalline phase. In our earlier work,

we have studied the mechanical behavior of CSMPs within

a mechanical setting by considering the original amorphous

network above the recovery temperature as a hyperelastic

material. In this article, we extend our earlier work to

incorporate the temperature-dependent viscoelasticity into

the developed constitutive model to study the mechanical

behavior of CSMPs. The viscoelastic behavior of the

polymers at high temperature is simulated through a rate

type model. Furthermore, the model of the semi-crystalline

polymer after the onset of crystallization is developed

based on the mixture theory and the theory of ‘‘multiple

natural configurations’’. In addition, we have applied the

model to a specific boundary value problem, namely uni-

axial extension. The shape memory cycles of the CSMPs

under different stretch rates have been studied. The results

are consistent with what has been observed in experiments.
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1 Introduction

Shape memory polymers (SMPs) are smart polymeric

materials that have an ability to retain a temporary shape

and return to their original shape when triggered by an

external stimulus [1]. The external stimuli can be temper-

ature [2], light [3, 4] or chemical environment [5]. Com-

pared to shape memory alloys, SMPs possess many

advantageous features, such as modest cost, high durability

and easy to manufacture [6]. In addition, SMPs can be

made biodegradable and biocompatible by tuning them

chemically [7]. Based on these advantageous features,

SMPs are finding a wide range of applications in various

fields, such as actuators and sensors in microelectrome-

chanical system (MEMS) [8], as arterial stents in the

biomedical field [9], and in additive manufacturing [10], to

name a few.

Crystallizable shape memory polymers (CSMPs) are a

significant subclass of thermally activated SMPs in which

the temporary shape is fixed by a crystalline phase while

recovery to original shape is due to the melting of this

crystal phase [11]. The schematic illustration of the shape

memory cycles of CSMPs is shown in Fig. 1. State 1

denotes the original undeformed shape. Above the recovery

temperature Tr the polymers exhibit a rubber-like behavior

due to the presence of chemical cross-links. On deforming

above Tr, the polymer molecules between the cross-links

stretch (State 2). If the polymer is now cooled down to a

temperature below Tr, crystallization takes place and the

crystals are formed in this deformed shape. The onset of
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crystallization is accompanied by a sharp drop in the stress

(from State 2 to State 3). After unloading (State 3 to State

4) the polymer remains in a deformed shape (temporary

shape) with a small amount of recovery. This recovery is

due to the presence of two components (amorphous and

crystalline) each with their stress-free states. The amor-

phous part has a tendency to retract to its original shape

while the crystalline part prefers the deformed shape. As

the crystalline part is a lot stiffer, the recovery strain is

small. When the polymer is heated back to a temperature

above Tr the crystallites melt returning to their original

amorphous state, the polymer retracts to its original shape.

The significant efforts in the constitutive modeling of

CSMPs have been published in the literature (e.g. [12–15]).

However, in most cases, the CSMPs in their rubbery-state

(above recovery temperature Tr) are modeled as a hypere-

lastic material. Though most of the CSMPs exhibit hypere-

lastic behavior above their recovery temperature, severe

viscoelastic behavior has been observed in a certain class of

CSMPs [16]. The mechanical behavior of CSMPs will be

much more complicated with viscoelastic behavior since the

loading and unloading process would be rate dependent. In

addition, the effects of phase transition and temperature on

relaxation time during the shape memory cycles have to be

taken into consideration. Therefore, tomodel themechanical

behavior of CSMPs we need to characterize their behavior

both above and below the recovery temperature as well as the

process of crystallization and melting. Above the recovery

temperature, the polymers behave like viscoelastic materials

and a rate typemodel is required to simulate theirmechanical

behavior. Besides, the effect of temperature and crystal-

lization on the relaxation time of the material has to been

incorporated into the rate type model. When cooled down to

below their recovery temperature, the crystallizable part of

the polymer will crystallize. Crystallization does not all take

places at an instant but generally takes place in a gradual

manner. In order to model this, we have to make constitutive

assumptions for the mixed region. This mixture of the

crystalline and amorphous phases is treated as a constrained

mixture. We allow co-occupancy of the phases in an aver-

aged sense as is done in tradition mixture theory [17]. In

addition, it is assumed that the amorphous and crystalline

components are constrained to move together, which for

polymers is a reasonable assumption as the same molecule

traverses both the amorphous and crystalline phase and the

presence of cross-links and crystallites prevents the diffusion

of individual polymer molecules. Moreover, the orientation

of the crystals depends on the deformation of the polymer

during the crystallization process, and in turn the orientation

of the crystals is a key element that determines the

mechanical properties of this semi-crystalline polymer.

Lastly, we note that after crystallization the material is a

mixture of various phases with different stress-free states.

For this reason, the model for crystallization used in this

work has been developed within the frame-work of multiple

natural configurations [18]. The material responses of

materials belonging to many different classes have been

modeled using this framework, some of them are: multi-

Fig. 1 Schematic illustration of

crystallizable shape memory

polymers
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network polymers [19], metal plasticity [20], viscoelastic

materials [21, 22], crystallization in polymers [23], crystal-

lizable SMPs [12], and light-activated SMPs [24]. Classical

elasticity and linear viscous fluids arise as simple cases

within this theory.

In this paper, we extend our earlier work on CSMPs with

a focus on studying the mechanical behavior of the mate-

rials when viscoelasticity is taken into consideration. The

model developed is used to solve a specific boundary value

problem, namely uniaxial extension. The rest of the paper

is arranged in the following order. Section 2 introduces the

finite deformation constitutive model. In Sect. 3 we apply

our model to uniaxial extension boundary value problems.

The results of model predictions are presented in Sect. 4.

We draw a conclusion in Sect. 5.

2 Constitutive model

As we discussed above, in order to model the mechanical

behavior of the crystallizable SMPs, we have to charac-

terize the original viscoelastic amorphous network and the

subsequently formed semi-crystalline network due to

crystallization. In addition, the kinetics of crystallization

and associated time–temperature history have to be studied.

The original amorphous network is modeled as finite strain

temperature-dependent viscoelastic material with a multi-

branch model. Here, we assume that the material only has

one relaxation mechanism, but with the tacit understanding

that our model can be easily extended to model specific

viscoelastic materials by adding multiple relaxation

mechanisms. The 1-D rheological model is shown in

Fig. 2. For the original amorphous networks, we have one

equilibrium branch to simulate the hyperelastic behavior

and one non-equilibrium branch, associated with one

relaxation mechanism, to simulate the viscoelastic behav-

ior. Based on the theory of multiple ‘‘natural configura-

tions’’, the crystalline phases are energy elastic materials

that are formed in the different stress-free states (natural

configurations). Thus, for the crystalline networks we use a

series of equilibrium branches with thermal switches in

parallel to simulate their mechanical behavior.

2.1 Original amorphous network

In Fig. 2, an equilibrium branch and one non-equilibrium

branch are arranged in parallel. Thus the total Cauchy

stress of amorphous network is given as:

Ta ¼ �pIþ Teq þ Tneq ð1Þ

2.1.1 Hyperelastic behavior of the equilibrium branch

The incompressible Neo-Hookean model is used for the

hyperelastic behavior. The Cauchy stress tensor for the

incompressible Neo-Hookean material is given by:

Teq ¼ �pIþ lB ð2Þ

where l is the shear modulus of equilibrium branch and B

is the left Cauchy–Green tensor.

2.1.2 Viscoelastic behavior of the non-equilibrium branch

For the viscoelastic behavior of the non-equilibrium bran-

ches, the deformation gradient can be further decomposed

into an elastic part and a viscous part, shown in Fig. 3:

F ¼ FjpFjR ð3Þ

where FjR is a relaxed configuration obtained by elastic

unloading by Fjp . The Cauchy stress of non-equilibrium

branch Tneq is given by:

Tneq ¼ �pIþ l1Bjp ð4Þ

Bjp is the left Cauchy–Green tensor and can be solved from

the evolution equation given by:

Fig. 2 1D rheological model of crystallizable shape memory

polymers

Fig. 3 Natural configurations associated with a single viscoelastic

non-equilibrium branch
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_Bjp � LBjp � BjpL
T ¼ l1

g1

3

tr B�1
jp

� � I� Bjp

0
@

1
A ð5Þ

where L is the velocity gradient from the original config-

uration jR to the current configuration jc(t), l1 and g1 are

the shear modulus and viscosity of the non-equilibrium

branch, respectively. The viscosity g1 is a function of

temperature and crystallinity. It will be discussed later in

Sects. 2.1.3 and 2.3. The details about the derivation of

Eq. (5) are referred to Rajagopal and Srinivasa [25] and

Rao and Rajagopal [26].

2.1.3 Temperature dependent relaxation time

The relaxation time of the non-equilibrium branch is

temperature dependent, for polymer melts it is commonly

described through the following relationship [23]:

g1 ¼ �g1 � exp Lh
1

h
� 1

hR

� �� �
ð6Þ

In the above equation, h is the thermodynamic

temperature of the material, �g1 is the viscosity at a given

reference temperature hR, and Lh is a constant.

2.2 Crystallization rate

Typically, to model the crystallization process in a full

thermodynamics framework we would have to prescribe an

activation criterion that depends on various thermodynamic

variables. After the activation criterion is met the polymer

begins to crystallize and the rate of crystallization comes

out of the thermodynamics associated with the problem

[13]. In this paper, however, we directly prescribe a crys-

tallization rate equation, as the main purpose of this paper is

to understand the mechanical behavior of the CSMPs.

2.3 Semi-crystalline network

The crystallization does not all take places at an instant but

generally takes place in a gradual manner. In order to

model this, we make following constitutive assumptions.

First, we assume a homogenous crystallization process and

this can be realized through cooling the polymer in an

isothermal experimental environment. Besides, we assume

that the crystallized material is born in a stress-free state

and the newly formed crystallites behave like an elastic

solid. There is a fair amount of previous research publi-

cations supporting this assumption for polymers undergo-

ing crystallization [17]. In addition, it is assumed that the

amorphous and crystalline phases are constrained to move

together, which is a reasonable assumption for polymers.

Last, we assume that the Cauchy Stress contributed by the

different networks is additive. Based on the above

assumptions, the Cauchy Stress of the mixture is given by:

T ¼ �pIþ Ta þ Tc

¼ �pIþ 1� að Þ lBþ l1Bjp

� �

þ 2q
Z t2

t1

FjcðsÞ

owcðsÞ
oCjcðsÞ

FT
jcðsÞ

da
ds

ds

ð7Þ

where wc(s) is the Helmholtz potential of the crystalline

phase, CjcðsÞ is the right Cauchy Green tensor from the

original configuration to the configuration that the crystalline

phases were formed in (‘‘natural configuration’’) and a is the
crystallinity. The integral is introduced to capture the

evolution of the ‘‘natural configurations’’ if crystallization

takes place while the polymers are being deformed. For a

more detailed discussion of the Helmholtz potential of

crystalline phases and the derivation of the stress tensor,

please see Rao and Rajagopal [27, 28]. Now we assume a

specific form of Helmholtz potential function for crystalline

phases. It is given as:

wcðsÞ ¼ c11ðI1 � 3Þ þ c12ðJ1 � 1Þ2 þ c13ðK1 � 1Þ2 ð8Þ

where c11, c12, c13 are material constants and I1 is the first

invariant of Cauchy–Green tensor. The invariants J1 and K1

are given by:

J1 ¼ njcðsÞ � CjcðsÞnjcðsÞ and K1 ¼ mjcðsÞ � CjcðsÞmjcðsÞ ð9Þ

where njcðsÞ and mjcðsÞ are eigenvectors of CjcðsÞ . Then we

substitute Eqs. (8) and (9) into Eq. (7), the stress of the

semi-crystalline network can be then given as:

T ¼ �pIþ Ta þ Tc

¼ �pIþ ð1� aÞ lBþ l1Bjp

� �

þ 4q
Z t2

t1

c11BjcðsÞ

da
ds

ds

þ 4q
Z t2

t1

FjcðsÞ ½c12ðJ1 � 1ÞnjcðsÞ � njcðsÞ

þ c13ðK1 � 1ÞmjcðsÞ �mjcðsÞ �FT
jcðsÞ

da
ds

ds ð10Þ

Finally, we note that the crystallinity will pin down the

viscoelastic behavior of the amorphous networks. After

crystallization, the relaxation mechanism will be given as:

g1 ¼ �g1 � exp Lh
1

h
� 1

hR

� �� �
� exp Laað Þ ð11Þ

where La is a constant and a is the crystallinity.

2.4 Melting rate

After the onset of melting, the crystallites melt and the

polymer transforms back to the amorphous network. As

more and more of the crystallites melt the behavior of the
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polymer is increasingly rubber-like as more of the polymer

is released from the crystalline phase. As with the crys-

tallization rate, it is possible to derive this equation from

thermodynamic considerations, similar to the methodology

used to derive the crystallization rate equation in Rao and

Rajagopal [23, 26]. Since for this paper that is not the

primary thrust, we will prescribe a rate equation for melt-

ing that mimics the general melting behavior.

3 Application to uniaxial extension

In this section, we apply our model to study the mechanical

behavior of CSMPs subjected to uniaxial extension. In the

deformation cycle, the polymer is deformed to an inter-

mediate shape, and while the strain is kept constant the

temperature is reduced. Once the temperature is below the

recovery temperature Tr, the crystallization is initiated.

After the crystallization, due to the existence of the crys-

talline phases, the polymer will remain in its temporary

shape when the external load is removed. The polymer can

return to its original shape through melting the crystalline

phase by heating or an increase in the temperature. For the

uniaxial extension problems, the left Cauchy-Green tensor

B is given by:

B ¼ diag K tð Þ2 1

K tð Þ
1

K tð Þ

� �
ð12Þ

The velocity gradient L then can be calculated as:

L ¼ _FF
�1 ¼ diag

K

1þ Kt
� K

2 1þ Ktð Þ � K

2 1þ Ktð Þ

� �

ð13Þ

where K is the stretch rate and K(t) = 1 ? Kt. The left

Cauchy-Green tensor of crystalline phases BjcðsÞ is given

by:

Bjc sð Þ ¼
K tð Þ2

K sð Þ2
K sð Þ
K tð Þ

K sð Þ
K tð Þ

 !
ð14Þ

where K(s) is the stretch in the stress-free state (‘‘natural

configuration’’) that that crystalline phase is formed. Also

we already know the invariants I1, J1 and K1 can be solved

from Bjc sð Þ . Substituting Eqs. (8), (12), (13) and (14) into

Eqs. (5) and (10), and with the proper boundary conditions

and time–temperature history, the problem can be solved.

The Cauchy stress in the direction of extension is given as:

T11 ¼ ð1� aÞ l K tð Þ2� 1

K tð Þ

� �
þ l1 B11

jp �B22
jp

� �� 	

þ lc1

Z t

tc1

K tð Þ2

K sð Þ2
�K sð Þ

K tð Þ

" #
da
ds

dsþ lc2

Z t

tc1

K tð Þ2

K sð Þ2
� 1

" #
K tð Þ
K sð Þ

� 	2
da
ds

ds

ð15Þ

where lc1 = 2qc1 and lc2 = 4qc2. Next we will derive

equations for each stage of the shape memory deformation

cycle for uniaxial extension.

3.1 Loading

During the loading process, the material is above the

transition temperature and totally amorphous. Hence, from

Eq. (15) in the absence of crystallinity the stress reduces to:

T11 ¼ l K tð Þ2� 1

K tð Þ

� �
þ l1 B11

jp � B22
jp

� �
ð16Þ

For the case when the final stretch is known, by

prescribing the stretch as a function of time, the

progression of stress is readily known from Eq. (16) by

solving Eq. (5).

3.2 Crystallization under constant strain

In this article, we consider the case when the crystallization

takes place while the strain is kept constant. When crys-

tallization is done under constant strain, there is no change

in the stretch:

K sð Þ ¼ K tc1ð Þ tc1\s\t\tc2 ð17Þ

where, tc1 is the time when crystallization is initiated, t is the

current time, s is some intermediate time and tc2 is the time at

which crystallization ends. Using, Eq. (15) in Eq. (17) and

noting that the crystalline phase is formed in a stress-free

state and hence the contribution to the stress from the

crystalline phase, while the stretch is kept constant, is zero

results in the following equation for the stress:

T11 ¼ 1� a tð Þð Þ l K tð Þ2� 1

K tð Þ

� �
þ l1 B11

jp
� B22

jp

� �� 	

ð18Þ

We have to note here when strain is kept constant, the

stress will be relaxed due to viscoelasticity and it can be

solved from the evolution equation. As we discussed

above, we assume that the rate at which crystallization

takes place is given by a crystallization rate equation, with

the tacit understanding that such an equation can be derived

from a firm basis in thermodynamics. The specific equation

chosen to mimic the rate of crystallization is given through

a differential equation for the mass fraction of the

crystalline phase and is given by:

a tð Þ ¼ 0; for 0\t\tc1

da
dt

¼ G t � tc1ð Þ a0 � að Þ for tc1\t\tc2
ð19Þ

where, in the above equation G is a constant, a0 is the

maximum crystallinity possible in the material and tc1 is

the time at which crystallization is initiated. The above
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equation is solved numerically using a standard numerical

scheme for ordinary differential equations.

3.3 Unloading

It is important to note that during unloading, the material is

a mixture of two different phases, the crystalline and

amorphous phases with each having different stress-free

states. Hence both phases will not unload to a stress-free

state though the mixture will be stress-free. The equation

for the stress during unloading is given as:

T11 ¼ ð1� aÞ l K tð Þ2� 1

K tð Þ

� �
þ l1 B11

jp
� B22

jp

� �� 	

þ lc1

Z tc2

tc1

K tð Þ2

K sð Þ2
� K sð Þ

K tð Þ

" #
da
ds

ds

þ lc2

Z tc2

tc1

K tð Þ2

K sð Þ2
� 1

" #
K tð Þ
K sð Þ

� 	2
da
ds

ds

ð20Þ

In the above equation the limit of the integral is now tc2,

i.e. the time at which crystallization ended and a0 is the

final crystallinity. Here, we rewrite the Eq. (20) as:

T11 ¼ ð1� aÞ l K tð Þ2� 1

K tð Þ

� �
þ l1 B11

jp � B22
jp

� �� 	

þ lc1K tð Þ2L1 � lc1
1

K tð Þ

� �
L2 þ lc2K tð Þ4L3 � lc2K tð Þ2L1

ð21Þ

where L1, L2 and L3 are integrals that are defined through:

L1 ¼
Z tc2

tc1

1

K sð Þ2
da
ds

ds

L2 ¼
Z tc2

tc1

K sð Þ da
ds

ds

L3 ¼
Z tc2

tc1

1

K sð Þ4
da
ds

ds

ð22Þ

The values of these integrals are estimated numerically

and remain unchanged during the unloading process as

their integrands only depend on the stretches and

crystallization rates during crystallization.

3.4 Melting

After unloading, the polymer is in its temporary shape. Return

to the original shape is accomplished by melting the crys-

talline phase. This is done by heating the polymer to above the

melting temperature of the crystalline phase. The Cauchy

stress can be solved with Eq. (21) as well while the incre-

mental values of crystallinity are obtained from the prescribed

melting equation for crystallinity, which is given by:

da
dt

¼ G t � tm1ð Þ 0� að Þ for tm1\t\tm2 ð23Þ

where in above equation tm1 is the time at which melting is

initiated and tm2 is the time at which melting ceases.

4 Results and discussion

In this section, we present the results of the model pre-

dictions for the shape memory cycles subjected to uniaxial

extensions. Due to the lack of experiment data, here we

prescribe the time–temperature history shown in Fig. 4.

Segment ‘a’ to ‘b’ is above the recovery temperature and

the polymer is loaded to an intermediate shape at this

temperature. At the point ‘b’, we start to cool down the

polymer and the crystallization is initiated at tc1 and ceases

at tc2. Segment ‘c’ to ‘d’ is the unloading process at the

room temperature. During segment ‘d’ to ‘e’, the material

is heated up and the melting starts at tm1 and ends at tm2.

During both the cooling and heating processes, we assume

a linear rate of temperature change. Figure 5 shows the

history of crystallization and melting solved through

Eq. (19) and Eq. (23) based on the prescribed time–tem-

perature history. In addition, the material parameters used

in the calculation are shown in Table 1.

Figure 6 shows the time versus the Cauchy stress of the

CSMP under a uniaxial extension with a deformation rate

of 0.005/s. Here, we can see that during the cooling process

(before crystallization) since we keep the strain constant

the stress will decrease due to the viscoelastic nature of the

material. After the onset of crystallization, the stress

relaxed much faster. This is because the crystalline phase

formed in stress-free state and released the energy of the

material. Figure 7 shows the engineering strain versus

Cauchy stress in the same cycle. We find that the new
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material is significantly stiffer as compared to the original

amorphous material and retains the temporary shape after

removal the external load.

Figure 8 shows the time versus the Cauchy stress of

the material under a uniaxial extension with a defor-

mation rate of 0.005/s. Results of different final crys-

tallinity are taken into consideration. We note that the

drop in the stress observed during crystallization

increased for larger final crystallinity. Figure 9 shows

the engineering strain versus the Cauchy stress of the

material for the same cycle. Also, the material with more

crystallinity is stiffer than the material with less crys-

tallinity, this can be discerned by looking at the slope

during unloading.
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Table 1 List of material parameters

Parameters Value Description

l (MPa) 1.0e6 Shear modulus of the equilibrium branch

l1 (MPa) 1.0e6 Shear modulus of the non-equilibrium branch

�g1 (MPa s) 250e6 Initial viscosity of the non-equilibrium branch

Lh 1.0e4 Constant for temperature dependent viscosity

La 10 Constant for crystallinity on viscosity

lc (MPa) 50e6 Shear modulus of the crystalline phase

lc1(MPa) 75e6 Shear modulus of the crystalline phase for

anisotropy

G 4e-5 Reaction constant of the crystallization and

melting
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Figure 10 shows the time versus Cauchy stress with

30% final crystallinity but at different deformation rates.

We can observe that with viscoelastic behavior the loading

process is rate dependent. The unloading process shows

hyperelastic behavior due to the existence of stiffer elastic

crystalline phases.

5 Conclusion

In this work, we extend our earlier work on CSMPs to

incorporate the temperature-dependent viscoelasticity into

the developed constitutive model. The viscoelastic

behavior of CSMPs is simulated through a rate type model

developed by Rajagopal and Srinivasa [25]. The model of

the semi-crystalline polymer network is developed based

on the mixture theory and the theory of ‘‘multiple natural

configurations’’. In addition, we apply our developed

framework to study the uniaxial extension boundary value

problems. Our analytical results are consistent with

experimental observations.
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