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Abstract The field of coarse-grained simulations of

biopolymers and membranes has grown rapidly in recent

years. Industrial groups manufacture and use polymers in

fields as diverse as chemicals processing and personal care

products, while academic researchers are interested in

uncovering fundamental relations between molecular

structure and macroscopic material properties. Biological

membranes such as the cellular plasma membrane are of

great interest to life scientists because of their role in cel-

lular function. Experimental systems are usually polydis-

perse, and the cellular plasma membrane contains hundreds

of distinct molecule types. Many coarse-grained simulation

techniques have been used to explore amphiphilic mem-

brane material properties and dynamics, but they typically

contain only one or two species of molecule. They also

require the precise configuration of the molecular compo-

nents of a simulation to be specified in advance by the user

to avoid the time-consuming stage of aggregate self-

assembly. We describe here how a planar amphiphilic

membrane is created by synthesizing each of its constituent

molecules in situ according to user-defined growth rules

that set the composition and molecular polydispersity, and

subsequently simulated using dissipative particle dynam-

ics. We explore the effects of polydispersity on the mem-

brane material properties. The ability to synthesize and

simulate polydisperse molecular aggregates may provide a

simpler path to relating simulated and natural amphiphilic

aggregates.
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1 Introduction

Naturally-occurring and synthetic membranes are often

composed of many types of molecule. Biological mem-

branes can contain hundreds of types of phospholipid with

many distinct types of protein embedded in them [1, 2].

The reason for this high degree of compositional variability

is not entirely clear but may be related to the requirement

of membrane-embedded proteins for specific lipidic envi-

ronments in order to function properly. Synthetic mem-

branes are also frequently composed of many types of

molecule because their composition can be tuned to give

them desirable material properties that cannot be achieved

with only one or two components.

Computer simulations are a powerful tool for exploring

the material properties of natural and artificial membranes.

Although atomistic Molecular Dynamics simulations are

the most accurate [3–5] their computational cost increases

hugely beyond the molecular scale. Coarse-grained simu-

lation techniques have been developed to go beyond this

limitation and are able to simulate amphiphilic membranes

(and other aggregates including micelles, vesicles, etc.)

containing hundreds of thousands of molecules [6]. Many

of these techniques have been applied to phospholipid

membranes because of their biological interest.

Lipids are amphiphilic molecules that consist of a

hydrophilic head group connected to one or more

hydrophobic tails. Coarse-grained simulations of lipids

simplify their molecular structure by replacing the chemi-

cally-complex head group by one ormorewater-lovingHead
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beads, and representing the hydrocarbon tails by chains of

Tail beads. They thus retain their amphiphilic nature (hy-

drophilic part chemically bonded to a hydrophobic part), and

their molecular shape. This shape property was quantified by

Israelachvili [7] as the ratio of the molecular volume to the

product of the hydrophilic head group cross-sectional area

times the hydrophobic tail length, and provides a simple

means of predicting the preferred type of supramolecular

aggregate formed by such amphiphiles.

Although these techniques differ in the way they coarse-

grain the atomic degrees of freedom of amphiphiles to a

small number of properties, a comprehensive review of the

field [8] revealed the somewhat surprising result that mem-

brane material properties on length scales much larger than

the molecular size are surprisingly indifferent to the specific

details of the coarse-graining technique provided that the

lipids’ amphiphilic nature and molecular shape were

retained. Consequently, structural properties of amphiphilic

bilayers have been studied using coarse-grained molecular

dynamics [9, 10], DPD [8, 11–13], solvent-free molecular

dynamics [14], and solvent-free DPD [15] among others.

Coarse-grained simulations have also been used to explore

dynamical phenomena including domain formation [16, 17],

fission of vesicles driven by amphipathic inclusions [18],

vesicle fusion [19–23], nanoparticle translocation through a

membrane [24], and spontaneous formation of aggregates

from amphiphiles in solution [6, 25, 26].

All of these studies simulate membranes containing only

one or two distinct molecular types, despite biological

membranes, such as the cellular plasma membrane or

synaptic vesicles, containing hundreds of distinct molecular

species. Simplemodel systems are studied because it is time-

consuming to construct a membrane initial state containing

many molecular types, and popular simulation tools require

the user to perform the initial state construction themselves.

Alternatively, the amphiphiles can be randomly distributed

throughout a water-filled volume of space and the simulation

run until a membrane, for example, spontaneously self-

assembles. However, this requires a long simulation time to

form a planar bilayer or vesicle [6], and this time increases at

least as the linear dimension cubed for larger systems.

We present here a solution to this problem that is based on

the observation that a common technique for speeding up

force calculations in particle-based simulations can also be

used to synthesize the required polydisperse molecular sys-

tem that is to be simulated. Spatial Domain Decomposition

reduces the computational burden of calculating pairwise,

additive, short-range forces between particles in a finite

volume of space [3, 4]. It consists of partitioning the volume

into a cuboidal grid of space-filling cells whose size is chosen

to be equal to or slightly greater than the maximum range of

the forces. A particle in one grid cell can then only interact

with other particles in its own cell and those in the 26 nearest-

neighbour cells. The computational cost of calculating all N2

possible interactions among N particles (most of which will

be zero if the range of the force is much less than the linear

dimension of the simulation box) is reduced to linear in N.

We note that this technique works only for short-range for-

ces, and therefore cannot be applied to electrostatic inter-

actions. In our case, instead of calculating forces between

pairs of particles, the algorithm growsmolecules by bonding

each particle to a growing molecule according to a growth

rule specified by the user.

A similar idea has recently been used to assemble novel

(inorganic) composite materials for simulation. Altendorf

and Jeulin [27] have synthesized dense fiber systems, in

which long fibers are grown with a predefined orientational

distribution, and Gaiselmann et al. [28] have created 3D

morphologies of silicon ‘‘corals’’ in eutectic Al–Si alloys.

The goal in both cases is to automate the creation of complex,

three-dimensional, fibrous morphologies, for subsequent

simulations that measure the dependence of material prop-

erties on microstructure. We illustrate the usefulness of this

idea in biomembrane simulations by synthesizing a poly-

disperse amphiphilic bilayer containing several species of

lipid with different hydrophobic tail lengths. The membrane

is grown in place, hydrated by filling the remaining space in

the simulation box with water particles, and the whole sys-

tem simulated usingDPD. As a first example of the effects of

polydispersity, we explore how the variation in the lipid

species’ preferred area per molecule modifies the membrane

elastic properties and propensity to form distinct domains.

2 Methods

2.1 Dissipative particle dynamics technique

Dissipative particle dynamics is an off-lattice, coarse-

grained simulation technique created in 1992 by Hooger-

brugge and Koelman [29] and subsequently refined by

other workers [30, 31] for the simulation of fluids. It can be

thought of as a modification of classical molecular

dynamics in which the inter-atomic forces are replaced by

soft inter-particle forces, and the particles are reinterpreted

as molecular groups, or fluid elements referred to as beads.

Each bead has a mass m0, and experiences three non-

bonded forces with other beads that are within a fixed range

a0—a conservative, dissipative and random force. All

simulations are performed in the NVT ensemble at a

reduced temperature of kBT = 1, where kB is Boltzmann’s

constant. Physical quantities are rendered dimensionless

using appropriate combinations of the three parameters—

m0, a0, kBT. The conservative force quantifies the chemical

identity of the beads. For amphiphilic systems, such as

lipid membranes and diblock copolymers, this means
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specifying the hydrophobicity or hydrophilicity of each

bead, and the relative solubility of one species in each of

the others. The dissipative and random forces act as a

thermostat that ensures the equilibrium states of the fluid

are Boltzmann distributed. All three forces are central,

pairwise additive, short-range, and conserve the total

momentum of the beads. Beads are connected into mole-

cules using Hookean springs together with an optional

bending stiffness. Unless otherwise stated, the values of the

non-bonded DPD interaction parameters are taken from

Table 1, [16], and the Hookean spring parameters (spring

constant k2 and unstretched length l0) that bind two adja-

cent beads in a molecule are k2a0
2/kBT = 128, l0/a0 = 0.5,

and the bond bending potential parameters (strength k3 and

preferred angle u0) are k3/kBT = 20, u0 = 0.0. Once the

forces are specified, the equations of motion of the beads

are solved by integrating Newton’s second law forward in

time. We refer the reader to previous work for more details

[12, 31].

Here we are interested in exploring the equilibrium

properties of amphiphilic membranes composed of possi-

bly many types of molecule. A planar bilayer membrane

containing the desired number of molecules is pre-assem-

bled in the centre of the simulation box and sufficient water

particles are randomly placed in the remaining volume so

that the reduced bead density is qa0
3 = 3. However, unlike

previous work [16] in which the membrane is composed of

only one or two molecule types, we grow the amphiphilic

molecules in the membrane to the desired degree of poly-

dispersity and subsequently perform the DPD simulation.

Unless otherwise stated, we simulate each system for

400,000 DPD steps, discarding the first 200,000 steps and

constructing ensemble averages from at least 1000 inde-

pendent samples. We use the equilibrium area per molecule

in the membrane and the in-plane molecular diffusion

constant to set the length and time scales in the simulation.

For phospholipid bilayer simulations, we use the molecular

shape H3(T6)2 to represent a typical lipid such as DMPC

[16]. The head group of the lipid is composed of several

hydrophilic H beads to which are attached two tails,

composed of hydrophobic T beads. Each T bead represents

two or three methyl groups per DPD tail bead as in pre-

vious work [12]. In our simulations of polydisperse mem-

branes, the molecular composition is specified using lipids

of the form HN(TM)2 where N is the number of H beads per

lipid and M is the number of T beads in each tail. Unless

otherwise stated, the conservative and dissipative interac-

tion parameters are taken from Table I in [16].

2.2 Synthesizing amphiphilic membranes in situ

The process of synthesizing a bilayer membrane composed

of H3(T6)2 lipids is illustrated in Fig. 1, but the same

technique is applicable to any polydisperse set of mole-

cules. The user specifies the number of types of molecule

to be grown, the molecular architecture of each type, and

the number of molecules of each type. The dimensions of

the simulation box and the initial thickness of the mem-

brane are also specified. Next, the mid-plane of the mem-

brane is placed at the centre of the simulation box with its

normal in the Z direction. The first bead of each molecule

is placed on the vertices of an hexagonal lattice covering

the membrane outer surfaces (the location of the hydro-

philic heads) and defined to be a growing tip. A growth rule

is defined for each molecular type that specifies how the

tips in a molecule grow. A tip can perform two types of

growth: (1) a new bead is created and linearly attached to

it, and this subsequently becomes the new tip; or (2) the tip

is split into two tips each of which acts as a centre for

subsequent growth. In this way, molecules with arbitrary

tree-like shapes can be grown, although looping structures

are not currently possible. Each newly-attached bead is

given coordinates that are within a distance equal to the

unstretched length of the Hookean spring from the existing

tip, but may be allowed a small jitter in all three

coordinates.

As all molecules grow simultaneously, the growth

scheme ensures that beads are not created intersecting in

Table 1 Summary of the bead-bead conservative interaction parameters used in the simulations unless otherwise noted in the text

HA TA HB TB W HC TC HD TD

HA 40

TA 50 25

HB 40 50 20

TB 50 25 50 20

W 35 75 35 75 25

HC 40 50 40 50 35 30

TC 50 22.5 50 22.5 75 50 20

HD 40 50 40 50 35 40 50 50

TD 50 22.5 50 20 75 50 25 50 20
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space. However, for DPD simulations this requirement is not

onerous as the forces are soft, and the DPD thermostat

relaxes the positions of any beads initially placed too close

to each other as the integration proceeds. Figure 2 shows the

initial configuration of a membrane containing 806 lipid

molecules with architectures HA3(TA4)2 and HB3(TB6)2,

where the subscripts identify the different bead types. For

lipids with different tail lengths, as illustrated here, the first

head beads are aligned in a plane, and the tails project into

the bilayer core according to the number of tail beads. Small

gaps occur near the terminal beads of shorter lipids, but are

rapidly annealed away as the simulation proceeds, and do

not affect the equilibrium membrane properties.

We can easily show that the computational costs of

growing and simulating the molecules are both propor-

tional to the total number of beads in the molecules. Let us

consider the computational cost of adding a bead to a

growing molecule. Let there be N beads in a simulation

box of volume L3 and divide this up into small grid cells

with side length d, where d is chosen to be equal to (or just

larger than) the range of the non-bonded forces in DPD.

Consider the bead at the growing end of a molecule to be in

one grid cell. In order to add the next bead to the molecule

we need to find a free space around the existing bead. This

requires searching the grid cell containing the bead and the

26 nearest neighbour grid cells because, by construction,

the grid cell size is at least as large as the range of the force

between beads. Given that the average number of beads per

grid cell (the bead density) is q * O(1) in DPD, the

number of checks per bead is 27 9 q, so the total number

of checks is 27 9 N 9 q * O(N). Precisely the same

number of calculations must be performed when summing

the non-bonded forces between two DPD beads. Once the

new bead has been placed it is connected to the previous

bead by a Hookean bond with user-defined spring constant

and unstretched length. These parameters can be chosen by

the user but the unstretched length should be less than or

comparable to the grid cell size to avoid excessive dis-

placements of the beads at the start of the simulation.

Once the membrane molecules have been grown in situ,

water beads are randomly placed in the remaining volume

to the desired total density, and the initial state is complete.

The system is then simulated using the DPD scheme used

in our previous work [12] and the material properties of the

membrane extracted [16]. We note here that this procedure

is easily extended for use with branched polymers, star

polymers or other complex molecular architectures.

3 Results

We consider a simulation box of size 24 9 40 9 32 a0
3

where a0 is the range of the DPD non-bonded forces, and

assemble the membrane as described in Sect. 2. The

Fig. 1 Cartoon of the sequence of steps in synthesizing a lipid bilayer

membrane. The first bead of each lipid is placed on an hexagonal

lattice (A) whose spacing is chosen so that molecules are close but not

intersecting. The growth rule for each molecule is then executed (B,

C) to add beads to the growing tips as described in the text. Once the

lipid molecules in the membrane have been created (D), the

remaining space in the simulation box is filled with water beads to

the desired density, and the initial state is complete

Fig. 2 Illustration of an initial state of a membrane containing 806

molecules of H3(T4)2 lipids (red head/orange tail) and 806 of H3(T6)2
lipids (yellow head/green tail). Note that the molecules are initially

randomly arranged in the two leaflets of the membrane. The tails of

the shorter lipids do not extend to the bilayer midplane but these

packing defects rapidly equilibrate during the simulation. (All

membrane snapshots are generated using PovRay—www.povray.org)

(colour figure online)
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average bead density is set to qa0
3 = 3 beads/unit volume.

This box shape is chosen to minimise the effects of the box

symmetry on the domain shapes (if present). We take the

H3(T6)2 lipid to represent a dimyristoylphosphatidylcholine

(DMPC) lipid, so that each DPD tail bead represents 3–4

methyl groups. Default values for the bead–bead conser-

vative interaction parameters are taken from [16] and

summarized in Table 1, and modified values are noted in

the text. The dissipative and random force parameters, as

well as the Hookean spring and bending stiffness param-

eters, are listed in Table 1 of Shillcock and Lipowsky [12].

The length and time scales for the simulations are set

from the mean area per molecule and in-plane lipid dif-

fusion constant as in previous work [16]. We find that the

area per molecule at zero tension for H3(T6)2 is

A/N = 1.26 a0
2, and using the experimental value of

0.6 nm2 as previously gives a0 = 0.7 nm. The dimen-

sionless in-plane diffusion constant is found to be Ds/
a0
2 = 0.005 that leads to a natural DPD time-scale of

s = 0.5 ns. We use an integration time-step of

0.02 9 s = 0.01 ns to ensure stability of the integrator.

Interestingly, a single-core simulation of 400,000 time-

steps, corresponding to 4 ls of real time, currently requires

25 CPU-hours on an Intel Xeon 2.6 GHz whereas 100,000

time steps of the same molecular system required 80 CPU-

hours in [16].

We first checked that our code reproduces the material

properties of single-component membranes found previ-

ously [16]. We measured the area stretch modulus of the

bilayers using the technique of Goetz and Lipowsky [9],

which was also used in our previous work [16]. In this

method, the surface tension of a bilayer is calculated by

integrating the lateral stress profile across the membrane

and extracting the area stretch modulus from a least-

squares fit to the surface tension curve near the zero-ten-

sion crossing point. Because the surface tension is a non-

linear function of the area per molecule, we only use points

near the zero crossing. We perform independent simula-

tions at different areas per molecule, and extract 3 values of

the surface tension separated by 100,000 DPD time-step

from each run after discarding the first 100,000 steps. The

simulations were performed in the same box size as pre-

viously 24.40.32 a0
3.

We simulated two of the systems described in Sec-

tion III A, Table I of [16]. The first is a bilayer of pure

Lipid A (corresponding to xB = 0 in the table). The area

stretch modulus was found to be K = 766 ± 50 dyn/cm

(N = 10 independent simulations at different areas per

molecule, standard deviation quoted); the second is pure

Lipid B (corresponding to xB = 1), and found

K = 1370 ± 50 dyn/cm (N = 4 simulations). These val-

ues are within the statistical errors of the previous and

current work. The area per molecule at zero tension for

these two systems is found to be 1.26 ± 0.11 a0
2 and

1.16 ± 0.06 a0
2 respectively, also in agreement with pre-

vious work. Finally, we simulated the system containing

pure Lipid D from Section III C (corresponding to xD = 1

in Table VI), and found K = 2250 ± 64 dyn/cm (N = 6)

which also agrees well with the previous value found of

K = 2413 ± 61 dyn/cm. The area per molecule for this

system is 1.16 ± 0.05 a0
2.

To check the effects of the system size on these results,

we performed further simulations of the Lipid A membrane

in larger box sizes 48.48.32 a0
3 and (48 a0)

3. The original

membrane at its equilibrium area per molecule contained

1520 amphiphiles while the two larger systems contained

3645 and 3657 respectively. The stretch modulus for these

systems was K = 813 ± 69 dyn/cm (N = 11 simulations)

and K = 774 ± 52 dyn/cm (N = 4 simulations). The

equilibrium areas per molecule for these larger systems

were indistinguishable from the smaller one being

1.26 ± 0.15 a0
2 and 1.26 ± 0.12 a0

2.

3.1 Two-component lipid membrane

Here we construct the membrane out of two types of lipid

with the architectures H3(T6)2 but give them different

preferred areas per molecule at equilibrium. This case

corresponds to lipids of type A and B in Section III A of

Illya et al. [16]. The non-bonded bead–bead conservative

interactions are taken from Table 1 in [16]. The self-in-

teraction of the tail beads in Lipid A is aTA–TA a0/kBT = 25

while that of Lipid B is aTB–TB a0/kBT = 20, which drives

the B lipids to pack more closely in the membrane.

For the system containing 50 % of each lipid type,

they phase separate into striped domains. We have mea-

sured the area stretch modulus to be 920 ± 70 dyn/cm

(N = 18 simulations). Figure 3a shows an initial config-

uration of such a membrane, and Fig. 3b the equilibrium

state after simulating for 400,000 time steps in which the

striped domains are evident. The subscripts A and B on

the H and T beads identify the lipid types. We next turn

to the question of how these domains are modified when

lipids with different tail lengths are mixed in the

membrane.

3.2 4-Component lipid membrane

In this case, we take the membrane from Section A and add

two further lipid types with varying tail length. The lipids

all contain 3 head beads but their tails have 4, 6, 8 tail

beads each. This is a simple case of polydispersity. The

four lipid types are grown by the synthesizer and dis-

tributed randomly in the membrane. The architectures and

interaction parameters for lipids of types A and B are

unchanged from case A, but we add two new lipid types:
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Lipid C has the architecture HC3(TC4)2 and Lipid D has

architecture HD3(TD8)2. We choose their conservative

parameters so that lipids C and D have the same preferred

area per molecule as lipid B (aTC-TC a0/kBT = aTD-TD a0/

kBT = 20). The cross-terms for the conservative interac-

tions are: aTC-TA a0/kBT = aTC-TB a0/kBT = 22.5, and aTD-

TA a0/kBT = 22.5, aTD-TB a0/kBT = 20, aTD-TC a0/

kBT = 25. The head–head parameters for these lipids are

modified to take account of their tail lengths according to

Eq. 2.6 of [32]. This was found necessary in order to

reproduce the independence of the membrane’s area stretch

modulus on lipid tail length as is found experimentally.

The initial state of a membrane containing 396 mole-

cules of each type is shown in Fig. 4a, with all lipids are

randomly mixed. The equilibrium state (after 400,000 DPD

time steps) is shown in Fig. 4b, and shows that the domain

of lipid B has become irregular compared to that in Fig. 3b,

indicating a lowering of the edge energy induced by the

presence of lipid D. Lipids of type C appear to form their

own domains within a sea of lipid A.

4 Conclusions

Polydispersity is a crucial property of biological and syn-

thetic membranes and other aggregates. But constructing

such systems for particle-based simulations is either diffi-

cult, if the user has to manually construct an initial state

containing polydisperse molecular species, or time-con-

suming, if the aggregate is allowed to self-assemble. We

propose that the calculation of short-ranged, non-bonded

forces between two particles and the process of growing

molecules by the local addition of particles are both local

in space. This suggests that they can be carried out using

the same spatial domain decomposition technique typically

used in particle-based simulation codes. This thereby

simplifies the construction of a polydisperse system for

subsequent simulation. An important feature of the syn-

thesis is that as molecules are grown their constituent

particles are not allowed to intersect. Although intersec-

tions are not a problem in DPD simulations, which typi-

cally uses soft forces, they should be avoided in Molecular

Fig. 3 a Initial state of a 2-component membrane synthesized from

794 molecules of lipid A—HA3(TA6)2, and 794 of lipid B—

HB3(TB6)2. The architectures of the two molecules types are identical,

but the subscripts on the bead names denote that their conservative

interactions are different as listed in Table 1. b Equilibrium state of

the system showing domain formation. Note that the different sizes of

the two domains result from the closer preferred packing of the B

lipid (yellow head) compared to the A lipid (red head). Note that the

simulation boxes are the same size but the perspective of the images is

different (colour figure online)

Fig. 4 a Initial state of a 4-component membrane composed of 396

lipids each of type A (red head/orange tail), B (yellow head/green

tail), C (violet head/purple tail) and D (cyan head/magenta tail). The

molecular architectures are given in the text and their conservative

interactions in Table 1. b Equilibrium state of the system showing

that the domain forming tendency of lipid type B seen in Fig. 3b is

weaker in the polydisperse membrane, with lipid D preferring to

locate at the boundary of A and B lipids, while lipid C forms clusters

in a sea of lipid A. Note that the simulation boxes are the same size

but the perspective of the images is different (colour figure online)
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Dynamics simulations that use hard-core potentials. Our

scheme is therefore also suitable for any particle-based

simulation method including Molecular Dynamics and

Brownian Dynamics. Another package called Packmol [33]

places molecules in space, but does not grow each mole-

cule independently as we do. For monodisperse molecular

species our procedure is equivalent to that of Packmol, but

our synthesis scheme allows polydisperse molecules to be

grown with the same algorithm.

Using this method we have constructed a membrane

composed of several lipid specieswith different hydrophobic

tail lengths. Whereas in a two-component membrane,

domains are formed when the two species have different

preferred areas per molecule, the presence of other species

with different packing weakens the tendency to form

domains. Although our results are qualitative, the technique

of growing the molecular species in the initial configuration

ismuchmore powerful. The ease with which this scheme can

generate polydisperse initial states removes one burden from

the user, but highlights another. The non-bonded forces

between all the particle types in a DPD simulation must also

be specified before the simulation begins. As the number of

species increases, so does the number of such parameters.

These have to be determined from literature properties of

solubility of the species, or from prior Molecular Dynamics

simulations of the various mixtures. This problem requires

increasing attention if we are to be able to easily create, and

simulate, more realistic polydisperse systems.

Finally, we note that although we have here synthesized

molecular species with pre-determined architectures, this

scheme is easily extended to generate stochastic molecular

architectures. In the case of synthetic amphiphilic poly-

mers, such as diblock copolymers, the ratio of the length of

the hydrophobic to hydrophilic blocks could be randomly

assigned to each molecule by drawing it from a distribu-

tion. This would generate systems in which not just the

composition was polydisperse but also the molecular

weight distribution within each species. This would allow a

closer correspondence between the simulated system and

naturally-occurring systems.
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