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Abstract This paper presents a three-dimensional, two-
layer model for shallow geophysical mass flows, such as
debris flows, hydraulic sediment transport, or sub-aquatic
turbidity currents down arbitrary natural topographic
terrains. The bottom layer is a dense granular fluid which
interacts with the stagnant basal topography through an
erosion/deposition mechanism. Above this layer is a lighter
fluid layer. There is no mass exchange at the layer inter-
face and at the free upper surface, and the materials in both
layers are treated as density preserving. The intrinsic model-
ling equations are written in non-dimensional form and then
formulated relative to a topography-adjusted coordinate
system. The mass balance equations and momentum balance
equations parallel to the bottom topography are depth-
averaged over the layers. The emerging governing system
of equations is subsequently simplified on the basis of
problem-adapted scales, in which a small parameter ε,
the shallowness parameter, plays a central role. The pro-
posed ordering scheme is motivated by an earlier analysis,
[1], and depends on the rheological complexities of the
stress parameterizations of the two fluids. The ensuing
equations are complemented by constitutive assumptions in
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each layer, at the bottom topography and at the layer
interface.
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1 Introduction

Catastrophic debris flows of fluid–solid mixtures which may
occur in typhoon or hurricane induced landslides, in fluvial
hydraulic currents during strong precipitation events, or in
sub-aquatic turbidity currents under slope instabilities, occa-
sionally develop into a two-layer flow regime of a relatively
dense near bottom debris layer carrying the coarse sediment
fraction plus a water layer, which carries the clay and silt
fractions in suspension and may be regarded as a slurry. The
granular fluid system is nourished by soil mass entrained
from the stagnant bottom region, over which the solid–fluid
system runs. Both layers may in a first approximation be
viewed as one-constituent continuous immiscible fluid like
bodies, and hence separated from one another by an inter-
face which is material for each layer. Moreover, in a first
approximation, the free surface of the upper layer may also
be treated as material, thus ignoring the contribution of the
precipitation that generally takes place in such events.

In general, the eroding soil has a larger density than the
dense debris of the lower layer. However, the increase in
density by the eroding soil is approximately counter bal-
anced by the interstitial fluid that may be exchanged between
the two layers. In a single constituent treatment of the mate-
rial in the two regions, this water exchange is not modelled,
so that the underlying assumption that the two layer materi-
als are density preserving and that the interface is material
with respect to each layer accounts in a gross fashion for the
realistic behavior.

The flow of such fluid systems takes place over natural
territory, practically “arbitrary” topography, that is best
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available in digitized files of electronic Geographical Infor-
mation Systems (GIS) with resolutions of 25 × 25 m2, 5 ×
5 m2, or 1 × 1 m2 in exceptional cases. The flow geometries
are of large extent in directions parallel to the topographies
but shallow perpendicular to them. Moreover, tracks along
which these avalanching masses move, may exhibit strong
or weak curvatures, so that straight flat trajectories are rather
the exception than the rule.

The above description outlines the intentions of the con-
tent of this paper: the development of the governing equa-
tions describing the dynamics of a shallow two-layer system
of a dense granular fluid overlain by a particle-laden slurry
down “arbitrary” topography. This system is fed from below
by eroding soil, implying that the interface between the
moving debris and the stagnant base is non-material. The
two fluids are treated as density preserving and are sepa-
rated from one another by an interface which is material.
The balance equations of mass and momentum and the kine-
matic and dynamic boundary and transition conditions are
written in non-dimensional form with the aid of a typical
length tangent to the topography, the gravitational accelera-
tion and the mass densities of the layers. Then they are for-
mulated in curvilinear coordinates, adjusted to the geometry
of the evolving base – two coordinates are parameters on this
base and the third is measured orthogonal to it. The evolving
interfaces, one between the moving debris and the stagnant
base, and the other between the two layers, are also part of
the solution.

Following earlier work in an attempt to reduce the com-
plexity of the theoretical model, the three-dimensional
governing equations are integrated over the individual layer
thicknesses perpendicular to the basal sliding surface. This
reduces the three-dimensional equations to spatially two-
dimensional equations of motion, governing the balances of
mass and momentum in each layer.

The theory is developed for unspecified phenomeno-
logical properties of the two fluids comprising the layer
materials, an unspecified erosion parameterization and
geometrical peculiarities of the topography and the moving
masses. This allows identification of the orders of magni-
tudes of individual terms on the basis of estimated scales
which are thought to be typical for the processes in ques-
tion. Central in this scaling process is the introduction of a
shallowness parameter, ε ≡ H/L, which is the ratio of a
typical avalanche thickness to a typical topography-parallel
length, and which is small, realistically 10−2 to 10−3. The
dimensionless orders of magnitude or quantities arising in
the modelling equations are expressed as certain powers of
ε, e.g. εγ , 0 < γ < 1. All terms of the non-dimensionalized
dynamical equations receive in this way their individual
ε-weight, which suggests various approximate formulations
by dropping those terms which are of higher order
small. In this estimating process, earlier experiences with

catastrophic avalanche models serve as guide lines, Luca
et al. [1–3].

Restricting these equations to those terms which are of
order ε and larger, the momentum equation normal to the
evolving topography reduces to pressure balances that are
reminiscent to the hydrostatic pressure balance; the remain-
ing layer balances then comprise equations for the layer
thicknesses, layer-depth averaged velocity components par-
allel to the evolving topography and an evolution equation
for the basal surface. In these equations the rheological stress
parameterizations (of which only orders of magnitudes in
the ε-scale are prescribed), and the erosion rate function
remain unspecified and are left to the reader for individual
parameterization. These equations are formulated for topo-
graphies with arbitrary curvature, but the equations
considerably simplify when small curvature of the basal
topography is assumed.

By specifying the orders of magnitude of the compo-
nents of the extra stress tensors in planes parallel to the basal
topography and perpendicular to it in a fashion as outlined in
earlier works, Luca et al. [1,3], we arrive at three different
models of avalanching motion of this two-layer dynamical
description. We also explain the use of the moving curvi-
linear coordinate system with two illustrative examples, at
least one of them (see Option 1 in Sec. 12) ideally suited to
GIS-based formulations.

Even though this paper presents results of independent
and original research, results derived in earlier papers are
used, perhaps more extensively than is generally common
in usual scientific manuscripts. The papers of which know-
ledge will be helpful to the reader are Luca, Tai and Kuo [2],
[3] and, in particular Luca et al. [1].

Related works on two-layer shallow flows using topo-
graphy-adapted curvilinear coordinates are due to Morales
de Luna [4] and Fernández-Nieto et al. [5]. The first cited
paper treats the upper layer as a compressible Euler fluid,
and the lower layer as an inviscid fluid. In the second cited
paper both layers are incompressible, the upper one being
an inviscid fluid, and the lower layer being treated as a two-
component mixture, in which the grains and the intersti-
tial fluid move with the same velocity. The approaches in
both [4] and [5] refer to immiscible layers and to a non-
erodible bottom topography with small curvature, the one-
dimensional case being considered; numerical results are
therein presented.

Now we introduce some notations which we use
throughout the paper. Thus, the 2 × 2 matrices are denoted
by capital upright boldface letters, e.g. A, and the 2-column
matrices are denoted by small upright boldface letters, e.g.
a. A similar notation, but with slanted letters, is used for
vectors and tensors, e.g. a, A. The dyadic product of two
column matrices a and b is a ⊗ b ≡ abT , where the super-
script T stands for the transpose of a matrix; the symbol ⊗
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also denotes the tensor product of two vectors. The inner
product of the 2-column matrices a and b is a ·b ≡ tr (abT ),
where tr denotes the trace operator, and the inner product of
the squared matrices A, B is defined as A · B ≡ tr (ABT ).
The Greek indices have the values 1, 2, the Latin indices
range from 1 to 3, and summation over repeated indices is
understood. The 2 × 2 matrix I denotes the unit matrix, and
δα

β is the Kronecker symbol.
Then, since we do not change the notation for the func-

tion obtained from a given one by a change of variables, to
distinguish various differential operators we proceed as fol-
lows. For a scalar function f and a 2-column matrix function
v ≡ (v1, v2)

T depending on x1, x2, we set the gradient as

grad f ≡
(

∂ f

∂x1
,

∂ f

∂x2

)T

, grad v ≡
(

∂vα

∂xβ

)
.

If the independent variables with respect to which the gra-
dient operator is performed are ξ1, ξ2, instead of grad f ,
grad v we use Grad f , Grad v, respectively. Moreover, we
define

Div v ≡ ∂vα

∂ξα
, Div T ≡ ∂Tαβ

∂ξβ
eα,

e1 ≡ (1, 0)T , e2 ≡ (0, 1)T ,

where T is a 2×2-matrix function depending on ξ1, ξ2, with
Tαβ as entries.

Finally, concerning differentiation with respect to t
(time), we make the following remarks. We use the symbol
∂/∂ t to denote the partial derivative with respect to t of a
function depending on x1, x2, x3, t or x, y, t . In Section 2,
where the independent variables are ξ1, ξ2, t , besides x1, x2,

x3, t , there is no need to change this notation (the differ-
entiation is clear). But beginning with Section 3 we deal
with 2 time-dependent changes of variables – for fixed t , in
(3.17) one relates (x, y) to (ξ1, ξ2), and in (3.22) one relates
(x1, x2, x3) to (ξ1, ξ2, ξ3). That is why, for the sake of
clarity of the derivations, when performing the time differ-
entiation according to these changes of variables we shall
distinguish notation for the time derivative as follows: the
symbol ∂̂/∂ t is used when the independent variables are
ξ1, ξ2, t according to (3.17) (see e.g. (3.42)), and ∂̃/∂ t is
used when the independent variables are ξ1, ξ2, ξ3, t accord-
ing to (3.22) (see e.g. (4.44)).1 Of course, for a function f
depending on ξ1, ξ2, t , we have ∂̂ f/∂ t = ∂̃ f/∂ t .

1 We hope that, by introducing these notations for the time derivative
of a function, no confusion occurs when we refer to the time deriva-
tive(s) of the function b which specifies the elevation of the topographic
surface. This is so, because we have b = b(x, y, t), and just chang-
ing the notation of the independent variables (see the parameterization
(3.14)) one may write b = b(x1, x2, t). Therefore, apart from ∂b/∂t
(when x, y or x1, x2 are envisaged), the derivatives ∂̂b/∂t and ∂̃b/∂t
are also defined; what we really need (and use) is ∂̂b/∂t .

2 Basics from the geometry and kinematics of a moving
surface

Let E be a three-dimensional Euclidean point space, of which
the translation vector space is denoted by V, Ox1x2, x3 an
orthogonal Cartesian coordinate system for E, physically
associated to an inertial reference frame R and such that
Ox3 is the vertical direction, and {i1, i2, i3} the orthonormal
basis of V corresponding to Ox1x2x3. We consider a moving
(in R) surface, that is, a one-parameter family {St }t∈I , with
I ⊂ � an open (time) interval, of regular surfaces St ⊂ E,
defined parametrically by

ρ = ρ(ξ1, ξ2, t) = xk(ξ
1, ξ2, t)i k, (ξ1, ξ2) ∈ 	0, t ∈ I,

(2.1)

where ρ ∈ V denotes the position vector of a point on St

with respect to the origin O ∈ E of the Cartesian coordinate
system, 	0 is an open subset of�2, and the function ρ is of
class C2 on 	0 × I . We denote by τ 1, τ 2 the vectors of the
natural basis of the tangent space to St , that is

τα ≡ ∂ρ

∂ξα
, α ∈ {1, 2}, (2.2)

and define a unit vector field normal to St by

n ≡ τ 1 × τ 2

‖τ 1 × τ 2‖ , (2.3)

where × stands for the cross product in V, and ‖‖ repre-
sents the Euclidean norm on V. It is clear that τ 1, τ 2, and
hence n too, depend on ξ1, ξ2, t , but for simplicity of nota-
tion we omit this dependence. The coefficients of the first
fundamental form of St corresponding to the parameteriza-
tion (2.1) are

φαβ ≡ τα · τβ, α, β ∈ {1, 2},

and by the representations

∂n
∂ξβ

= −bαβ τα = −Wα
β τα, β ∈ {1, 2}, (2.4)

where {τ 1, τ 2} is the reciprocal basis of {τ 1, τ 2}, one defines
the coefficients bαβ of the second fundamental form of St

and the entries Wα
β of the Weingarten matrix (correspond-

ing to the parameterization (2.1) of the oriented surface St ).
For the matrices (φαβ), (bαβ), (Wα

β), where φαβ ≡ τα · τβ ,
we use the symbols

M0 ≡ (φαβ), H ≡ (bαβ), W ≡ (Wα
β), (2.5)

and mention that

(φαβ) = M−1
0 , W = M0H. (2.6)
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Then, the curvature tensor and the mean curvature of the
surface St are

H ≡ bαβτα ⊗ τβ, � ≡ 1

2
tr H = 1

2
tr W.

Finally, the vector

uS ≡ ∂ρ

∂ t
(2.7)

is the velocity of the surface parameters (ξ1, ξ2) at the
moment t . We denote by U the normal velocity of (ξ1, ξ2)

at the moment t , that is,

U ≡ uS · n, (2.8)

and therefore, representing uS with respect to the basis
{τ 1, τ 2, n} of V, we can write

uS = Uβτβ + Un. (2.9)

Moreover, if for St given by (2.1) we use the implicit repre-
sentation

F(x1, x2, x3, t) = 0,

with F so chosen, that n defined by (2.3) can be expressed
as

n = ∇F/‖∇F‖, ∇F ≡ ∂ F

∂xk
i k, (2.10)

we have

∂ F

∂ t
+ ∇F · uS = 0, (2.11)

and hence U can be deduced as

U = −∂ F

∂ t
/‖∇F‖; (2.12)

it follows that U , unlike uS, is independent on the para-
meterization of St , and that is why it is called the speed of
displacement of the (oriented) surface St , see e.g. Truesdell
and Toupin [6], p. 499.

3 Topography description and change of coordinates
near the basal topography

When erosion/deposition processes are present during the
avalanche flow, the basal topography (i.e., the surface on
which the avalanching mass flows) changes in time. Thus,
we suppose that the topographic bed (e.g., mountain and
deposited material from the avalanching mass, see Figure 1)
is at rest in the inertial reference frame R, and model the
basal topography by a moving surface S ≡ {St }t∈I , given
parametrically by

ρ = ρ(x, y, t), ρ(x, y, t) ≡ x i1 + y i2 + b(x, y, t)i3,

(3.13)

Fig. 1. Basal topography St .

where (x, y) ∈ 	 and t ∈ I , or, equivalently,

x1 = x, x2 = y, x3 = b(x, y, t). (3.14)

If b is independent of time t , which happens if there is no
erosion of the topographic bed and no deposition on this bed,
we say that the basal topography is fixed; otherwise, we say
that we have a variable or moving basal topography. The
representation of St using Cartesian coordinates is in con-
formity with the way in which GIS data are usually recorded
(the digital data consist of regularly spaced elevation values
referenced horizontally).

We let the unit normal vector n to St point into the
avalanche body, denote its components with respect to the
Cartesian basis {i1, i2, i3} of V by −s1,−s2, c, and collect
s1, s2 into the 2-column matrix

s ≡ (s1, s2)
T .

We have

c = (1 + grad b · grad b)−1/2, s = c grad b. (3.15)

Note that, the implicit representation of the moving surface
(3.14), consistent with the above prescription of the unit
normal vector n in the sense that (2.10) holds, can be written
as

F(x1, x2, x3, t) = 0, F(x1, x2, x3, t) ≡ x3 − b(x1, x2, t),

and hence the speed of displacement of the bottom topo-
graphy is given by, see (2.12),

U = c
∂b

∂ t
. (3.16)

In transport/sediment context, the speed U is called erosion/
deposition rate. It is clear that, if U > 0 sediments are
deposited, and if U < 0 erosion occurs. The case U = 0
for any (x, y) ∈ 	 and for any t ∈ I corresponds to a
fixed bottom topography. At points on St where there is no
avalanche mass we consider U = 0.

As for the case of fixed topography, motivated by com-
putational necessities, we may want to work, at each moment
t , with another parameterization than (3.14) of St . That is,
at the moment t , instead of using the Cartesian parameters
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x, y, we want to use other parameters on St , say ξ1
t , ξ2

t ,
related to x, y by a one-to-one correspondence

x = x(ξ1
t , ξ2

t ), y = y(ξ1
t , ξ2

t ).

Moreover, we suppose that the choice of ξ1
t , ξ2

t at each
moment t is not so “wild”, by requiring this transformation
to be of the form

x = x(ξ1, ξ2, t), y = y(ξ1, ξ2, t), (ξ1, ξ2) ∈ 	0, t ∈ I,

(3.17)

with functions x , y of class C2 on 	0 × I . According to
(3.13) and (3.17), the moving surface S can be described by
ρ = ρ(ξ1, ξ2, t), where

ρ(ξ1, ξ2, t) ≡ x(ξ1, ξ2, t)i1 + y(ξ1, ξ2, t)i 2

+ b(x(ξ1, ξ2, t), y(ξ1, ξ2, t), t)i 3, (3.18)

or, equivalently,

x1 = x(ξ1, ξ2, t), x2 = y(ξ1, ξ2, t),

x3 = b(x(ξ1, ξ2, t), y(ξ1, ξ2, t), t). (3.19)

We assume

det F > 0, F ≡
(

∂xi

∂ξα

)
i,α∈{1,2}

, (3.20)

which preserves the already defined orientation of St .
In Sec. 12 we return to transformation (3.17), show possible
choices of it, and give a simple example. Finally, we mention
that the matrices M0, H introduced in (2.5) and correspond-
ing to (3.19) are

M0 = F−1(I − s ⊗ s)F−T , H = cFT grad (grad b)F,

(3.21)

see e.g. Luca, Tai and Kuo [2]2.
Now, in order to be able to properly account for the shal-

lowness of the avalanche mass, we define a change of coor-
dinates in the neighborhood of the basal variable topography
(3.18). For fixed bottom topography, this change of coordi-
nates was introduced by Bouchut and Westdickenberg [7]
and, independently, by De Toni and Scotton [8]; it has been
extended by Bouchut et al. [9] and Tai and Kuo [10] for the
case of a particular variable basal surface (which we also
consider in Sec. 12 as an example). Next we let the variable
basal topography to be arbitrary, in a sense that will be made
clear in due course.

Thus, if r = xi i i is the position vector with respect to
O ∈ E of a point P lying in that part of E to which the nor-
mal vector n = ni i i to St points, and if ρ = ρ(ξ1, ξ2, t) =

2 Note that H in (3.21) corresponds to H̃ in the cited paper.

ρi i i is the position vector of the orthogonal projection Q of
P onto St , the relation

r = ρ + ξn ⇐⇒ r(x1, x2, x3)

= ρ(ξ1, ξ2, t) + ξn(ξ1, ξ2, t)

⇐⇒ xi = ρi (ξ
1, ξ2, t) + ξni (ξ

1, ξ2, t), ξ > 0, (3.22)

defines new coordinates ξ1, ξ2, ξ of P at the moment t , on
the condition that

J �= 0, J ≡ det A−1,

A−1 ≡
(

∂xi

∂ξ j

)
i, j∈{1,2,3}

, ξ3 ≡ ξ, (3.23)

which we next assume to be valid at each moment t , at least
in the domain occupied by the avalanche body. It is clear
that ξ is the distance between P and Q.

Obviously, since {St }t∈I is a moving surface, the projec-
tion Q of P onto St changes in time, and hence the coor-
dinates ξ1, ξ2, ξ of P depend on t . To be more precise, we
should have written

r(x1, x2, x3) = ρ(ξ1(x1, x2, x3, t), ξ2(x1, x2, x3, t), t)

+ ξ(x1, x2, x3, t) n(ξ1(x1, x2, x3, t),

ξ2(x1, x2, x3, t), t), (3.24)

instead of (3.22). However, both writings, (3.22) and (3.24),
are useful:

(i) By keeping t fixed and varying x1, x2, x3, (3.22) and
(3.23) clearly show that we have a one-to-one correspon-
dence between (x1, x2, x3) and (ξ1, ξ2, ξ3 ≡ ξ). We point
out some properties of this change of coordinates (for fixed
t!) by simply taking them over from Bouchut and
Westdickenberg [7] and Luca, Tai and Kuo [2].

Thus, the vectors

gk ≡ ∂ r
∂ξ k

= A−1
j k i j , k ∈ {1, 2, 3}, (3.25)

form the natural basis of V at P (at the moment t). As a rule,
we shall use lower indices to denote the Cartesian compo-
nents of vectors, and upper indices for their contravariant
components with respect to {g1, g2, g3}, i.e.

v = vk ik = vl gl , vk = A−1
kl vl ;

but e.g. v1, v2 should not be confused with v1, v2 in Sec. 7.
It is not difficult to see from (3.22) that the vectors of the
natural basis are given by

gβ = (δα
β − ξWα

β)τα, β ∈ {1, 2}, g3 = n. (3.26)

In particular, (3.26) shows that g1, g2 and g1, g2 are tan-
gent vectors to St , and that g3 = g3 are normal to St , where
{g1, g2, g3} is the reciprocal basis of the natural basis at
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P . To manage cumbersome calculations, a key point in the
approach of Bouchut and Westdickenberg [7], also adopted
in Luca, Tai and Kuo [2] and in this paper, was to use these
properties of the vectors g1, g2, g3 to collect the contravari-
ant components of vector and tensor fields in block matrices,
as follows. For a vector v ∈ V and a symmetric second order
tensor σ on V, we have

v = v i gi , σ = σ i j gi ⊗ g j .

We note that

vn ≡ (v · n)n = v3 g3, vτ ≡ v − vn = v1 g1 + v2 g2,

(3.27)

and introduce the quantities

v ≡
(

v1

v2

)
, v ≡ v3, T ≡

(
σ 11 σ 12

σ 12 σ 21

)
, p ≡

(
σ 13

σ 23

)
.

(3.28)

The change of basis matrix A−1, see (3.25), (3.23), has
been written by Bouchut and Westdickenberg [7] in the fol-
lowing block matrix decomposition

A−1 =
(

I −s
1
c sT c

)(
B 0

0 1

)
=

(
B −s

1
c (BT s)T c

)
,

B ≡ F(I − ξW), (3.29)

which implies

J = J0 det(I − ξW), J0 ≡ 1

c
det F. (3.30)

Hence from (3.23) we deduce the restriction

det(I − ξW) �= 0 (3.31)

at the moment t , on the basal topography plus the domain
occupied by the avalanche mass; it is (3.31) which clearly
states what is meant by “arbitrary” topography. Note that,
since condition (3.31) holds if ξ = 0, the change of coordi-
nates is in fact valid not only for (some) ξ > 0, but also for
ξ ≤ 0, at least for sufficiently small negative ξ . If ξ < 0,
then the modulus of ξ , |ξ |, gives the distance between P
and its perpendicular projection onto the surface. In short,
the change of coordinates (3.22) is valid in a neighborhood
of the basal surface, on both sides of it.

Corresponding to (3.22), the covariant coefficients gi j ≡
gi ·g j and the contravariant coefficients gi j ≡ gi ·g j of the

metric tensor can be expressed with the aid of A−1 and of
the inverse matrix A of A−1, given by

A =
(

B−1(I − s ⊗ s) cB−1s

−sT c

)
, (3.32)

as

(gi j ) = (AAT )−1, (gi j ) = AAT , AAT =
(

M 0

0 1

)
,

(3.33)

where

M ≡ B−1(I − s ⊗ s)B−T . (3.34)

We mention that M0 = M|ξ=0, see (3.21)1, (3.29)2. The
matrix (gi j ) is positive definite, and hence M is a positive
definite matrix.

(ii) Now, we keep the point P fixed in E, implying that
the Cartesian coordinates x1, x2, x3 of P are kept fixed, and
let t run in I . By differentiating (3.24) with respect to t
(we recall the distinct notations for the partial time deriva-
tives, see Introduction) we deduce that the “velocities” ξ̇ i ≡
∂ξ i/∂ t , i = 1, 2, 3, of the coordinates ξ1, ξ2, ξ of P have to
satisfy the relation

∂̂ρ

∂ t
+ ξ

∂̂n
∂ t

+ ξ̇ α

(
∂ρ

∂ξα
+ ξ

∂n
∂ξα

)
+ ξ̇n = 0,

which can be further written as, see definition (3.25) of gα ,
α = 1, 2,

ξ̇ α gα + ξ̇n = −w, w ≡ ∂̂ρ

∂ t
+ ξ

∂̂n
∂ t

, (3.35)

or, equivalently,

(ξ̇1, ξ̇2)T = −w, ξ̇ = −w, (3.36)

where definitions (3.28) have been used to introduce the
contravariant components w and w of w. It is clear that w

is the null vector if the basal topography does not move, as
e.g. in Bouchut and Westdickenberg [7], Luca, Tai and Kuo
[2]. In passing, note that (3.35) shows that the negative of
w can be interpreted as the velocity of the curvilinear coor-
dinates of P . Relations (3.36) will be used to derive rules
of differentiation, see (4.44) below; that is why we need to
determine w, w. Thus we have

Proposition 3.1 Let w, w be the components with respect
to the basis {g1, g2, g3} of the vector w defined in (3.35).
Moreover, let uS, U be the components with respect to
{τ 1, τ 2, n} of the velocity uS ≡ ∂̂ρ/∂ t of the surface para-
meters (ξ1, ξ2), and denote

vS ≡
(

∂̂x

∂ t
,
∂̂ y

∂ t

)T

, (3.37)

where x, y are the functions which define the transformation
(3.17). Then the following results hold:

w = uS − ξ(I − ξW)−1M0GradU,

uS = F−1(vS + Us), w = U . (3.38)
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Proof First, from (3.26)1 we deduce

τβ = W˜α
β gα, W˜ ≡ (I − ξW)−1,

and therefore

∂̂ρ

∂ t
≡ uS = W˜α

βUβ gα + Un (3.39)

holds, see (2.7), (2.9). Then, noticing that relation n · n = 1
forces ∂̂n/∂ t to be a tangent vector to St , we can write

∂̂n
∂ t

= aα gα,

and hence we have to find aα. Using (3.26)1 we derive

aα = ∂̂n
∂ t

· gα = gβα ∂̂n
∂ t

· gβ = gβα(δ
γ
β − ξW γ

β)
∂̂n
∂ t

· τγ .

Moreover, we compute

∂̂n
∂ t

· τγ = −n · ∂̂τ γ

∂ t
= −n · ∂uS

∂ξγ

= Uβ ∂n
∂ξγ

· τβ − ∂U
∂ξγ

= −bωγ Uω − ∂U
∂ξγ

,

where (2.2), (2.7), (2.9), (2.4) have been used, and therefore

∂̂n
∂ t

= −gβα(δ
γ
β − ξW γ

β)

(
bωγ Uω + ∂U

∂ξγ

)
gα. (3.40)

There only remains to substitute (3.39), (3.40) into definition
(3.35) of w, to deduce

w =
{

W˜
α
βUβ − ξgβα(δ

γ
β − ξW γ

β)

(
bωγ Uω + ∂U

∂ξγ

)}
gα

+ Un,

which, after a routine calculus involving (3.33)2, (3.34),
(2.6), implies

w = uS − ξ(I − ξW)−1M0GradU,

w = U, uS ≡ (U1, U2)T . (3.41)

Here we draw attention to the notation in (3.41): uS col-
lects 2 of the components of uS with respect to the basis
{τ 1, τ 2, n}, and not with respect to {g1, g2, g3} (see (2.9),
(3.39)), as we have agreed by (3.28).

We still have to derive the formula (3.38)2 for uS; we
do this by taking advantage of knowing the matrix A, see
(3.32). Thus, first note that (3.26) implies τα = gα|ξ=0, α =
1, 2, and hence the change of basis matrix from {i1, i2, i3}
to {τ 1, τ 2, n} is A−1|ξ=0, that is τ k = A−1

j k |ξ=0i j , where,
to have a compact notation, τ 3 ≡ n is understood. Then,

according to parameterization (3.19), definition (2.7) of
the velocity uS of (ξ1, ξ2) gives

uS = ∂̂x

∂ t
i1 + ∂̂ y

∂ t
i2 + ∂̂b

∂ t
i3,

∂̂b

∂ t
= ∂b

∂ t
+ grad b · vS, (3.42)

where vS is defined in (3.37), and therefore the relation
between the components ∂̂x/∂ t, ∂̂ y/∂ t, ∂̂b/∂ t of uS with
respect to {i1, i2, i3} and the components U1, U2,U of uS

with respect to {τ 1, τ 2, n} is
(

uS

U

)
= A|ξ=0

(
vS

∂b
∂t + grad b · vS

)

⇐⇒ uS = F−1(vS + Us), U = c
∂b

∂ t
.

The formula above for the displacement velocity U has
already been derived, see (3.16).

Relation (3.38)3 shows that ∂w/∂ξ = 0, which will be
on some occasions used, without explicitly mentioning.

4 Rules of differentiation

The rules of differentiation implied by a time-dependent
change of coordinates can be found e.g. in Tai and Kuo
[10]. The derivation of these formulae is relatively simple,
and that is why, for the sake of fluency, we prefer to rede-
duce them here by referring to the particular time-dependent
change of coordinates (3.22). We continue to appeal to geo-
metric reasonings, which make the derivations more trans-
parent. Thus, by means of (3.22), the value f (x1, x2, x3, t)
of a scalar function f can be written as

f (x1, x2, x3, t) = f (x1(ξ
1, ξ2, ξ3, t), x2(ξ

1, ξ2, ξ3, t),

x3(ξ
1, ξ2, ξ3, t), t)≡ f (ξ1, ξ2, ξ3, t),

where ξ1, ξ2, ξ3 are the curvilinear coordinates at the
moment t of that point P , which at the same moment t has
the Cartesian coordinates x1, x2, x3. We want to express the
partial derivatives ∂ f/∂xi , ∂ f/∂ t in terms of ∂ f/∂ξ i , ∂̃ f/∂ t .

First, since by differentiating f with respect to xi the
time t is held constant, we have, see the comments (i) in
Sec. 3,

∂ f

∂xi
= ∂ f

∂ξ j

∂ξ j

∂xi
⇐⇒ ∂ f

∂xi
= AT

i j
∂ f

∂ξ j . (4.43)

Note, when differentiating f with respect to t the variables
x1, x2, x3 are fixed. Therefore we have, see the comments
(ii) in Sec. 3,
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∂ f

∂ t
= ∂̃ f

∂ t
+ ∂ f

∂ξ i
ξ̇ i ⇐⇒ ∂ f

∂ t
= ∂̃ f

∂ t

+ Grad f · (ξ̇1, ξ̇2)T + ∂ f

∂ξ
ξ̇ ,

where ξ̇1, ξ̇2, ξ̇ are subjected to restriction (3.36), which
transforms the latter into the rule of differentiation

∂ f

∂ t
= ∂̃ f

∂ t
− Grad f · w − ∂ f

∂ξ
w = ∂̃ f

∂ t
− ∂ f

∂ξ l
wl . (4.44)

The two w and w in (4.44) are given by (3.38).
Based on (4.44) one can deduce the formulae

∂ A−1
j k

∂ t
= A−1

j l
∂wl

∂ξ k
,

∂̃ J

∂ t
= ∂ Jwk

∂ξ k
,

∂ f

∂ t
= 1

J

{
∂̃ J f

∂ t
− ∂ J f wk

∂ξ k

}
. (4.45)

Indeed, noting that

∂̃ A−1
j k

∂ t
= ∂̃

∂ t

(
∂x j

∂ξ k

)
= ∂

∂ξ k

(
∂̃x j

∂ t

)
= ∂w j

∂ξ k
= ∂ A−1

j l wl

∂ξ k
,

(4.46)

in view of (4.44) we have

∂ A−1
j k

∂ t
= ∂ A−1

j l wl

∂ξ k
− ∂ A−1

j k

∂ξ l
wl

= ∂ A−1
j l wl

∂ξ k
− ∂ A−1

j l

∂ξ k
wl = A−1

j l
∂wl

∂ξ k
,

which verifies relation (4.45)1. Then, by appeal to (4.46),
∂ J/∂ A−1

j k = J Akj and ∂ A−1
j l /∂ξ k = ∂ A−1

j k /∂ξ l , one can
immediately derive (4.45)2. Finally, to deduce (4.45)3 one
has only to multiply (4.44) by J and to use formula (4.45)2.

5 Local balance equations in curvilinear coordinates

In this section we write the balance equations of mass and
linear momentum at regular points of a continuum body in
terms of the curvilinear coordinates described in Sec. 3. For
a fixed basal topography they have been deduced in Luca,
Tai and Kuo [2]. So, in the inertial reference frame R let

∂ρ

∂ t
+ div ρv = 0 (5.47)

be the mass balance equation, where ρ is the density and v

is the velocity at a point in the avalanche body, while div is
the spatial divergence operator. Moreover, let

∂ρv

∂ t
+ div (ρv ⊗ v − σ ) = ρb (5.48)

be the momentum balance equation, where σ is the stress
tensor and b is the specific body force. In this paper we shall
be concerned with incompressible avalanche masses, but we
write equations (5.47), (5.48) in curvilinear coordinates in
full generality, which will be useful for further investigations
in the field of avalanche modelling, e.g. when dealing with
mixtures over variable topography.

Recalling the notations (3.28), which we use for the velo-
city v, body force b and stress tensor σ , we state the results
in the following

Proposition 5.2 The balance equations (5.47), (5.48) in the
curvilinear coordinates defined by (3.22) have the form

∂̃

∂ t
{Jρ} + Div {Jρ(v − w)} + ∂

∂ξ
{Jρ(v − w)} = 0, (5.49)

∂̃

∂ t
{Jρv} + Div {J [ρv ⊗ (v − w) − T]}

+ ∂

∂ξ
{J [ρ(v − w)v − p]} + J�(T, p)

= Jρb + Jρ�(v, v) − Jρ

{
(Grad w)v + v

∂w
∂ξ

}
,

(5.50)

∂̃

∂ t
{Jρv} + Div {J [ρv(v − w) − p]}

+ ∂

∂ξ
{J [ρv(v − w) − σ 33]} + J�(T)

= Jρb + Jρ�(v) − Jρ

{
Grad w · v + v

∂w

∂ξ

}
,

(5.51)

where �(T, p),�(v, v), �(T), �(v) are given by

�(T, p) ≡ −B−1 ∂B
∂ξα

Teα + 2B−1FWp + �(T)B−1s,

�(v, v) ≡ −B−1 ∂B
∂ξα

(v ⊗ v)eα

+ 2vB−1FWv + �(v)B−1s,

�(T) ≡ −BT F−T H·T, �(v) ≡ −BT F−T H·(v ⊗ v),

(5.52)

respectively, and w, w are shown in (3.38).

Proof Since

div ρv = 1

J

∂

∂ξ k
{Jρvk},

see e.g. Luca, Tai and Kuo [2], by using formula (4.45)3 to
express the time derivative of ρ in (5.47) we deduce (5.49).
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Now we refer to the momentum balance equation (5.48).
We have

∂ρv

∂ t
= ∂ρv j

∂ t
i j = ∂

∂ t
{ρ A−1

j k vk}Aij gi

=
{

∂ρv i

∂ t
+ ρ Aij v

k
A−1

j k

∂ t

}
gi ,

and it remains to use formulae (4.45)1, (4.45)3 to replace the
time derivatives in the relation above, so that

J
∂ρv

∂ t
=

{
∂̃

∂ t
{Jρv i } − ∂

∂ξ k
{Jρv iwk} + Jρ

∂wi

∂ξ k
vk

}
gi .

Then, the divergence term in (5.48) can be taken over from
Luca, Tai and Kuo [2] with only minor modifications.
It emerges as

Jdiv (ρv ⊗ v − σ )

=
{

∂

∂ξ k
{J (ρv ivk −σ ik)}+ J�i(T, p)− Jρ�i (v, v)

}
gi ,

where �i (T, p), �i (v, v) are quantities containing the
Christoffel symbols of the transformation, and which are
equal to the entries of the block matrices(

�(T, p)

�(T)

)
,

(
�(v, v)

�(v)

)
,

see (5.52). There follows that the momentum balance
equation (5.48) is equivalent to

∂̃

∂ t
{Jρv i } + ∂

∂ξ k
{J (ρv i (vk − wk) − σ ik)} + J�i (T, p)

= Jρbi + Jρ�i (v, v) − Jρ
∂wi

∂ξ k
vk ,

which can be written as (5.50), (5.51).

We notice that for a fixed basal topography we have
w = 0 at every moment t . The equations of Proposition 5.2
corresponding to this case reduce to those derived in Luca,
Tai and Kuo [2].

6 Model equations

We consider an avalanche mass which consists of two immis-
cible layers, flowing over a fixed or moving bed surface, see
Figure 2. We denote by E1 ⊂ E the domain occupied by
the layer near the bottom topography, and label the quan-
tities referring to E1 by the index 1; the domain occupied
by the upper layer is E2, and the quantities referring to E2

carry the index 2. It is clear that E1, E2 are generally time-
dependent, but for simplicity in writing we omit this depen-
dence. The interface between the two layers is denoted by

Fig. 2. Two-layer flow over arbitrary topography.

S1, its unit normal vector pointing into E2 is n1, and the
upper (free) surface is S2, with the unit normal vector n2.
Both S1 and S2 are moving surfaces. Each layer is modelled
as a one-component body, of a density uniform in space and
constant in time, such that ρ1 > ρ2; in particular, it is there-
fore assumed that the eventual influx of mass from the topo-
graphic bed does not change too much the density in layer 1.
We may think of layer 2 as being made by water, and of
layer 1 as being a more dense fluid; for an erodible bed sur-
face, as a rough approximation, we may think of submarine
landslides. The equations that describe the motion of the two
layers over a fixed/moving topography S are as follows:

• Local balance equations at regular points: the mass and
momentum balance equations in Ek, k = 1, 2,

div vk = 0,
∂vk

∂ t
+ div

{
vk ⊗ vk − 1

ρk
σ k

}
= b.

(6.53)

• Boundary conditions at the basal surface S:
a) If the avalanche flows over a fixed basal topography,

we have the so-called non-penetration condition or
tangency of the velocity field,

v1 · n = 0 at x3 − b(x1, x2) = 0, (6.54)

which states that the basal topography is a material
surface for the lower layer.

b) If the basal topography is a moving surface, pro-
pagating into the domain E1 (if there is deposition),
or into the domain E0 (if there is erosion) occupied
by the bed at rest, assumed to exhibit its own
rheology, the mass balance equation

[[ρ(v − Un)]] · n = 0 at x3 − b(x1, x2, t) = 0,

(6.55)

and the momentum balance equation

[[σ − ρ(v − Un) ⊗ (v − Un)]] n = 0 at

x3 − b(x1, x2, t) = 0 (6.56)

hold. Notation [[ f ]] stands for the jump of f at the
moment t across a given surface. That is, for the case
that the surface is St , separating E1 from E0, at each
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time t the function f is assumed continuous on E0 ∪
St and E1 ∪ St , but may be discontinuous on St ; the
difference between the limits of f on St taken from
both parts E0, E1,

[[ f ]] ≡ f1 − f0, fk ≡ lim
P∈Ek→Q∈St

f, k = 0, 1,

is the jump of f across St .
• Local balance equations at the interface S1: the mass

balance equation

[[ρ(v − U1n1)]] · n1 = 0 at F1(x1, x2, x3, t) = 0,

(6.57)

and the momentum balance equation

[[σ − ρ(v − U1n1) ⊗ (v − U1n1)]] n1 = 0 at

F1(x1, x2, x3, t) = 0 (6.58)

hold across S1, of which the implicit equation is
F1(x1, x2, x3, t) = 0, and speed of displacement is U1.

• Evolution equation(s) for the layer interface S1: we
assume that the materials in the two layers are immis-
cible, whence the surface separating the two layers is a
material surface for each layer, which implies

∂ F1

∂ t
+ ∇F1 · v1 = 0,

∂ F1

∂ t
+ ∇F1 · v2 = 0 at

F1(x1, x2, x3, t) = 0. (6.59)

• Evolution equation for the free surface S2: the free sur-
face is a material surface for layer 2, which
implies

∂ F2

∂ t
+∇F2 · v2 = 0 at F2(x1, x2, x3, t) = 0, (6.60)

where F2(x1, x2, x3, t) = 0 represents the equation of
S2.

• Boundary condition at the free surface S2: we assume
that the free surface is traction-free, that is,

σ 2n2 = 0 at F2(x1, x2, x3, t) = 0. (6.61)

Before going further, let us exploit the jump conditions
(6.55)–(6.58). We shall denote by ρ0, v0, σ 0 the density,
velocity and stress tensor, respectively, in the topographic
bed. Thus, since v0 = 0, (6.55) states

v1 · n = ρ1 − ρ0

ρ1
U at x3 − b(x1, x2, t) = 0, (6.62)

which transforms (6.56) into

σ 1n + ρ0 Uv1 = σ 0 n at x3 − b(x1, x2, t) = 0. (6.63)

Then, since (6.59) implies v1 · n1 = v2 · n1 = U1 at each
point on the interface S1, condition (6.57) is satisfied, and
(6.58) turns into

σ 1n1 = σ 2n1 at F1(x1, x2, x3, t) = 0, (6.64)

expressing the continuity of the stress vector across the
separation surface. Thus, the model equations which we next
deal are (6.53), (6.54), (6.62)–(6.64), (6.59)–(6.61).

7 Non-dimensional model equations in curvilinear
coordinates

Since the final models proposed in this paper involve order-
ing approximations, we need to switch to non-dimensional
field quantities. Thus, using a typical length L tangent to the
topography, the constant gravitational acceleration g, and
the densities ρ1, ρ2, we introduce non-dimensional field
quantities as follows:

(x1, x2, x3, t) = L(x̂1, x̂2, x̂3, t̂/
√

Lg), b = Lb̂,

vk = √
Lgv̂k, σ k = ρkLgσ̂ k, k = 0, 1, 2,

w = √
Lgŵ, b = g b̂. (7.65)

With the scalings above and notations

c01 ≡ ρ0

ρ1
, c12 ≡ ρ1

ρ2
,

the system of modelling equations (6.53), (6.54),
(6.62)–(6.64), (6.59)–(6.61) emerges as follows (we omit
the hat):

• in the domain Ek, k = 1, 2,

div vk = 0,
∂vk

∂ t
+ div {vk ⊗ vk − σ k} = b; (7.66)

• at the basal surface S,
a) for fixed bottom topography x3 − b(x1, x2) = 0,

v1 · n = 0, (7.67)

b) for moving bottom topography x3−b(x1, x2, t) = 0,

v1 · n = (1 − c01)U, σ 1n + c01Uv1 = c01σ 0n;
(7.68)

• at the layer interface F1(x1, x2, x3, t) = 0,

∂ F1

∂ t
+ ∇F1 · v1 = 0,

∂ F1

∂ t
+ ∇F1 · v2 = 0, c12σ 1n1 = σ 2n1; (7.69)
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• at the free surface F2(x1, x2, x3, t) = 0,

∂ F2

∂ t
+ ∇F2 · v2 = 0, σ 2n2 = 0. (7.70)

Since both layers are assumed incompressible, we intro-
duce the extra-stress tensors σ E

k by

σ k ≡ −pk1 + σ E
k ,

where pk is the pressure in the layer k, and notice the
relation3

(
Tk pk

pT
k σ 33

k

)
= −pk

(
M 0
0 1

)
+

(
Pk pk

pT
k T 33

k

)
(7.71)

between the components of the stress tensor (on the left-
hand side) and the components of the extra-stress tensor (the
second matrix on the right-hand side).

Now we want to write equations (7.66)–(7.70) in terms
of the contravariant components of vectors and tensors with
respect to the natural basis {g1, g2, g3} corresponding to the
(generally time-dependent) change of coordinates in Sec. 3.
To this end we assume that, in terms of the curvilinear coor-
dinates ξ1, ξ2, ξ , equations F1(x1, x2, x3, t) = 0 and
F2(x1, x2, x3, t) = 0 of the layer interface and of the free
surface, respectively, can be written as

ξ−h1(ξ , t) = 0, ξ−h2(ξ , t) = 0, ξ ≡ (ξ1, ξ2), (7.72)

respectively, with 0 < h1 < h2. Moreover, assuming that
ξ1, ξ2 are length-dimensional surface parameters, we set

(ξ , ξ) = L(ξ̂ , ξ̂ ), (h1, h2) = L(ĥ1, ĥ2),

and next drop the hat. We have

Proposition 7.1 In terms of the curvilinear coordinates of
Sec. 3, the non-dimensional equations and boundary condi-
tions (7.66)–(7.70) can be written as follows:

• in the domain Ek, k = 1, 2 (for simplicity, we omit the
index k, which should be attached to v, v, p, P, p, T 33),

Div {Jv} + ∂

∂ξ
{Jv} = 0, (7.73)

∂̃

∂ t
{Jv} + Div {J [v ⊗ (v − w) + pM − P)}

+ ∂

∂ξ
{J [(v − U)v − p)]} + J�(−pM, 0)

+ J�(P, p) = Jb + J�(v, v)

− J

{
(Grad w)v + U ∂w

∂ξ

}
, (7.74)

3 To avoid confusion, we note that P, p and T 33 are used in Luca
et al. [2], [1] to denote the contravariant components of the full stress
tensor, while here they stand for the components of the extra-stress
tensor.

∂̃

∂ t
{Jv} + Div {J [v(v − w) − p]}

+ ∂

∂ξ
{J [v(v − U) − T 33]} + J

∂p

∂ξ
+ J�(P)

= Jb + J�(v) − JGradU · v, (7.75)

where, corresponding to each k, the terms �(P, p), �(P),
�(v, v), �(v) can be taken from (5.52), in which T is
replaced by P, and

�(−pM, 0)

≡ p

{
B−1 ∂B

∂ξα
Meα + tr (W(I − ξW)−1)B−1s

}
;

(7.76)

• at the basal surface ξ = 0,
a) for fixed topography,

v1 = 0, (7.77)

b) for moving topography,

v1 = (1 − c01)U, (7.78)

p1 + c01Uv1 = c01p0, σ 33
1 + c01Uv1 = c01σ

33
0 ;

(7.79)

• at the layer interface ξ = h1(ξ , t),

∂̃h1

∂ t
+ Grad h1 · (v1 − w) = v1 − U, (7.80)

∂̃h1

∂ t
+ Grad h1 · (v2 − w) = v2 − U,

c12{(−p1M + P1)Grad h1 − p1}
= (−p2M + P2)Grad h1 − p2,

c12(p1 · Grad h1 + p1 − T 33
1 )

= p2 · Grad h1 + p2 − T 33
2 ; (7.81)

• at the free surface ξ = h2(ξ , t),

∂̃h2

∂ t
+ Grad h2 · (v2 − w) = v2 − U, (7.82)

(−p2M + P2)Grad h2 − p2 = 0,

p2 · Grad h2 + p2 − T 33
2 = 0. (7.83)

Proof In order to deduce (7.73), in the mass balance
equation (5.49) we divide by ρ(= constant), switch to non-
dimensional quantities to obtain

∂̃ J

∂ t
+ Div {J (v − w)} + ∂

∂ξ
{J (v − w) = 0, (7.84)
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and take into account formula (4.45)2 for ∂̃ J/∂ t . Then, if in
(5.50) we divide by ρ, replace T by −pM + P, see (7.71),
use the non-dimensional quantities, and take account of

�(T, p) = �(−pM, 0) + �(P, p),

see Luca, Tai and Kuo [2], we obtain (7.74). Equation (5.51)
can be put into the form (7.75) as in [2].

We go further to condition (7.77), which immediately
follows from (7.67) by recalling that g3 = n. In a similar
manner, (7.78) can be derived from (7.68)1, and relation

σn = (σ i j gi ⊗ g j )g3 = σ i3 gi ,

which holds for any tensor σ , when applied to (7.68)2, clearly
shows (7.79).

We pass to (7.69)1 and use the rule of differentiation
(4.44) to compute

∂ F1

∂ t
+ ∇F1 · v1 = ∂̃F1

∂ t
− ∂ F1

∂ξ i
wi +

(
∂ F1

∂ξ i
gi

)
· v1

= ∂̃F1

∂ t
+ ∂ F1

∂ξ i
(v i

1 − wi ).

Now we have only to take into account (7.72)1 to conclude
(7.80)1. Condition (7.80)2 is then obvious, and (7.81) is
deduced by rewriting (7.69)3 as

c12σ 1∇F1 = σ 2∇F1 ⇐⇒ c12σ
i j
1 gi ⊗ g j

(
∂ F1

∂ξ k
gk

)

= σ
i j
2 gi ⊗ g j

(
∂ F1

∂ξ k
gk

)
,

and performing the calculations with the aid of (7.72)1.
Finally, (7.82) and (7.83) can be analogously derived.
The proof is now complete.

We consider that the body force is the gravitational force,
so that (in non-dimensional form) we have, see Luca, Tai and
Kuo [2],

b = −cB−1s, b = −c. (7.85)

The equations in Proposition 7.1 are meant to stand for the
basic unknowns v1, v1, v2, v2, p1, p2, h1, h2 and, if the
topography is variable (in which case (3.16) must be taken
into account), for the vertical height b of the basal surface.
To this end they should be complemented by constitutive
relations for the stress tensors σ 1, σ 2, and for the frictional
stresses at the bottom S and interface S1; for the case of
moving topography, the erosion/deposition rate must be
parameterized in terms of the basic unknown fields, which
transforms (3.16) into an evolution equation for b. How-
ever, the emerging system of equations is rather compli-
cated, and that is why we use the depth-averaging procedure,
which we describe in the next section.

Before going further we want to comment on conditions
(7.79). There are several proposals for the erosion/deposition
rate U , see e.g. Bouchut et al. [9], Tai and Kuo [10] and the
reviews therein on earlier erosion/deposition rate proposals.
An interesting approach to give a law for U is presented in
Fraccarollo and Capart [11]. The idea is to assume the topo-
graphic bed with its own rheologic properties, and to use
the jump of the momentum balance equation at the bottom
surface to derive a formula for the erosion/deposition rate.
When applied to the model equations in Proposition 7.1, this
idea appears as follows: assuming v1 �= 0 at ξ = 0, and
giving the shear stresses on both sides of the bed surface,
relation (7.79)1 delivers the erosion/deposition rate U ,

U2 = (c01p0 − p1) · (c01p0 − p1)

c2
01v1 · v1

, (7.86)

where v1, p0, p1 are evaluated at ξ = 0; then, condition
(7.79)2 gives the value of the normal stress σ 33

0 at the bed
surface, once σ 33

1 is known. Of course, condition (7.79)1

can be also interpreted as giving the shear stress in the bed
once U and p1 are known; or, as giving the basal shear stress
in the flowing layer, if U and p0 are known. It is not our
aim in this paper to propose one or another law for the ero-
sion/deposition rate U , and to interpret (7.79)1, since only
when corroborating the rheological properties of the
avalanche mass and of the topographic bed with experimen-
tal and numerical data the model equations can be validated.
So, in the remaining analysis we leave aside conditions
(7.79), and assume that the erosion/deposition rate is known,
be it given by (7.86) or by any other law.

8 Depth-averaging procedure

In order to deduce the final modelling equations for the flow
of the two shallow layers we use the depth-integration pro-
cedure. This section is devoted to the presentation of this
method. Note that the equations and boundary conditions
corresponding to fixed basal topography can be deduced
from those corresponding to a moving basal topography, by
taking there U = 0, w = 0 (and disregarding condition
(7.79), as already agreed). That is why in the next analysis
we shall refer to a moving basal surface, and so we obtain
formulae valid for both fixed and moving bottom topogra-
phy. In the discussion below, without explicitly mentioning,
we shall use the Leibniz rules∫ g(ξ,t)

f (ξ ,t)
Div v dξ = Div

∫ g(ξ,t)

f (ξ ,t)
v dξ+v(ξ, f (ξ , t)) · Grad f

− v(ξ , g(ξ , t)) · Grad g,

∫ g(ξ ,t)

f (ξ ,t)
Div P dξ = Div

∫ g(ξ ,t)

f (ξ ,t)
P dξ+P(ξ, f (ξ , t))Grad f

− P(ξ , g(ξ , t))Grad g,
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that hold for a 2-column matrix v(ξ , ξ, t) and for a square
matrix P(ξ , ξ, t) of order 2.

We begin with some remarks. Thus, by integrating the
mass balance equation (7.73) for k = 1 with respect to the
normal variable from 0 to ξ ∈ (0, h1), and by taking into
account the boundary condition (7.78), we obtain the normal
velocity v1 as

v1 = 1

J

{
J0(1 − c01)U − Div

∫ ξ

0
Jv1dξ ′

}
. (8.87)

Instead of (7.73) we can integrate its equivalent
equation (7.84), and obtain another expression for v1, that
is,

v1 = U − 1

J

{ ∫ ξ

0

∂̃ J

∂ t
dξ ′

+
∫ ξ

0
Div {J (v1 − w)}dξ ′ + c01 J0U

}
,

which easily gives

v1|ξ=h1 = U + ∂̃h1

∂ t
+ (v1 − w)|ξ=h1 · Grad h1

− 1

J |h1

{
∂̃

∂ t

∫ h1

0
Jdξ

+ Div
∫ h1

0
J (v1 − w)dξ + c01 J0U

}
.

Substitution of the above expression of v1|ξ=h1 into the
kinematic boundary condition (7.80)1 transforms the latter
into

∂̃

∂ t

∫ h1

0
Jdξ + Div

∫ h1

0
J (v1 − w)dξ = −c01 J0U . (8.88)

Similarly, by integrating the mass balance equation (7.73)
valid in the upper layer, also with respect to the normal vari-
able, now from h1 to ξ ∈ (h1, h2), and by accounting for
the kinematic boundary condition (7.80)2 to express v2 at
ξ = h1, the normal velocity in layer 2 is obtained as

v2 = 1

J
J |ξ=h1

{
U + ∂̃h1

∂ t
− Grad h1 · w|ξ=h1

}

− 1

J
Div

∫ ξ

h1

Jv2dξ ′. (8.89)

On the other hand, if we use (7.84) instead of (7.73), we
deduce

v2 = U + 1

J
J |ξ=h1

{
∂̃h1

∂ t
+ Grad h1 · (v2 − w)|ξ=h1

}

− 1

J

{∫ ξ

h1

∂̃ J

∂ t
+

∫ ξ

h1

Div {J (v2 − w)}dξ ′
}

,

which implies

v2|ξ=h2 = U + ∂̃h2

∂ t
+ (v2 − w)|ξ=h2 · Grad h2

− 1

J |h2

{
∂̃

∂ t

∫ h2

h1

Jdξ+Div
∫ h2

h1

J (v2−w)dξ

}
.

Substituting this expression of v2|ξ=h2 into the kinematic
boundary condition (7.82) yields

∂̃

∂ t

∫ h2

h1

Jdξ + Div
∫ h2

h1

J (v2 − w)dξ = 0. (8.90)

Summarizing, the system of equations and boundary condi-
tions (7.73) (for k = 1, 2), (7.78), (7.80), (7.82) is equivalent
to (8.87)–(8.90). We refer to (8.88), (8.90) as the depth-
averaged mass balance equations, since they can be deduced
by integrating the local mass balance equation (7.84) along
each layer depth (while accounting for (7.78), (7.80),
(7.82)).

Moreover, one can see that, by integrating the tangential
momentum balance equation (7.74) for k = 1 with respect
to the normal variable ξ from 0 to h1(ξ , t), one obtains a
certain expression for the stresses

{(−p1M + P1)Grad h1 − p1}ξ=h1 .

Substitution of this expression into condition (7.81)1 trans-
forms the latter into

∂̃

∂ t

∫ h1

0
Jv1dξ

+ Div
∫ h1

0
J {v1 ⊗ (v1 − w) + p1M − P1}dξ

+ 1

c12
{J [(−p2M + P2)Grad h1 − p2]}ξ=h1

+ J0 {p1 + c01Uv1}ξ=0

+
∫ h1

0
J {�(−p1M, 0) + �(P1, p1)}dξ

=
∫ h1

0
Jbdξ +

∫ h1

0
J�(v1, v1)dξ

−
∫ h1

0
J

{
(Grad w)v1 + U ∂w

∂ξ

}
dξ. (8.91)

Thus, within the system of modelling equations, condition
(7.81)1 can be replaced by (8.91). Similarly, by performing
the integration of the tangential momentum balance equa-
tion in the upper layer from h1(ξ , t) to h2(ξ , t), one can see
that condition (7.83)1 can be replaced by
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∂̃

∂ t

∫ h2

h1

Jv2dξ+Div
∫ h2

h1

J {v2 ⊗ (v2 − w) + p2M − P2}dξ

− {J [(−p2M + P2)Grad h1 − p2]}ξ=h1

+
∫ h2

h1

J {�(−p2M, 0) + �(P2, p2)}dξ

=
∫ h2

h1

Jbdξ +
∫ h2

h1

J�(v2, v2)dξ

−
∫ h2

h1

J

{
(Grad w)v2 + U ∂w

∂ξ

}
dξ. (8.92)

We refer to (8.91), (8.92) as the depth-averaged tangen-
tial momentum balance equations, since they can be also
deduced if one uses the boundary conditions (7.81)1, (7.83)1

in the integration of the tangential momentum balance
equation (7.74) along each layer depth.

Now, the idea of the depth-averaging procedure is to use,
instead of the original system of equations, i.e.,

(7.73)–(7.75) for k = 1, 2, (7.78), (7.80)–(7.83) (I)

or of its equivalent system (as discussed above)

(7.74) and (7.75) for

k = 1, 2, (7.81)2, (7.83)2, (8.87)–(8.92), (II)

the system consisting of

(7.75) for k = 1, 2, (7.81)2, (7.83)2, (8.87)–(8.92), (III)

in which the depth-integrated mass and tangential momen-
tum balance equations are conceived as the result of an aver-
aging process. This new system (III) is exploited under some
ordering approximations which account for the shallowness
of the avalanche mass, as follows: both pressures p1, p2 are
deduced from (7.75), (7.81)2, (7.83)2, and then the remain-
ing equations (8.88), (8.90)–(8.92) are transformed into
equations which, complemented by closure relations, stand
for the determination of the basic fields v̄1, v̄2, h1, h ≡
h2 − h1 and, for the case of moving topography, of b, when
(3.16) has to be accounted for. Here, if fk refers to the layer
k, the depth-averaged value f̄k is defined as

f̄1 ≡ 1

h1

∫ h1

0
f1(ξ , ξ, t)dξ, f̄2 ≡ 1

h

∫ h2

h1

f2(ξ , ξ, t)dξ.

We note that, by writing the system (I) in the form (II),
it became more clear that, if we choose to give the stress
tensors by constitutive assumptions in terms of p1, p2, v1,
v2, then the system (I), in which p1, p2, v1, v2, h1, h2 are
the basic unknowns, could be overdetermined. To avoid a
similar overdeterminateness, in Luca et al. [1–3] we replaced
the traction-free boundary condition by the requirement of

vanishing pressure on the free surface (the analogous condi-
tion being here (7.83)2). However, to replace the require-
ment σ 2n2 = 0 on the free surface with p2 = 0 is of
no use here, since the mentioned difficulty (if any) is not
completely removed, due to condition (7.81)1 at the layer
interface. Moreover, (7.81), (7.83) are particular results of a
well-established theory of continuum mechanics. In a more
trustful approach it would be probably necessary to intro-
duce 4 new unknown scalar fields, e.g., surface stresses at
the free surface and at the layer interface. Physically, the
surface stresses at the layer interface are justified, since the
layers are assumed immiscible.

9 Ordering approximations

Now we make scaling approximations, similar to those per-
formed by Luca et al. [1], in terms of an aspect ratio ε ≡
H/L and a constant γ ∈ (0, 1), where H is a typical thick-
ness perpendicular to the topography, and L is a typical
length-scale tangent to the topography, already used in the
non-dimensionalization procedure. In snow and debris flows,
we generally have ε ≈ 10−2 and γ ≈ 0.5, see Pudasaini and
Hutter [12], p. 188.

a) Geometric approximations: we assume that both
layers are thin, in the sense that h2 = O(ε), which implies
ξ = O(ε) for ξ ∈ (0, h2), in particular for ξ = h1

4.
b) Flow rule approximations: we suppose that the ero-

sion/deposition rate U is O(ε), and that the tangential velo-
cities v1, v2 are O(1) and satisfy relations of Boussinesq
type, that is, in layer 1 we have

∫ h1

0
ξv1dξ = 1

2
h2

1m(1)
1 v̄1 + O(ε2+γ ),

∫ h1

0
v1 ⊗ v1dξ = h1m(1)

2 v̄1 ⊗ v̄1 + O(ε2+γ ),

∫ h1

0
ξv1 ⊗ v1dξ = 1

2
h2

1m(1)
3 v̄1 ⊗ v̄1 + O(ε2+γ ), (9.93)

and in layer 2, with h ≡ h2 − h1, we have

∫ h2

h1

ξv2dξ = 1

2
h(h + 2h1)m

(2)
1 v̄2 + O(ε2+γ ),

∫ h2

h1

v2 ⊗ v2dξ = hm(2)
2 v̄2 ⊗ v̄2 + O(ε2+γ ),

4 We use in both layers the same curvilinear coordinate system
based on the topography of the bottom surface. In principle, to each
layer one could assign its own coordinate system, that corresponds
to the surface bounding the layer from below, but this is not done
here.
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∫ h2

h1

ξv2 ⊗ v2dξ

= 1

2
h(h + 2h1)m

(2)
3 v̄2 ⊗ v̄2 + O(ε2+γ ). (9.94)

Notice that we do not assume any law for the tangential
velocity profile. Instead, we use the momentum correction
factors or Boussinesq coefficients m(1)

1 . . . m(2)
3 to account

for the deviations of the velocity field from a plug flow (by
which we mean that vk is independent of the avalanche depth
ξ ), when they are equal to 1. These coefficients are sup-
posed to be scalar functions of ξ , t (possibly by means e.g.
of the depth-averaged tangential velocity of the correspond-
ing layer) of order O(1). For a power-law velocity profile
they have been deduced in Luca et al. [1]. We mention that
(9.93), (9.94) are independent of the choice of the para-
meterization of the bottom topography.

We shall also need to approximate the integrals

∫ h1

0
v1v1dξ,

∫ h2

h1

v2v2dξ

up to terms O(ε2+γ ). To this end we note that, in view of
(3.30), (3.38)1,2, U = O(ε) and ξ = O(ε), we have J =
J0 + O(ε), w = F−1vS+ O(ε), and hence for v1, v2 shown
in (8.87), (8.89), we obtain the estimations

v1 = (1 − c01)U − 1

J0
Div

∫ ξ

0
J0v1dξ ′ + O(ε2)

= O(ε),

v2 = U + ∂̃h1

∂ t
− Grad h1 · F−1vS

− 1

J0
Div

∫ ξ

h1

J0v2dξ ′ + O(ε2) = O(ε). (9.95)

Thus, recalling that h ≡ h2 − h1, our assumptions are

∫ h1

0
v1v1dξ

= (1 − c01)h1U v̄1 + 1

2
h2

1β1v̄1 + O(ε2+γ ),

∫ h2

h1

v2v2dξ

= h

(
U + ∂̃h1

∂ t
+ Grad h1 · (v̄2 − F−1vS)

)
v̄2

+ 1

2
h2β2v̄2 + O(ε2+γ ). (9.96)

These assumptions are suggested by the analysis of a plug
flow. Thus, since for such a flow v1 = v̄1, v2 = v̄2, from

(9.95) we have

v1 = (1 − c01)U − 1

J0
ξDiv (J0v̄1) + O(ε2),

v2 = U + ∂̃h1

∂ t
+ Grad h1 · (v̄2 − F−1vS)

− 1

J0
(ξ − h1)Div (J0v̄2) + O(ε2),

and therefore assumptions (9.94) are satisfied with

β1 = − 1

J0
Div (J0v̄1), β2 = − 1

J0
Div (J0v̄2).

Consequently, Boussinesq coefficients β1, β2, different from
those above, indicate deviations of the tangential velocity
field from a plug flow.

c) Dynamic stress approximations: corresponding to the
motion of the avalanche mass, the stress tensors σ k, k = 1, 2,
are postulated to satisfy the conditions (see notations (7.71))

pk = O(ε), Pk = O(ε),

pk = O(εγ ), T 33
k = O(ε1+γ ), (9.97)

by which both pressures p1 and p2 are assumed of the order
of the hydrostatic pressure, and, as we shall see, the normal
extra-stresses parallel to the base, i.e. T 11

k , T 22
k , and the shear

stresses T 12
k , pk are small, but still play a role, while the

dissipative extra-stresses T 33
k are negligibly small.

10 Shallow avalanche equations for a two-layer flow
over variable topography

Now, under the scalings introduced in the previous
section, we first exploit the normal momentum balance
equation (7.75) for both k = 1, 2, by accounting for the
boundary conditions (7.81)2, (7.82)2, to deduce the pres-
sures p1, p2. Then, under the same scalings, we transform
the depth-integrated balance equations (8.88)–(8.92) to
deduce the shallow avalanche equations characterizing a
two-layer flow over arbitrary moving topography. In doing
so, we still deal with arbitrary rheologic properties of the
avalanche mass. The procedure closely follows that in Luca
et al. [12], which is why some results are simply taken over
from the cited paper. We obtain

Proposition 10.1 Under the scalings a)–c), corresponding
to the two layers the mean pressures are given by

p̄1 = 1

2
h1(c + a1m(1)

3 ) + 1

c12
h(c + a2m(2)

2 ) + O(ε1+γ ),

a1 ≡ Hv̄1 · v̄1,
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p̄2 = 1

2
h(c + a2m(2)

3 ) + h1a2(m
(2)
3 − m(2)

2 ) + O(ε1+γ ),

a2 ≡ Hv̄2 · v̄2, (10.98)

the depth-integrated mass and momentum balance equations
corresponding to the lower layer are

∂̃

∂ t
{J0h1(1 − �h1)}

+ Div {J0h1[(1 − �h1m(1)
1 )v̄1 − uS + �h1F−1vS]}

= −c01 J0U + O(ε2+γ ), (10.99)

∂̃

∂ t
{J0h1(1 − �h1m(1)

1 )Fv̄1}

+ Div {J0h1F[(m(1)
2 − �h1m(1)

3 )v̄1 ⊗ v̄1

+ p̄1M0 − P̄1 − v̄1 ⊗ uS + �h1m(1)
1 v̄1 ⊗ F−1vS]}

+ J0h1{2FWp̄1 − (H·P̄1)s}

= − 1

c12
F{J [(−p2M + P2)Grad h1 − p2]}ξ=h1

− J0F(p1 + c01Uv1)|ξ=0

− J0h1

{
c + a1m(1)

2 − 1

2
h1ã1m(1)

3

+ 1

c12
2�h(c + a2m(2)

2 ) + GradU · v̄1

}
s

− 1

2
J0h2

1(c + a1m(1)
3 )FWF−1s + J0h2

1β1FWv̄1

+ 1

2
J0h2

1m(1)
3

∂

∂ξα
(FWF−1)F(v̄1 ⊗ v̄1)eα

+ (1 − 2c01)J0h1UFWv̄1

+ J0h1
∂F
∂ξα

{uS ⊗ v̄1 − v̄1 ⊗ uS}eα

− J0�h2
1m(1)

1
∂F
∂ξα

{F−1vS ⊗ v̄1 − v̄1 ⊗ F−1vS}eα

+ O(ε2+γ ), (10.100)

where ã1 ≡ Hv̄1 · Wv̄1, and the depth-integrated mass and
momentum balance equations corresponding to the upper
layer emerge as

∂̃

∂ t
{J0h[1 − �(h + 2h1)]}

+ Div {J0h[(1 − �(h + 2h1)m
(2)
1 )v̄2

− uS + �(h + 2h1)F−1vS]}
= O(ε2+γ ), (10.101)

∂̃

∂ t
{J0h[1 − �(h + 2h1)m

(2)
1 ]Fv̄2}

+ Div {J0hF[(m(2)
2 − �(h + 2h1)m

(2)
3 )v̄2 ⊗ v̄2

+ p̄2M0 − P̄2 − v̄2 ⊗ uS

+ �(h + 2h1)m
(2)
1 v̄2 ⊗ F−1vS]}

+ J0h{2FWp̄2 − (H·P̄2)s}
= F{J [(−p2M + P2)Grad h1 − p2]}ξ=h1

− J0h

{
(1 − 2�h1)(c + a2m(2)

2 )

− 1

2
(h + 2h1)ã2m(2)

3 + GradU · v̄2

}
s

− 1

2
J0h(h + 2h1)(c + a2m(2)

3 )FWF−1s

+ J0h2β2FWv̄2 + 1

2
J0h(h + 2h1)m

(2)
3

× ∂

∂ξα
(FWF−1)F(v̄2 ⊗ v̄2)eα + J0hUFWv̄2

+ 2J0h

{
∂̃h1

∂ t
+ Grad h1 · (v̄2 − F−1vS)

}
FWv̄2

+ J0h
∂F
∂ξα

{uS ⊗ v̄2 − v̄2 ⊗ uS}eα

− J0�h(h + 2h1)m
(2)
1

∂F
∂ξα

× {F−1vS ⊗ v̄2 − v̄2 ⊗ F−1vS}eα + O(ε2+γ ),

(10.102)

where ã2 ≡ Hv̄2 · Wv̄2.

Proof Using the approximations vk = O(1), vk =
O(ε), U = O(ε), (9.97), and recalling that b = −c,
equation (7.75) written for k = 1, 2 emerges as

∂p1

∂ξ
= −c+�(v1)+O(εγ ),

∂p2

∂ξ
= −c+�(v2)+O(εγ ),

(10.103)

where �(vk) = −H · (vk ⊗ vk) + O(ε), see (5.52)4 with
B = F + O(ε). We first determine p2, since in order to
obtain p1 from (10.103)1 we need to know p2 at ξ = h1.
To this end we integrate (10.103)2 from ξ ∈ (h1, h2) to h2

and use the boundary condition (7.83)2, which, according to
the dynamic assumptions (9.97), reads as

p2 = O(ε1+γ ) at ξ = h2(ξ , t).
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We obtain

p2 = c(h2 − ξ) + H ·
∫ h2

ξ
v2 ⊗ v2dξ ′ + O(ε1+γ ),

which, by changing the order of integration, gives

p̄2 = 1

2
hc + 1

h
H ·

(∫ h2

h1

ξv2 ⊗ v2dξ−h1

∫ h2

h1

v2 ⊗ v2dξ

)

+ O(ε1+γ ).

Then, by appeal to the Boussinesq approximations (9.94),
we derive (10.98)2 and

p2|ξ=h1 = h(c + a2m(2)
2 ) + O(ε1+γ ). (10.104)

Now we integrate (10.103)1 from ξ ∈ (0, h1) to h1 and
obtain

p1 = c(h1 − ξ)+H ·
∫ h1

ξ
v1 ⊗v1dξ ′ + p1|ξ=h1 + O(ε1+γ ).

(10.105)

With the dynamic assumptions (9.97), condition (7.81)2
appears as

c12 p1 = p2 + O(ε1+γ ) at ξ = h1(ξ , t),

which can be used together with (10.104) to replace p1|ξ=h1

in (10.105). Then, by changing the order of integration,
we derive (10.98)1. For further reference we note the
value

p1|ξ=0 = h1(c + a1m(1)
2 ) + 1

c12
h(c + a2m(2)

2 ) + O(ε1+γ ).

(10.106)

The depth-integrated balance equations (8.88), (8.91)
corresponding to the lower layer are similar to those in Luca
et al. [1]. Differences arise due to the terms involving w, U
and to the term evaluated at ξ = h1 in (8.91). Thus, omitting
the lower index 1, since v = O(1), p = O(ε), P = O(ε),
p = O(ε1+γ ), v = O(ε), the following approximations of
the integrands in (8.88), (8.91) can be taken from the cited
paper:

J = J0(1 − 2�ξ) + O(ε2),

Jv = J0(1 − 2�ξ)v + O(ε2),

J (v ⊗ v + pM − P)

= J0{(1 − 2�ξ)v ⊗ v + pM0 − P} + O(ε1+γ ),

J�(−pM, 0)

= J0 p

{
F−1 ∂F

∂ξα
M0eα + 2�F−1s

}
+ O(ε1+γ ),

J�(P, p) = −J0

{
F−1 ∂F

∂ξα
Peα − 2Wp + (H·P)F−1s

}

+ O(ε1+γ )

Jb = −J0c{(1 − 2�ξ)I + ξW}F−1s + O(ε2),

J�(v, v) = −J0{(1 − 2�ξ)F−1 ∂F
∂ξα

− ξF−1 ∂

∂ξα
(FWF−1)F}(v ⊗ v)eα

+ 2J0vWv − J0{(1 − 2�ξ)(H·(v ⊗ v))I

+ ξ(H·(v ⊗ v))W

− ξ(WT H·(v ⊗ v))I}F−1s + O(ε2). (10.107)

For the terms containing w we use

w = uS + O(ε2) = F−1vS + O(ε), U ∂w
∂ξ

= O(ε2)

to obtain

Jw = J0(uS − 2�ξF−1vS) + O(ε2),

Jv ⊗ w = J0v ⊗ (uS − 2�ξF−1vS) + O(ε2),

J

{
(Grad w)v + U ∂w

∂ξ

}

= J0(Grad uS)v − 2J0�ξ(Grad F−1vS)v + O(ε2).

(10.108)

Now we have only to write approximations (10.107),
(10.108) corresponding to layer 1, and to perform the inte-
gration in (8.88), (8.91) by taking into account the
Boussinesq approximations, to deduce (10.99) and

∂̃

∂ t
{J0h1(1 − �h1m(1)

1 )v̄1}

+ Div {J0h1[(m(1)
2 − �h1m(1)

3 )v̄1 ⊗ v̄1

+ p̄1M0 − P̄1 − v̄1 ⊗ uS + �h1m(1)
1 v̄1 ⊗ F−1vS]}

+ J0h1{2Wp̄1 − (H·P̄1)F−1s}

= − 1

c12
{J [(−p2M + P2)Grad h1 − p2]}ξ=h1

− J0(p1 + c01Uv1)|ξ=0 − J0h1

×
{[

c + a1m(1)
2 − 1

2
h1ã1m(1)

3

+ 1

c12
2�h(c + a2m(2)

2 )

]
I+ 1

2
h1(c + a1m(1)

3 )W
}

F−1s
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− F−1 ∂F
∂ξα

{J0h1[(m(1)
2 − �h1m(1)

3 )v̄1 ⊗ v̄1

+ p̄1M0 − P̄1]}eα + 1

2
J0h2

1m(1)
3 F−1

× ∂

∂ξα
(FWF−1)F(v̄1 ⊗ v̄1)eα + 2(1 − c01)J0h1UWv̄1

+ J0h2
1β1Wv̄1 − J0h1(Grad uS)v̄1

+ J0�h2
1m(1)

1 (Grad F−1vS)v̄1 + O(ε2+γ ). (10.109)

If we multiply (10.109) from the left by F and use

∂̃F
∂ t

= Grad vS, Div FX = FDiv X + ∂F
∂ξα

Xeα,

J0h(1 − �hm1)(Grad vS)v̄

+ J0h
∂F
∂ξα

(−v̄ ⊗ uS + �hm1v̄ ⊗ F−1vS)eα

− J0hF(Grad uS)v̄ + J0�h2m1F(Grad F−1vS)v̄

= −J0h(s ⊗ GradU)v̄ + J0h
∂F
∂ξα

{uS ⊗ v̄ − v̄ ⊗ uS}eα

− J0hUFWv̄ − J0�h2m1
∂F
∂ξα

× {F−1vS ⊗ v̄ − v̄ ⊗ F−1vS}eα,

where X is a 2 ×2 matrix, and in which we take h1, v̄1, m(1)
1

instead of h, v̄ and m1, respectively, we arrive at (10.100).
Note that, in deducing the last relation above, we used the
formula Grad s = FW, see Luca, Tai and Kuo [2]. Simi-
lar calculations can be performed to transform (8.90), (8.92)
into (10.101), (10.102).

There are significant simplifications of the shallow
avalanche equations in Prop. 10.1 if the basal topography
is only slightly curved:

Proposition 10.2 If the bed surface has small curvature, in
the sense that H = O(εγ ), the mean pressures in the two
layers are given by

p̄1 = 1

2
ch1 + 1

c12
ch + O(ε1+γ ), p̄2 = 1

2
ch + O(ε1+γ ),

(10.110)

the depth-integrated mass and momentum balance equations
corresponding to the lower layer are

∂̃

∂ t
{J0h1} + Div {J0h1(v̄1 − uS)} = −c01 J0U + O(ε2+γ ),

(10.111)

∂̃

∂ t
{J0h1Fv̄1} + Div {J0h1F[m(1)

2 v̄1 ⊗ v̄1

+ p̄1M0 − P̄1 − v̄1 ⊗ uS]} + 2J0h1FWp̄1

= − 1

c12
F{J [(−p2M + P2)Grad h1 − p2]}ξ=h1

− J0F(p1 + c01Uv1)|ξ=0

− J0h1(c + a1m(1)
2 + GradU · v̄1)s

+ J0h1
∂F
∂ξα

{uS ⊗ v̄1 − v̄1 ⊗ uS}eα + O(ε2+γ ),

(10.112)

and the depth-integrated mass and momentum balance equa-
tions corresponding to the upper layer emerge as

∂̃

∂ t
{J0h} + Div {J0h(v̄2 − uS)} = O(ε2+γ ), (10.113)

∂̃

∂ t
{J0hFv̄2} + Div {J0hF(m(2)

2 v̄2 ⊗ v̄2

+ p̄2M0 − P̄2 − v̄2 ⊗ uS)} + 2J0hFWp̄2

= F{J [(−p2M + P2)Grad h1 − p2]}ξ=h1

− J0h(c + a2m(2)
2 + GradU · v̄2)s

+ J0h
∂F
∂ξα

{uS ⊗ v̄2 − v̄2 ⊗ uS}eα + O(ε2+γ ).

(10.114)

In Sec. 12 we shall show, in particular, how equations
(10.99)–(10.102), and consequently (10.111)–(10.114), can
be further simplified.

We mention that, if in (10.100) one omits the term
evaluated at ξ = h1, as well as the term containing h in
the coefficient of s (line 4 of (10.100)), and if one takes
p̄1 = 1

2 h1(c + a1m(1)
3 ) in (10.100) (see line 2), one deduces

an equation which, together with (10.99), forms the shallow
avalanche equations corresponding to a single layer made
by a one constituent mass flowing over variable topography.
(To see this one has only to follow similar derivations for
a one-layer avalanche mass for which the free surface is
assumed traction-free.) For simplicity we write these shal-
low avalanche equations for the case of small curvature, that
is, we write equations (10.111), (10.112), modified as just
mentioned (we omit the lower/upper index 1):

∂̃

∂ t
{J0h} + Div {J0h(v̄ − uS)} = −c01 J0U + O(ε2+γ ),

∂̃

∂ t
{J0hFv̄} + Div {J0hF[m2v̄ ⊗ v̄ + p̄M0 − P̄ − v̄ ⊗ uS]}

+ 2J0hFWp̄



Two-layer models for shallow avalanche flows over arbitrary variable topography 117

= −J0F(p + c01Uv)|ξ=0

− J0h(c + am2 + GradU · v̄)s

+ J0h
∂F
∂ξα

{uS ⊗ v̄ − v̄ ⊗ uS}eα + O(ε2+γ ),

where p̄ = 1
2 ch.

11 Constitutive assumptions

Equations (10.99)–(10.102) and (3.16) are meant to stand
for the determination of v̄1, v̄2, h1, h and b. To this end the
mean stresses P̄k, p̄k, the terms evaluated at ξ = 0 and ξ =
h1 in (10.100), and the erosion/deposition rate U must be
given in terms of these unknown basic fields. Except U , for
which we refer the reader e.g. to Bouchut et al. [9], Tai and
Kuo [10], Fraccarollo and Capart [11], we propose closure
relations for the mentioned quantities, but, if the reader so
desires, other laws can be assumed, see e.g. Luca et al. [1].

Thus, we consider the rheological properties of the
avalanching mass in the lower layer as being described by
one of the three models of granular material described in
Luca, Tai and Kuo [3]. We do not repeat here the corre-
sponding constitutive assumptions, we only mention that
one of these models is the inviscid fluid, and the other two
are topography-adapted versions of Iverson and Denlinger
[13,14] and Hutter et al. [15,16] models, respectively.
According to these models we have p̄1 = O(ε1+γ ), hence
negligibly small, and T 33

1 = 0; the stresses P̄1 can be taken
over from [3].

Next, to deduce the basal shear stress p1|ξ=0, present
in the term evaluated at ξ = 0 in (10.100), we assume the
(dimensional/non-dimensional) Coulomb bottom friction,

σ 1n − (σ 1n · n)n = (tan δ)(−σ 1n·n)+sgn v1τ at

x3 = b(x1, x2, t), (11.115)

where δ is the basal angle of friction, tan δ > 0, tan δ =
O(εγ ), the index + stands for the positive part of a quantity,
i.e. f+ ≡ max{0, f }, and

sgn v ≡
⎧⎨
⎩

1
‖v‖v, if v �= 0, v tangent to S,

any tangent vector m to S, ‖m‖ ≤ 1, if v = 0,

see e.g. Bouchut and Westdickenberg [7]. Recalling that
vτ = v1 g1 + v2 g2, when written in curvilinear coordinates
the law (11.115) emerges as

p1 = (tan δ)(p1 − T 33
1 )+sgn v1 at ξ = 0,

where sgn x is defined as

sgn x ≡
⎧⎨
⎩

1√
M−1

0 x·x
x, if x �= 0,

any 2-column m, M−1
0 m · m ≤ 1, if x = 0.

With the assumption

v1|ξ=0 = χbasev̄1, χbase > 0, χbase = O(1),

we therefore have

(p1+c01Uv1)|ξ=0 = (tan δ)(p1|ξ=0)+sgn v̄1+c01χbaseU v̄1.

(11.116)

In the above the pressure p1 at ξ = 0 is given by (10.106),
where, with a similar motivation as that from Luca, Tai and
Kuo [3] (see also the closure assumptions for the fluid in the
upper layer), the neglected terms are of order O(ε2).

In the upper layer we assume the flowing avalanche mass
to be a Newtonian/non-Newtonian fluid with viscosity η =
O(ε2+γ ), which gives, see e.g. Luca et al. [1],

P2 = O(ε2+γ ), p2 = O(ε1+γ ), T 33
2 = O(ε2+γ ),

(11.117)

and hence in equation (10.102) the terms containing P̄2, p̄2

are negligibly small. Moreover, in view of M = M0 +
O(ε) and (10.104), the term evaluated at ξ = h1 in both
(10.100) and (10.102) emerges as

{J [(−p2M + P2)Grad h1 − p2]}ξ=h1

= J0{−p2M0Grad h1 − p2}ξ=h1 + O(ε2+γ ).

Since p2 at ξ = h1 is known, see (10.104), we have only to
give the shear stress p2 on the layer interface. To this end at
this interface we assume the (dimensional) Chézy-like fric-
tion condition, i.e.

σ 2n1 − (σ 2n1 · n1)n1 = ρ2cint ‖v2τ − v1τ‖(v2τ − v1τ )

at F1(x1, x2, x3, t) = 0, where the (non-dimensional, posi-
tive) friction coefficient cint is assumed constant, and vkτ is
now the tangential velocity with respect to the interface S1,
that is vkτ ≡ vk − (vk · n1)n1. In non-dimensional form the
law above appears as

σ 2n1 − (σ 2n1 · n1)n1 = cint ‖v2τ − v1τ‖(v2τ − v1τ ),

(11.118)

where σ 2 = O(ε1+γ ), see (11.117).
In curvilinear coordinates condition (11.118) is

p2 = cint

√
M−1(v2 − v1) · (v2 − v1)(v2 − v1)

+ O(ε2+γ ) at ξ = h1(ξ , t).

Moreover, assumption

(v2 − v1)|ξ=h1 = χint (v̄2 − v̄1), χint > 0,

cint χ
2
int = O(ε1+γ ),
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and approximation M = M0 + O(ε) turn the expression of
p2 at ξ = h1 into

p2|ξ=h1 = cint χ
2
int

√
M−1

0 (v̄2 − v̄1) · (v̄2 − v̄1)

× (v̄2 − v̄1) + O(ε2+γ ).

Consequently, at the layer interface we have

{J [(−p2M + P2)Grad h1 − p2]}ξ=h1

= −J0h(c + a2m(2)
2 )M0Grad h1 − J0cint χ

2
int

×
√

M−1
0 (v̄2 − v̄1) · (v̄2 − v̄1)(v̄2 − v̄1) + O(ε2+γ ).

(11.119)

This completes the task of proposing closure relations for
the shallow avalanche equations (10.99)–(10.102).

12 On the parameterization of the basal surface

In the preceding analysis the parameterization (3.19) of the
topographic surface was left arbitrary. Here we indicate two
possible choices of the transformation (3.17), and hence of
this parameterization.

Option 1 The coordinates (ξ1, ξ2) of a point Q on St are the
arc lengths measured on the curves obtained by intersecting
St with the planes x1 = constant and x2 = constant passing
through Q. For fixed topography these parameters have been
used by De Toni and Scotton [8], and for moving topography
of the form

x1 = x, x2 = y, x3 = b(x, t), (12.120)

that is, when b is independent of y, by Bouchut et al. [9].
Both cited papers deal with the description of a one-layer
avalanche mass on a surface with small curvature. For sim-
plicity, here we show how equations (10.111)–(10.114) for
the two-layer avalanche mass are transformed, if the basal
surface with small curvature is given as (12.120) and the
parameters ξ1, ξ2 are chosen as indicated above. Moreover,
we consider the lower layer as being described by Model 2
or Model 3 as presented in Luca, Tai and Kuo [3] (there
is no distinction between these models for the case which
we deal with), with the bottom law (11.116) and the mean
pressure (10.110)1. The upper layer is a Newtonian/non-
Newtonian fluid with viscosity of order O(ε2+γ ), and the
shear stress at the layer interface given by the Chézy-like
friction condition, such that (11.119) holds, see the previ-
ous section. Then, denoting v̄k ≡ (Vk, Wk)

T , k = 1, 2, we
assume Wk = O(ε1+γ ), and take all the fields independent
of ξ2.

Thus, we define the arc length

s(x, t) ≡
∫ x

x0

√
1 + (∂b/∂x)2dx ′

along the curve x1 = x , x2 = constant, x3 = b(x, t), where
x0 = constant is such that the plane x = x0 does not inter-
sect the avalanche body at any moment t , and consider the
time-dependent transformation

ξ1 = s(x, t), ξ2 = y ⇐⇒ x = x(ξ1, t), y = ξ2.

(12.121)

This induces the parameterization

x1 = x(ξ1, t), x2 = ξ2, x3 = b(x(ξ1, t), t)

of St as given by (12.120). Corresponding to the transforma-
tion (12.121) we have to determine the quantities F, J0, M0,

uS which appear in the modelling equations (10.111)–
(10.114); s, c, a1, a2 have also to be determined and
expressed in terms of ξ1 ≡ s. Thus, noting that

c = 1√
1 + (∂b/∂x)2

, s =
(

c
∂b

∂x
, 0

)T

,

∂s

∂x
= 1

c
,

∂x

∂s
= c,

we obtain

∂b

∂s
= c

∂b

∂x
⇐⇒ ∂b

∂x
= ∂b/∂s√

1 − (∂b/∂s)2
,

implying

c =
√

1 − (∂b/∂s)2, s =
(

∂b

∂s
, 0

)T

,
∂2b

∂x2 = 1

c4

∂2b

∂s2 .

Now we show that

F =
(

c 0
0 1

)
, J0 = 1, M0 = I,

H = W =
(

2� 0
0 0

)
,

� = 1

2
c3 ∂2b

∂x2
= 1

2c

∂2b

∂s2
, ak = 2�V 2

k , uS = O(ε1+γ )

(12.122)

hold. The first two relations above are immediate conse-
quences of (12.121) and of definitions (3.20), (3.30) of F
and J0, for M0 and H one uses formulae (3.21), then W =
M0H and ak ≡ Hv̄k · v̄k are accounted for to obtain W and
ak. In order to derive the last relation in (12.122), valid for
small curvature H = O(εγ ), we need vS, which, in view of
(12.121), reads as vS = (∂̂x/∂ t, 0)T . By differentiating the
identity x = x(s(x, t), t) with respect to t we obtain

∂̂x

∂ t
= −∂x

∂s

∂s

∂ t
= −c

∂s

∂ t
= c

∫ x

x0

c−2 ∂c

∂ t
dx ′, (12.123)
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and recalling that U = c∂b/∂ t , see (3.16), we have

∂c

∂ t
= −c3 ∂b

∂x

∂2b

∂ t∂x
= −c3 ∂b

∂x

∂

∂x

(
1

c
U

)

= c4U ∂2b

∂2x
− c2 ∂

∂x

(
U ∂b

∂x

)
.

Since � = O(εγ ) and U = O(ε), we deduce

∂c

∂ t
= −c2 ∂

∂x

(
U ∂b

∂x

)
+ O(ε1+γ ), (12.124)

which, when replaced in (12.123), gives

∂̂x

∂ t
= −cU ∂b

∂x
+ c

{
U ∂b

∂x

}
x=x0

+ O(ε1+γ )

= −cU ∂b

∂x
+ O(ε1+γ ) = O(ε),

due to the choice of x0 and of the assumption that U = 0
at those places on St where there is no avalanche mass.
We finally derive

vS =
(

−cU∂b/∂x

0

)
+ O(ε1+γ ), (12.125)

and hence uS = O(ε1+γ ), see (3.38)2. We mention the
formula

∂̂c

∂ t
= ∂c

∂ t
+ ∂c

∂x

∂̂x

∂ t
= −c2 ∂b

∂x

∂U
∂x

+ O(ε1+γ )

= −∂b

∂s

∂U
∂s

+ O(ε1+γ ), (12.126)

which holds in view of (12.124), � = O(εγ ), ∂̂x/∂ t =
O(ε) and ∂c/∂x = O(εγ ).

Now, noting that for the one-dimensional case discussed
here there is no distinction between the Models 2 and 3 in
Luca, Tai and Kuo [3], and that the earth pressure coefficient
k̃ defined therein takes the form5

k̃ ≡ k̃1
act if ∂V1/∂s > 0,

k̃ ≡ k̃1
pass if ∂V1/∂s < 0,

k̃1
act/pass ≡ 2 sec2 ϕ − 1 ∓ 2 sec ϕ tan ϕ,

where ϕ = constant is the internal angle of friction,
straightforward calculations in (10.111)–(10.114) using in

5 In view of (3.26), definition (3.27)2 yields v̄1τ = (vα
1 −

ξW α
βv

β
1 )τα , so that, when H = O(εγ ), we have v̄1τ = v̄α

1 τα +
O(ε1+γ ). Therefore, to deduce the eigenvalues ∂V1/∂s and 0 of the
mean surface stretching tensor, formula (B4) in Luca et al. [1] can be
used with u = (V1, 0)T . Then, the two eigenvectors f 1, f 2 of this
tensor, ordered as required by Model 3, are f 1 = τ 1, f 2 = τ 2, imply-

ing P̄1 = p̄1M0 − p̄1

(
k̃1 0
0 k̃2

)
, see (8.22) in Luca, Tai and Kuo [3].

particular condition (11.116) at the bottom topography,
(11.119) with a2 = O(εγ ) at the layer interface, (12.126),
∂c/∂s = −2�∂b/∂s and ∂c/∂s = O(εγ )6, show that the
avalanche depths h1, h, the velocities V1, V2 and the height
b of the basal surface satisfy the following system of equa-
tions (the terms O(ε2+γ ) are omitted):

• in the lower layer,

∂̃h1

∂ t
+ ∂

∂s
{h1V1} = −c01U,

∂̃

∂ t
{h1V1} + ∂

∂s

{
h1

[
m(1)

2 (V1)
2 + b

+ k̃c

(
1

2
h1 + 1

c12
h

)]}

=
(

b + 1

c12
ch

)
∂h1

∂s

+ 1

c12
cint χ

2
int |V2 − V1|(V2 − V1)

− tan δ

{
h1(c + a1m(1)

2 ) + 1

c12
h(c + a2m(2)

2 )

}
+

× sgn V1 − c01χbaseUV1,

• in the upper layer,

∂̃h

∂ t
+ ∂

∂s
{hV2} = 0,

∂̃

∂ t
{hV2} + ∂

∂s

{
h[m(2)

2 (V2)
2 + b + ch1 + 1

2
ch]

}

= (b + ch1)
∂h

∂s
− cintχ

2
int |V2 − V1|(V2 − V1).

We recall that the erosion/deposition rate U = O(ε) has
to be given, and that relation

U = c
∂b

∂ t
⇐⇒ ∂̂b

∂ t
= cU + O(ε1+γ )

constitutes an equation which must be added to the
system above. The precedent equivalence holds in
view of

∂̂b

∂ t
= ∂b

∂ t
+ grad b · vS = ∂b

∂ t
+ 1

c
s · vS,

of (12.125) and of the expressions for c, s.

6 This condition is repeatedly used, e.g. ch ∂h1
∂s = ∂

∂s (chh1) −
ch1

∂h
∂s + O(ε2+γ ).
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The system of equations in the upper layer coincides
with the corresponding system of equations in the paper by
Fernández-Nieto et al. [5], if the Boussinesq coefficient m(2)

2
in the above is taken equal to 1, and if the term g sin θ(dXθ)

h2
1/2 in the cited paper is neglected, as being of order

O(ε2+γ )7. In the bottom layer, even with U = 0, the
system of equations above is different from the system in
[5], due to different constitutive assumptions.

Option 2 Another possibility of choosing the transforma-
tion (3.17) was proposed by Tai and Kuo [10], as suggested
by the approach of “unified coordinates”, see Hui, Li and Li
[17], Hui [18]. Thus, following Tai and Kuo [10] with only
minor modifications, we require the transformation (3.17) to
be so chosen, that

uS = 0 ⇐⇒ vS = −Us ⇐⇒ ∂̂x

∂ t
= −cU ∂b

∂x
,

∂̂ y

∂ t
= −cU ∂b

∂y
(12.127)

holds at each moment t > 08. At t = 0, when the erosion/
deposition starts, transformation (12.127) must be known,
say

x = x(ξ1, ξ2, 0) ≡ x˜(ξ1, ξ2),

y = y(ξ1, ξ2, 0) ≡ y
˜
(ξ1, ξ2). (12.128)

We take the variables ξ1, ξ2 of x˜, y˜ above to be the arc
lengths on St=0 as indicated in Option 1. Clearly, since uS =
0 and vS = O(ε), equations (10.99)–(10.102) simplify con-
siderably.

The two partial differential equations in (12.127) defin-
ing the transformation (3.17), accompanied by the corre-
sponding initial conditions (12.128), have to be added to
the system ensuing from (10.99)–(10.102) by accounting for
uS = 0 and vS = O(ε), and solved at each step of inte-
gration in the numerical procedure. Even if the number of
equations is now larger than the number of equations corre-
sponding to Option 1, the system to be solved simplifies due
to the restriction uS = 0. Here we mention that, following
Option 1, even for the one-dimensional case we have already
encountered a difficulty: we could explicitly calculate the
integral in (12.123), needed to determine uS, only if the cur-
vature of the basal surface was small. Following Option 2,

7 Most likely this term is kept in Fernández-Nieto et al. [5] for
numerical reasons, as e.g. in Bouchut et al. [9].

8 Strictly following Tai and Kuo [10] we should have required
w = 0. However, the transformation between (x1, x2, x3, t) and
(ξ1, ξ2, ξ3, t) is not arbitrary, so that w is given by (3.38)1, and the
requirement w = 0 would imply the dependence of uS on ξ . What is
however arbitrary is uS . Taking uS = 0, since ξ = O(ε), U = O(ε),
we deduce w = O(ε2), which is negligibly small.

this inconvenience is eliminated. On the other hand, condi-
tion (12.127) can cause problems in the numerical procedure
if the moving topographic surface has large curvature and
“shrinks”, instead of “swelling”. Moreover, in this paper and
related works by Luca et al. [2]–[3] it is tacitely assumed that
the vectors τ 1, τ 2, tangent to the basal surface, are O(1), so
that gα = τα + O(ε) = O(1), α = 1, 2. This property of
τ 1, τ 2 clearly holds in Option 1, but it can be violated in
Option 2, even if on St=0 the parameters ξ1, ξ2 are the arc
lengths indicated in Option 1. Nevertheless, this difficulty
can be avoided by defining the unit vectors eα ≡ gα/‖gα‖,
α = 1, 2, and deriving the final modelling equations by con-
sidering the basis {e1, e2, n} instead of {g1, g2, n}.

It is interesting to note that for the moving surface
(12.120) with small curvature, transformation (3.17) is prac-
tically the same in both Option 1 and Option 2, see (12.125)
and (12.127).

13 Conclusions

In this paper a three-dimensional two-layer model of debris
flow dynamics down arbitrary, natural topography is pre-
sented. The dynamical equations are formulated with respect
to curvilinear coordinates following the basal sliding surface
as it evolves in time due to the erosion–deposition processes
which may take place at this interface between the moving
and stagnant portions of the soil-debris regions.

Mechanically, the debris flow is supposed to be in a
relatively mature state of its motion. Such stages of a
fluid–granular mixture often manifest themselves as mate-
rially separated disjoint regimes of (i) a dense granular flow
(with some interstitial fluid, which dynamically can be
lumped with the solid phase, but together formally com-
prise a one-constituent fluid with complex rheological pro-
perties) and, (ii) a particle laden fluid, say water with clay
suspended, of much simpler rheological properties. These
two material layers have been treated here as density pre-
serving single component materials. This assumption is
physically better satisfied for the upper than the lower
layer fluid, because it is in applications of e.g. fluvial
hydraulics or sub-aquatic turbidity currents natural water
with a small mass fraction of a fine grained particle suspen-
sion, in hydraulics referred to as wash-load. The assumption
of constant density of the dense granular material is less
justified, but we believe that the energetically active pul-
sating debris flow in the lower layer is thought to instantly
adjust the entrained soil density to that in its immediate
vicinity.

We have assumed that mass exchanges take place
between the stagnant base and the dense debris in the lower
layer, whilst the interfaces between the two layers and the
free surface are material. This assumption is not so convin-
cingly justified for the middle interface, especially not under
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conditions of high turbulent intensity. In a further version of
a two-layer model of catastrophic debris flow, the bottom
layer should therefore be a binary fluid–solid mixture over-
lain by a single fluid with fluid mass exchange between the
two layers across the interface.

Geometrically, the dynamical equations have been
derived for an avalanching debris mass that is thin when
measured on length scales of its extent, but moving on topo-
graphies with arbitrary curvature. “Arbitrary” here
means that any local thickness of the two layers together
is smaller than the inverse of each positive (if any) prin-
cipal curvature, but can otherwise vary as we please. The
restriction of the “arbitrariness” is dictated by the chosen
curvilinear coordinate system, which generally leads to the
intersection of neighboring coordinate lines which are per-
pendicular to the instantaneous basal surface. The rather
complicated modelling equations are considerably more
simple when the curvatures are O(εγ ), 0 < γ < 1. Most
applications will fit into this geometric regime.

Rheologically, from the very beginning we have not
explicitly specified the stress deformation relations of the
layer materials. We have simply stated order of magnitude
relations for the stress components on planes perpendicular
to the instantaneous evolving topography and being
parallel and perpendicular to it, respectively. Based on ear-
lier analysis, Luca et al. [1], the various stress components
do not have the same orders of magnitude, but three classes
of models have been defined in [1], which may be applied to
each of the stress states of the two layers. The reader is free
to choose any one of the models outlined in [1]. For instance,
the upper layer may be treated as an ideal fluid (which then
only involves the fluid pressure as a stress component), or
it may be based on a Newtonian fluid with constant visco-
sity or a non-Newtonian fluid with a viscosity parameteriza-
tion of a visco-plastic fluid (for details see [1]). The lower
layer fluid is a relatively dense granular array with an inter-
stitial fluid which affects the constitutive closure of the stress
tensor. It needs a more sophisticated stress parameterization,
in which visco-plastic behavior and normal stress effects
may be significant, as demonstrated by the extension of the
Savage–Hutter model, outlined in Luca et al. [1]. Just for
reference, in the present paper for the upper layer we have
chosen a Newtonian/non-Newtonian fluid with small visco-
sity, so small that only the shear stress at the layer interface
survives, parameterized by a Chézy-like friction condition,
and the lower layer is one of the three models in Luca, Tai
and Kuo [3].

Application of the model equations to concrete situa-
tions are deferred to a subsequent study. Such a study
requires first an explicit erosion–deposition parameteriza-

tion as well as selection of the rheological model. A par-
ticularly interesting test will be the construction of a steady
flow of river water with sediment and wash loads down a
prescribed river bed.
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