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Abstract Numerical simulations are performed for two-

dimensional steady and pulsatile flow of blood through a

channel with single as well as double stenosis (with varying

gap) under aortic conditions (Re = 4000). A shear-thinning

model based on experimental data is used for blood. The

governing equations are developed in terms of vorticity and

stream function and solved using a finite difference

scheme with full-multigrid algorithm. Peak wall shear stress

increases with both length of stenosis, and gap between

stenosis; however, the effect of increasing length is much

more compared to gap. Pulsatility plays a key role by shifting

the location of peak wall shear stress from the primary to the

secondary stenosis, and back again, during a cycle. This

result is of importance when developing a model for plaque

growth based purely on mechanical factors.

Keywords Blood � Yeleswarapu model �
Multiple stenosis � Pulsatile flow � Wall shear stress

1 Introduction

Over the last two decades the role of hemodynamics in the

progression of atherosclerosis disease has been an inter-

esting topic of study in fluid mechanics. Atherosclerosis

occurs due to deposition of lipids and accumulation of

macrophages beneath the endothelial layer of the artery.

This reduces(stenosis) the lumen area of the artery which

may lead to increases in pressure and blood velocity across

the stenosis in large as well as in medium sized arteries

[17]. Computational studies show that a recirculation zone

(or flow separation zone) occurs downstream of the

stenosis, and the size of the zone depends on percentage

stenosis and Reynolds number [22]. Recirculation zones

are characterized by low wall shear stress, and low wall

shear stress is reported to result in an atherogenic pheno-

type [13]. It is reported that multiple stenosis may occur

downstream of single arterial stenosis [24] and, in such

cases, the severity of the primary stenosis most affects the

pressure gradient across the artery [8]. Thus, the growth of

atherosclerotic plaques depends on hemodynamic factors at

downstream of the stenosis such as wall shear stress and

flow streamlines which are disturbed by primary stenosis

[18]. The growth- whether it is in the flow direction,i.e., by

increasing length of stenosis, or in the direction normal to

flow,i.e., by increasing radius or percentage stenosis-

depends on the size and nature of recirculation behind

stenosis. It is difficult to predict the progression of stenosis

using the knowledge of hemodynamic factors because, thus

far, there is no formula for the same. Prior to developing a

formula/equation, it is essential to determine what aspects

of a single stenosis influence the flow and wall shear stress

downstream, and also whether stenosis multiplicity will

affect these variables. We do so in this article using com-

putational simulations to assess the effect of multiple

stenosis in pulsatile flow.

Blood flow through an artery with single or double

stenosis have been studied using computations by many

authors. Early studies used the Navier-Stokes model (aka

Newtonian model) to describe the rheology of blood, and we

review those first. Computational studies on the steady flow

of Newtonian fluid at Re\200 in a rigid-walled pipe with

axisymmetric stenosis were performed by [6] and validated
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using available experimental data; An approximate solution

is given in [12]. Blood flow in the arteries is unsteady in

nature and is predominantly pulsatile. For pulsatile flow in a

rigid-walled pipe with a large axisymmetric stenosis (75 %

occlusion), [35] used finite-element method(FEM) and

showed the presence of recirculation which moved from

downstream of the stenosis to upstream of the stenosis as the

pressure gradient varied from positive to negative. The effect

of double stenoses with gap was studied in [11] for Re of

5–200, and concluded that the value of maximum wall vor-

ticity at the second constriction is always less than that at the

first constriction. FEM with predictor corrector time-

marching was used for pulsatile flow in a rigid pipe with a

mild axisymmetric stenosis, and the effect of varying

stenosis percentage, stenosis length, Reynolds number (Re),

and Womersley number (Wo) on flow variables was docu-

mented in [34]. The effect of stenosis morphology on three-

dimensional (3-D) pulsatile flow in severely stenosed

(B75 %) vessels was investigated by [31]. They reported

that, along with percentage stenosis, surface irregularity and

stenosis aspect ratio also affect the plaque stresses. A flexible

elastic wall for the pipe was incorporated in [7], and per-

formed simulation of 3-D pulsatile flow that showed collapse

of the wall. Steady flow in a rigid-walled pipe with double

stenosis, and the impact of the second stenosis and gap

between stenosis on pressure drop, wall shear stress, and

reattachment length were studied in [14].

It is well known that blood exhibits non-Newtonian

characteristics like shear-thinning [5] and viscoelasticity

[33]. Models for the flow of non-Newtonian fluid through

stenosed pipes have been widely studied computationally.

The models considered include Casson [4] and Herschel-

Bulkley [3, 29]: these concluded that flow is affected both

by percentage stenosis and wall flexibility. Flow of power-

law model in a stenosed pipe was simulated by [16], and

reported that irregular stenosis experienced greater wall

shear stress than cosine shape stenosis (for a given per-

centage stenosis). Further, studies with shear-thinning fluid

models consistently reported flow separation and recircu-

lation downstream of stenosis: [30] for power-law model,

and [19] for Carreau-Yasuda model. The steady flow of a

shear-thinning Oldroyd-B model (proposed in [36]) in a

rigid-walled mildly stenosed pipe was simulated by [26].

Simulations for various shear-thinning Oldroyd-B type

models in a rigid-walled stenosed pipe were performed in

[2]. They observed significant differences arising in the

results, compared to Newtonian fluid, due to the shear-

thinning viscosity and the relaxation time.

Although more advanced constitutive models to

describe blood have since been developed in [1], and [23],

we will use the shear-thinning relation proposed by

Yeleswarapu [36] as a first step in our numerical studies of

flow in double-stenosed channel. In pulsatile flow in a

cylindrical pipe, Yeleswarapu’s shear-thinning viscoelastic

model gives higher flow rate amplitude, and an extra

phase-lag, as compared to the classical Oldroyd-B model

[25]. A Marker and-Cell finite difference scheme [9] is

used to solve the pressure and momentum balance equa-

tions for steady flow (Re� 100) using Yeleswarapu’s

model in a rigid-walled pipe with a cosine-shaped stenosis:

Results were reported for the axial variation of wall shear

stress, and the effect of stenosis size (B33 %) and Re

(B100) on peak wall shear stress. We showed that shear-

thinning fluid using Yeleswarapu relation will predict

higher shear stress than Newtonian fluid in [22] and [21]:

this extended the study of the shear-thinning model from Re

\150 and stenosis\10 %, done in [15], to Re of 4000 and

stenosis of 25 %.

The present work is a computational study of 2D steady

and pulsatile flow of blood in a rigid-walled channel with

double stenosis. We study flow with double stenosis, and

document the influence of stenosis size, length, and gap

between double stenosis on wall shear stress: this is done in

anticipation of developing a purely mechanical model for

atherosclerosis growth. Blood is modeled as a shear-thin-

ning fluid using the relation proposed by [36]. Governing

equations are formulated in terms of stream function and

vorticity, and solved using full-multi grid algorithm for a

finite-difference formulation. We consider Re as 4000

which is characteristic of blood flow in the human aorta,

and consider stenosis of size (percentage) B25 %. We

compare the results from shear-thinning and Newtonian

fluid for the pulsatile flow case with double stenosis.

2 Problem formulation

2D-steady and pulsatile blood flow through square channel

with double stenosis is considered in a cartesian co-ordi-

nate system (x, y). The hydraulic diameter of the channel is

equal to the hydraulic diameter of a cylindrical pipe (in our

case, human aorta), and the Reynolds number is set to

4000, so that the results from these simulations can be

compared with flow in human aorta. We assume flow is

fully developed at the entrance and center line (y ¼ 0) is

considered as the plane of symmetry. The complete

geometry of the flow domain is given in Fig. 1. The shape

of the stenosis is described by a cosine function. Thus the

function of the wall, f(x), is given by:

f ðxÞ ¼ 1; x�ðL1 � L0Þ; ð1Þ

f ðxÞ ¼ 1� 1

2
h 1þ cos

pðx� L1Þ
L0

� �
;

ðL1 � L0Þ\x\ðL1 þ L0Þ;
ð2Þ
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f ðxÞ ¼ 1; ðL1 þ L0Þ� x�ðL2 � L0Þ; ð3Þ

f ðxÞ ¼ 1� 1

2
h 1þ cos

pðx� L2Þ
L0

� �
;

ðL2 � L0Þ\x\ðL2 þ L0Þ; ð4Þ

f ðxÞ ¼ 1; x�ðL2 þ L0Þ: ð5Þ

In our simulations, we set the half-width of the channel to

be H = 0.0125 m, which is the same as the radius of the

human aorta [17]. The length of the section is set to be L =

30H. L1 ¼ 11:0H is the location of the peak in first

stenosis. In our simulations we vary the the percentage

stenosis (100 h/H), and length of stenosis L0 (for given

percentage) = 1H, 1.5H, 2H for single and double stenosis.

For the case of double stenosis, we also vary the gap

between stenosis Lg = 0H, 2H, 4H. The location of peak in

secondary stenosis L2 is calculated as L2 ¼ L1 þ 2L0 þ Lg.

2.1 Model for blood

Blood is modeled as an incompressible, homogeneous fluid

which exhibits shear thinning properties. The model is

described by:

s ¼ �p1þ ldð _cÞ½Ovþ ðOvÞT �; ð6Þ

where 1 is the unit tensor, and v is the velocity field. The

shear-rate is given by:

_c ¼ 1

2
tr½Ovþ ðOvÞT �2

� �1
2

: ð7Þ

The shear dependent dynamic viscosity of blood is ld and

is a function of _c , as described in [36]:

ldð _cÞ ¼ g1 þ g0 � g1ð Þ 1þ lnð1þ K _cÞ½ �
1þ K _c

: ð8Þ

The above equation has been experimentally proved to give

good results for blood flow in rigid-walled pipes [37]. It

contains three parameters: K ¼ 14:81 sec denotes the

shear-thinning index, g0 ¼ 0:0736 Pas denotes the

asymptotic zero shear-rate viscosity as _c ! 0, and g1 ¼

0:005 Pas denotes the asymptotic infinite shear-rate vis-

cosity as _c ! 1.

2.2 Governing equations

To study the steady and pulsatile flow in a multiple ste-

nosed channel, the governing equations considered are the

standard mass and momentum balance. The flow field is

given by: v ¼ ud êx þ vd êy. The variables in the governing

equations are non-dimensionalised as follows:

u ¼ ud

U
; v ¼ vd

U
; x ¼ xd

H
; y ¼ yd

H
; x0 ¼

U

H
;

t ¼ tdU

H
; l ¼ ld

l1
; w ¼ wd

w0

; x ¼ xd

x0

; Re ¼ qUH
l1

:

ð9Þ

The subscript ‘d’ in Eq. (9) refers to the dimensional

quantities. U is the centerline velocity at the inlet, and H is

the half channel width. The stream function (w) and

vorticity (x) are calculated from the velocity profile. The

viscosity is non-dimensionalised by dividing with g1, and

is given below:

lð _cÞ ¼ 1þ k� 1ð Þ 1þ lnð1þ K _cÞ½ �
1þ K _c

; ð10Þ

where k ¼ g0
g1
.

The dimensional governing equations for the given

blood model are described as:

The continuity equation is

oud

oxd
þ ovd

oyd
¼ 0 ð11Þ

X-momentum equation:

q
oud

otd
þ ud

oud

oxd
þ vd

oud

oyd

� �
¼ � opd

oxd
þ ldð _cÞ

o2ud

ox2d
þ o2ud

oy2d

� �

þ 2
oud

oxd

old
oxd

� �
þ old

oyd

oud

oyd
þ ovd

oxd

� �� �

ð12Þ

Y-momentum equation:

q
ovd

otd
þ ud

ovd

oxd
þ vd

ovd

oyd

� �
¼ � opd

oyd
þ ldð _cÞ

o2vd

ox2d
þ o2vd

oy2d

� �

þ 2
ovd

oyd

old
oyd

� �
þ old

oxd

oud

oyd
þ ovd

oxd

� �� �

ð13Þ

The stream function (wd) and vorticity (xd) are calculated

from the velocity using the following formulae:

ud ¼
owd

oyd
ð14Þ

vd ¼ � owd

oxd
ð15Þ

Fig. 1 Schematic diagram of stenosed channel
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xd ¼
ovd

oxd
� oud

oyd
ð16Þ

The dynamic vorticity balance equation is obtained from

the momentum balance equations by subtracting o=oy

(Eq. 12) from o=ox (Eq. 13). The non-dimensionalized

stream-function vorticity formulation is given by Eqs. (17)

and (18).

x ¼ � o2w
ox2

þ o2w
oy2

� �
: ð17Þ

ox
ot

þ oðuxÞ
ox

þ oðvxÞ
oy

� �

¼ 1

Re

h
l

o2x
ox2

þ o2x
oy2

� �

þ ol
oy

ox
oy

þ ol
ox

ox
ox

� �
þ 2

o2l
oyox

ov

oy
� ou

ox

� �

þ o2l
ox2

� o2l
oy2

� �
ov

oy
þ ou

ox

� �i
: ð18Þ

We now transform the physical domain into the

computational domain as shown in Fig. 2. This is done

using the transformation:

f ¼ x; ð19Þ

g ¼ y

f ðxÞ : ð20Þ

The velocity components in the transformed coordinates

are obtained (using chain rule):

u ¼ 1

f

ow
og

ð21Þ

v ¼ � ow
of

þ gf 0

f

ow
og

: ð22Þ

Equations (17) and (18) are written in the transformed

coordinates as:

x ¼ �
h o2w
of2

þ 2g
f 0

f

� �2

�g
f 00

f

 !
ow
og

þ ½1þ ðgf 0Þ2�
f 2

:
o2w
og2

 !
� 2g

f 0

f

� �
o2w
ofog

i
;

ð23Þ

ox
ot

¼ � oðuxÞ
of

� gf 0

f

oðuxÞ
og

þ 1

f

oðuxÞ
og

� �
þ lð _cÞ

Re

:
o2x

of2
þ 2g

f 0

f

� �2

�g
f 00

f

 !
ox
og

"

þ ½1þ ðgf 0Þ2�
f 2

:
o2x
og2

 !
� 2g

f 0

f

� �
o2x
ofog

#

þ 1

Re

ol
of

� gf 0

f

ol
og

� �
ox
of

� 1

Re

gf 0

f

ol
of

� ð1þ ðgf 0Þ2Þ
f 2

ol
og

" #
ox
og

þ 2

Re

1

f

o2l
ofog

� gf 0

f 2
o2l
og2

� f 0

f 2
ol
og

� �

: � ou

of
þ gf 0

f

ou

of
þ 1

f

ov

og

� �

þ 1

Re

h o2l
of2

þ
h
2g

f 0

f

� �2

�g
f 00

f

i ol
og

þ
ðgf 0Þ2 � 1
h i

f 2
o2l
og2

� 2g
f 0

f

� �
o2l
ofog

i

:
1

f

ou

og
þ ov

of
� gf 0

f

ov

og

� �
; ð24Þ

respectively. In the time-dependent vorticity equation, _c
that appears in the viscosity, lð _cÞ, is given by:

_c ¼ U

H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ou

of

� �2

þ 1

f

ov

og

� �2
" #

þ 1

f

ou

og
þ ov

of

� �2

vuut : ð25Þ

The initial and boundary conditions used to solve Eqs. (23)

and (24) are given next.

2.3 Boundary conditions

The inlet boundary conditions for steady flow and pulsatile

flow case are different. The boundary conditions for steady

flow case are as follows:
Fig. 2 Transformation of physical into computational domain

64 Int J Adv Eng Sci Appl Math (January–March 2016) 8(1):61–69

123



Fully developed flow at inlet (f ¼ 0) at initial time:

u ¼ 1� g2;

v ¼ 0;

w ¼ g� g3

3
;

x ¼ 2g:

ð26Þ

Symmetry condition at centerline (g ¼ 0):

ow
of

¼ 0 ð27Þ

No slip condition at rigid wall (g ¼ 1):

ow
of

¼ ow
og

¼ 0 ð28Þ

The updated vorticity at the rigid wall is derived from

Eq. (23):

xwall ¼ �2
o2w
og2

1þ ðgf 0Þ2
h i

f 2
; g ¼ �1 ð29Þ

A periodic boundary condition in the axial direction is

specified at the outlet (f ¼ 1). By periodic boundary con-

dition, we mean that the inlet flow is repeated at the outlet

and this is a standard boundary condition for extended flow

domain used in computational fluid dynamics literature

(see [28, 32]).

In the pulsatile flow problem, the steady state solution

obtained at the end of pseudo-time stepping for the model

in consideration (Shear-thinning or Newtonian) is used as

the inlet velocity at the initial step.

3 Numerical solution

The numerical scheme used here has been detailed earlier

in [22]. The governing Eqs. (23) and (24) are discretized

using finite difference scheme. A second-order central

difference scheme is used to discretized advective terms in

dynamic vorticity equation: upwinding is also present in

case high velocities are encountered, but this is not the case

for the study done here. A second-order central differenc-

ing scheme is applied to discretize diffusive terms of

Eq. (24) and all the terms of Eq. (23). To solve dynamic

vorticity equation, an explicit time marching procedure is

used in the simulation. The steps in algorithm of numerical

solution are as follows:

1. Initialize all variables such as ‘w’ , ‘u’, ‘v’ ,‘x’ at all
grid points using initial & boundary conditions.

2. Update ‘x’ at the new time step by solving Eq. (24)

using an explicit time marching technique.

3. Evaluate ‘w’ at the next time step by solving the

Poisson equation for vorticity (Eq. 23) using values

from previous time step. Here we used iterative

scheme to solve vorticity equation. A full multi-grid

technique is used to accelerate the convergence. A

convergence criterion of residual less than 10�8 is

used.

4. Calculate, ‘u’, ‘v’ at all grid points using Eqs. (21) and

(22) and also update ‘x’ using Eq. (29) at wall

boundary.

These steps are repeated so as to obtain the flow variables

in successive time steps.

3.1 Validation and grid independence

Validation of the code was performed as detailed in [22]:

results were obtained for oscillatory flow using the new

code for the same parameters as in [25], and the difference

in peak wall shear stress (jsjw) was only 2 %. Grid inde-

pendence of the computed solution was verified by com-

paring peak wall shear stress on three grids (f� g):
256� 32, 512� 32, and 512� 64. It was found that, for

the case of double stenosis separated by a finite gap

(Lg ¼ 4L0; L0 ¼ 2), there was only 4.4 and 4.7 % differ-

ence in jsjw between the 256� 32 grid and the two other

finer grids. We therefore concluded that no significant

change in jsjw will be seen with the finer grid, and reported

all results for the 256� 32 grid. Note that the time step

required in a study with the 512� 64 mesh will be much

less than that for the 256� 32 mesh: the CFL number

(UDt=Dx) for the 256� 32 grid is 0.0643 which is much

smaller than 1.

4 Results and discussion

In steady flow, the effects of the restriction length ‘L0’ of

stenosis as well as size of (percentage) stenosis on peak

wall shear stress and downstream recirculation were

reported for single and double stenosis. We also report the

change in peak wall shear stress due to variation of gap

between stenosis. Next, in pulsatile flow, we studied vari-

ation of peak wall shear stress over primary and secondary

stenosis with time and different Womersley numbers for

double stenosis.

4.1 Steady flow

4.1.1 Variation with length (for single stenosis)

Atherosclerotic plaque growth coincides with zones of low

wall shear stress. So we first studied the effect of different
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restriction length and percentage stenosis on peak wall

shear stress (WSS) in a single stenosed channel (see [22]

for variation of velocity & wall shear stress along axial

length). In Fig. 3a, peak WSS decreases with decreasing

percentage stenosis for single stenosis. In Fig. 3b it is seen

that, for given percentage stenosis, the peak WSS increases

with increase in restriction length L0 and seems to

asymptote as length increases.

4.1.2 Variation with length and gap (for double stenosis)

A secondary stenosis may occur in the downstream artery

because the primary stenosis creates recirculation and

changes the dynamics of flow. Hence, assuming that a

second stenosis is formed, we studied the variation of peak

WSS, and effect on streamlines, due to presence of the

second stenosis. The stream line contours in steady flow for

single and double stenosis are reported in Fig. 4 for 25 %

stenosis, L0 ¼ 1:5H and Reynolds number of =4000. In this

case,the recirculation zone is located downstream of both

the primary stenosis as well as secondary stenosis which

leads to zones with low wall shear stress; however, further

downstream, and away from the recirculation zone, the

shear stress recovers its initial pre-stenosis value.

The presence of the second stenosis (separated by gap)

significantly reduces the wall shear stress felt on the pri-

mary stenosis (Fig. 5a): this is because the recirculation

bubble for each stenosis slows down the flow at the peak

stenosis location, and more recirculation bubbles (with

little gap between them) lead to further slowing down of

the velocity at the primary stenosis. However, when the

gap between the recirculation bubbles increases the effect

of the second stenosis is not so much as we shall see in

10 15 20 25 30
% stenosis

0

5

10

15

20

25

30

|τ|w

Lo = 1.0 
Lo = 1.5
Lo = 2.0

(a)

1 1.2 1.4 1.6 1.8 2
Lo

10

15

20

25

30

|τ|w

25% stenosis

(b)

Fig. 3 Variation of peak WSS with %stenosis and L0 (single stenosis,

Re = 4000)

Fig. 4 Stream lines for steady flow in stenosed channel; L0 ¼ 1:5; Re
= 4000
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Fig. 6b. Further, the recirculation bubble between two

stenosis of same size reduces the velocity of downstream

fluid. Thus, the primary stenosis attained higher peak wall

shear stress than the secondary stenosis (see Fig. 5b). It is

also noted from Fig. 6a that the WSS at primary stenosis

increases with increases in either the percentage stenosis or

stenosis length: Increase in length (for 25 % stenosis) from

L0 to 2L0 changed peak WSS at primary stenosis by

57.02 %. In constrast, the gap (Lg) between the two

stenosis plays only a subdued role on peak WSS. The peak

WSS on primary stenosis increases with gap ‘Lg’ until

Lg ¼ 4L0 but the difference is only 2.39 % compared to

zero gap (Fig. 6b); there is negligible change (0.068 %) in

peak wall shear stress with further increases in gap length.

4.2 Pulsatile flow

Blood flow in the aorta is unsteady and pulsatile [10], and

we consider pulsatile flow in double stenosed channel The

non-dimensionalised pulsatile pressure gradient and

Womersley number are described by:

� op

of
¼ A 1þ 0:1sin

2p
T

t

� �� �
: ð30Þ

Wo ¼ H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� 2pq
Tl

�s
: ð31Þ

We have already shown [22] that the solution for the

above pressure gradient is pulsatile for single stenosis.

We note that the difference of peak WSS between shear

thinning and Newtonian fluid is finite (5.63 % at mid-

cycle) for Wo ¼ 16, and Re = 4000 for single stenosis

(L0 ¼ 1), and a similar difference (5.75 %) is seen at the

primary stenosis (for double stenosis, L0 ¼ 1) in Fig. 7a.

Importantly, for double stenosis with gap 4L0 and L0 ¼ 1,

the peak WSS at primary stenosis is higher than that at

secondary stenosis at t = 0 in Fig. 7b. However it is

clearly observed that higher peak WSS shifts to the sec-

ondary stenosis after t = 24 in first half-cycle. In the next

half cycle, it is observed that the higher peak WSS shifts
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|τ|
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/ |τ
| w

-s
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(b) Effect of primary stenosis on secondary

Fig. 5 Variation of WSS with % stenosis (double stenosis, Re =

4000)
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(a) Effect of length on peak WSS
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w
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(b) Effect of Lg on peak WSS

Fig. 6 WSS (at primary stenosis) versus L0 & Lg for Re = 4000
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back to the same location on the primary stenosis after t =

60. This suggests that pulsatility may play an important

role in plaque growth behind stenosis. Figure 8 shows that

at primary stenosis percentage difference of the mean

peak WSS (obtained at t ¼ 2
3
T) between shear thinning

and Newtonian decreases with Womersley number

(2.79 % at Wo ¼ 16).

5 Conclusion

We have obtained a computational solution for 2D, steady

and pulsatile flow in a double stenosed channel. In steady

flow, it was observed that the peak wall shear stress

increases with stenosis length L0 and achieved higher value

in single stenosis case compared to primary stenosis in

double stenosis case. Further wall shear stress was higher at

primary stenosis compared to secondary stenosis, which is

consistent with the results of [11]. Stenosis length was

more important compared to gap between stenosis in

affecting the wall shear stress: 57.02 % increase for dou-

bling of length from L0 to 2L0 compared to 2.39 % dif-

ference for increase in gap from 0 to 4L0 (and further

increase in gap produced near 0 % difference).

Our study extends the results in [15] in that we have

validated the pulsatile flow results, clearly showed the

presence of recirculation at higher Reynolds number, and

documented the effect of Womersley number on peak

WSS. Also, we found that, for a given Re (4000), the wall

shear stress at a single stenosis of length 2L0 is greater than

the wall shear stress experienced by two stenoses each of

length L0: this is a useful supplement to the experimental

result of [27] who observed that, for a given pressure

gradient, flow reduction is greater for multiple short

stenosis than for single stenosis of equivalent length.

Importantly, it was seen that pulsatility may play an

important role in dynamics of plaque growth in

atherosclerosis because the location of peak WSS shifts

from primary to secondary stenosis during a time cycle.

This is an important point to consider when developing a

model for atherosclerosis based purely on mechanical

factors, and we will take this up in a subsequent paper.

5.1 Limitations and extensions

The entire study is based on the premise of laminar flow in

the human aorta at Re = 4000. This assumption can be

questioned because aortic flows are experimentally noted

to be on the edge of turbulence [10]. We have therefore

neglected the onset of turbulence, and assumed laminar

flow based on the discussion in [20] who state that con-

ditions like variable viscosity and cell concentration can

prevent turbulence from developing. We also assume that

the channel walls are highly smooth so as to prevent the

onset of turbulence even in the presence of stenosis. A

proper method to test this assumption will involve formu-

lating the equations for channel flow in 3D, and solving

numerically to see if the solution exhibits turbulence: this is
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however, beyond the scope of our study. Further, the

hemodynamic factors such as WSS for 2D study will be

different from those obtained in a more advanced 3D study,

but we do not expect the qualitative nature of our conclu-

sions to change even if our study is preliminary compared

to a 3D study which also neglects turbulence.
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