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Challenges of porous media models in geo- and biomechanical
engineering including electro-chemically active polymers and gels
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Abstract Miscible multi-component materials like classi-
cal mixtures as well as immiscible materials like saturated
and partially saturated porous media can be successfully
described on the common basis of the well-founded Theory
of Mixtures (TM) or the Theory of Porous Media (TPM).
In particular, both the TM and the TPM provide an excellent
framework for a macroscopic description of a broad vari-
ety of applications ranging, for example, from standard and
sophisticated problems in geomechanics via biomechanical
applications to electro-chemically active polymers and gels,
etc. The present article portrays general multiphasic and
multi-component materials, thus reflecting their mechanical
and their thermodynamical framework, while furthermore
adding electro-chemical effects. Including some constitutive
models and illustrative numerical examples, the article can
be understood as a reference to theoretical and numerical
investigations in the broad field of porous media models.

Keywords Theory of porous media · Solid-fluid interac-
tion · Electro-chemical effects · Finite solid elasticity · Solid
elasto-plasticity · Fluid transport · Ion diffusion · Finite
element analysis

1 Introduction

In many branches of engineering as well as in applied natural
sciences, one often has to deal with continuum-mechanical
and structural problems which cannot be uniquely classified
within the well-known disciplines of either “solid mechan-
ics” or “fluid mechanics”. These problems, characterised by
the fact that they require a unified treatment of volumetri-
cally coupled solid-fluid aggregates, basically fall into the
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categories of porous media models. Following this, there is
a broad variety of applications ranging in this category as
for example the analysis of coupled solid deformation and
pore-fluid flow behaviour of saturated or partially saturated
soil, the investigation of foamed metals and polymers under
consideration of their pore content, the description of bio-
logical soft and hard tissue or the study of electro-chemically
active polymers and gels.

Analysing porous media models on a continuum-mecha-
nical basis implies the investigation of an immiscible aggre-
gate of a solid skeleton and a pore-fluid content, which can
either be a single liquid or a single gas or a combination of
liquids and gases, which itself might be chemically miscible
or immiscible. If real mixtures are concerned, one directly
proceeds from the assumption of a continuum with statisti-
cally distributed components being completely smeared out
through the considered domain in the sense of superimposed
and interacting continua. Proceeding from this image
directly leads to the basic assumptions of the classical The-
ory of Mixtures (TM) assuming heterogeneously composed
continua consisting of an arbitrary number of miscible and
interacting constituents. Concerning the evolution of the TM,
the reader is referred to the work by Truesdell [54], Truesdell
and Toupin [56], Bowen [9] or the later work by Truesdell
[55] and the quotations therein.

Regarding the Theory of Mixtures, there is no measure
to incorporate any kind of micro-structural information. As a
result, it was found convenient to combine the “Theory of
Mixtures” with the “Concept of Volume Fractions” in order
to describe structured materials like porous solids. By use
of this procedure, basically defining the “Theory of Porous
Media” (TPM), cf. e.g. the work by Bowen [10,11], de Boer
[3,4], de Boer and Ehlers [5–7] or Ehlers [14–16,18,19],
one obtains an excellent tool for the macroscopic descrip-
tion of general immiscible multiphasic aggregates, where
the volume fractions are the measures of the local portions of
the individual constituents of the overall medium and where
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all incorporated fields are understood as local averages of the
corresponding quantities of the underlying micro-structure.

It is the goal of the present contribution to exhibit the
fundamental concepts of the Theory of Porous Media, and
to present some illustrative applications exhibiting the high
level of sophistication of this approach. In this regard, two
basically different models are discussed. These are, firstly,
an unsaturated soil investigated as a triphasic, three-com-
ponent material of a solid skeleton and an immiscible pore
content of water and air. Apart of the general discussion of
this model in the framework of small-strain elasto-plasticity,
numerical examples show the flow of water through a de-
formable embankment of a river at different water levels,
where, as a result of the technical layout of the dam, not only
stable but also unstable situations are presented. Secondly,
a swelling medium is considered consisting of a swellable
solid skeleton and a miscible pore content of a liquid solvent
and dissolved solutes. In addition, electro-chemical reactions
can be taken into account. Since swelling media can undergo
large deformations, this model is treated in the framework
of finite-strain elasticity. Based on this procedure, not only
swelling media such as active soil or soft biological tissue
can be described but also electro-active polymers and gels,
where the application of an electrical potential leads to local
deformations of the charged aggregate.

2 Preliminaries

2.1 Immiscible components and volume fractions

In case of immiscible components constituting the overall
aggregate, the TPM provides the volume fractions as a mea-
sure of the local portions of the individual materials, such as
the solid skeleton and the pore fluids, liquids and gases. The
introduction of volume fractions as one of the fundamen-
tal concepts of the TPM proceeds from the assumption of
a statistical distribution of the individual constituents over
the control space. This assumption together with the pre-
scription of a real or a virtual averaging process leads to
a model ϕ of superimposed and interacting continua ϕα

(α = 1, . . . , k):

ϕ =
k⋃

α=1

ϕα . (1)

Thus, each spatial point x of the control space Ω is simulta-
neously occupied by particles Pα of all k constituents. Con-
sequently, the mathematical functions for the description of
the geometrical and physical properties of the individual
materials are field functions defined in the complete control
space. The volume V of the overall multiphasic and multi-
component aggregate B results from the sum of the partial
volumes of the constituents ϕα in B:

V =
∫

B
dv =

k⋃

α=1

V α ,

where

V α =
∫

B
dvα =:

∫

B
nα dv . (2)

Following this, the quantity nα is defined as the local ratio
of the volume element dvα of a given constituent ϕα with
respect to the volume element dv of the overall medium ϕ :

nα =
dvα

dv
. (3)

The relations (2) and (3) represent the concept of volume
fractions. Since, in general, there is no vacant space in the
overall medium, equation (2) directly leads to the saturation
condition

k

∑
α=1

nα = 1 . (4)

By use of the volume fractions nα , two different density
functions can be introduced:

ραR =
dmα

dvα and ρα =
dmα

dv
. (5)

The effective density ραR represents the local average of the
real material density of ϕα by relating the local mass dmα

to the volume element dvα , whereas the partial density ρα

relates the same mass to the bulk volume element dv. Fol-
lowing this, the density functions are coupled by the volume
fractions:

dmα =

{
ραR dvα

ρα dv

}
−→ ρα = nα ραR . (6)

Based on the above relation, it is immediately evident that
the property of material incompressibility (ραR = const.) is
not equivalent to the property of bulk incompressibility of
this constituent, since the partial density functions ρα can
still change through changes in the volume fractions nα .

In addition to the volume fractions, it is convenient for
several applications to introduce the so-called saturation
functions sβ defined as the volume fractions of the pore flu-
ids with respect to the pore space. Thus, in case of l pore
fluids (l = k−1), one obtains

sβ =
nβ

nF , where nF =
l

∑
β=1

nβ and
l

∑
α=1

sβ = 1 . (7)

Therein, nF is the volume fraction of the accumulated pore
fluids or the porosity, respectively.
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2.2 Miscible components and molar concentrations

Assume that the pore space is saturated by a real fluid mix-
ture or by a solution of a solute and dissolved solvents. In this
case, it is necessary to distinguish differently between the
components compared to the introduction of volume frac-
tions. Proceeding from the fact that volume fractions cannot
be measured in case of real mixtures, the mixture compo-
nents are considered by their partial densities ρβ

F defined
with respect to the pore space (pore densities). Thus,

ρβ =: nFρβ
F , where ρFR =

l

∑
β=1

ρβ
F and

ρF = nFρFR. (8)

Comparable to the Theory of Mixtures, ρFR here defines the
so-called mixture density of the pore content (pore mixture
density) given through the sum of the partial pore densities.
Furthermore, ρF relates ρFR to the volume of the whole
aggregate, while ρFR itself is related to the pore space.

Given ρβ
F , the portion of matter is defined through the

molar concentration cβ
m and the molar mass Mβ

m via

ρβ
F = cβ

mMβ
m , where cβ

m =
dnβ

m

dvF . (9)

Therein, dnβ
m is the local number of moles. Since Mβ

m is a
constant of the species ϕβ , the variation of ρβ

F is uniquely

determined by cβ
m .

3 Kinematical relations

Proceeding from the basic concepts of the Theory of Porous
Media, cf. e.g. Ehlers [19], one directly applies the con-
cept of superimposed continua with internal interactions and
individual states of motion. In the framework of this con-
cept, each spatial point x of the current configuration is
simultaneously occupied by material particles (material
points) Pα of all constituents ϕα (α = S: solid skeleton,

Fig. 1. Motion of a superimposed multi-component aggregate.

α = β : l pore fluids). These particles proceed from different
reference positions at time t0, cf. Figure 1. Thus, each con-
stituent is assigned its own motion function

x = χα(Xα , t) . (10)

As a result of the image of superimposed continua, each
spatial point x can only be occupied by one single material
point Pα of each constituent ϕα . The assumption of unique
motion functions, where each material point Pα of the cur-
rent configuration has a unique reference position Xα at time
t0, furthermore requires the existence of unique inverse
motion functions χ−1

α based on non-singular Jacobian deter-
minants Jα :

Xα = χ−1
α (x, t) , Jα = det

∂ χα
∂Xα

�= 0 . (11)

It follows from (10) that each constituent has its own veloc-
ity and acceleration fields. In the basic Lagrangean setting,
these fields are given by

x′α =
∂ χα(Xα , t)

∂ t
, x′′α =

∂ 2χα(Xα , t)
∂ t2 . (12)

With the aid of the inverse motion function (11)1, an
alternative formulation of (12) leads to the Eulerian descrip-
tion

x′α = x′α(x, t) , x′′α = x′′α(x, t) . (13)

Suppose that Γ is an arbitrary, steady and sufficiently
often steadily differentiable scalar function of (x, t), then,
the material time derivative of Γ following the motion of
ϕα reads

(Γ )′α =
dα
dt

Γ =
∂Γ
∂ t

+ grad Γ ·x′α , (14)

where the operator “grad ( ·)” denotes the partial derivative
of ( ·) with respect to the local position x.

Describing coupled solid-fluid problems, it is generally
convenient to proceed from a Lagrangean description of the
solid matrix ϕS using the solid displacement vector uS as the
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primary kinematic variable, whereas the l pore fluids ϕβ

are better described in a modified Eulerian setting by use of
the seepage velocities wβ describing the fluid motions with
respect to the deforming skeleton material:

uS = x−XS , wβ = x′β −x′S and x′S = (uS)′S. (15)

In case of a pore-fluid mixture, the barycentric fluid veloc-
ity or the pore mixture velocity, respectively, and the corre-
sponding pore diffusion velocity are given by

x′F =
1

ρFR

l

∑
β=1

ρβ
F x′β and dβ F = x′β −x′F . (16)

From (10) and (11)1, one obtains the general material defor-
mation gradient Fα and its inverse F−1

α by

Fα = Gradα x , F−1
α = grad Xα . (17)

Therein, the operator “Gradα( ·)” denotes the partial deri-
vative of ( ·) with respect to the reference position Xα of
ϕα . Since the motion of any constituent ϕα was assumed
to be unique and uniquely invertible with a non-zero Jaco-
bian Jα , the domain of det Fα is restricted to positive
values

det Fα = Jα > 0 , (18)

where, in the undeformed state, det Fα(t0) = 1 has been
considered.

Concerning the definition of solid strain measures, a stan-
dard representation is given, e.g., by the introduction of the
Green-Lagrangean strain ES corresponding to the kinemat-
ics of the solid reference configuration or the Karni-Reiner
strain KS of the actual configuration, respectively:

ES =
1
2
(CS − I) , KS =

1
2
(BS − I) . (19)

Therein, I is the fundamental tensor of second order (second
order identity) and

CS = FT
S FS , BS = FSFT

S (20)

are the right and left Green deformation tensors related to
each other by the push-forward rotation BS = RSCSRT

S .
Therein, ( ·)T characterises the transposition of ( ·) and RS

is the continuum rotation of the polar decomposition of the
deformation gradient. For an extended view on porous media
kinematics including micropolar information, the interested
reader is referred to [19].

In addition to the above strain measures based on the
deformation gradient FS,

(Fα)′α = Gradα x′α and

Lα = (Fα)′α F−1
α = grad x′α (21)

are the material and the spatial velocity gradients.

4 Balance relations

4.1 General frame

The discussion of balance relations for multiphasic and multi-
component materials is based on Truesdell’s “metaphysical
principles” of mixture theories, cf. Truesdell [55, p. 221]):

1. All properties of the mixture must be mathematical con-
sequences of properties of the constituents.

2. So as to describe the motion of a constituent, we may in
imagination isolate it from the rest of the mixture, pro-
vided we allow properly for the actions of the other con-
stituents upon it.

3. The motion of the mixture is governed by the same equa-
tions as is a single body.

The foundation of Truesdell’s principles proceeds from
the idea that both the balance relations of the constituents
ϕα and the balance relations of the overall medium (the mix-
ture) ϕ =

⋃k
α=1 ϕα can be given in analogy to the balance

relations of classical continuum mechanics of single-phase
materials, provided one allows for the interaction mecha-
nisms between the constituents by the introduction of so-
called production terms.

4.2 Balance relations of the overall aggregate

Following this, the general balance relations for the overall
aggregate ϕ can be directly given from the results of classi-
cal continuum mechanics of single-phase media:

d
dt

∫

B
Ψ dv =

∫

S
(φφφ · n) da +

∫

B
σ dv +

∫

B
Ψ̂ dv,

d
dt

∫

B
ΨΨΨ dv =

∫

S
(ΦΦΦ n) da +

∫

B
σσσ dv +

∫

B
Ψ̂̂Ψ̂Ψ dv.

(22)

In the above equations,Ψ or ΨΨΨ , respectively, are the volume-
specific scalar- or vector-valued densities of the mechanical
quantities in B to be balanced. In the framework of a gen-
eral thermodynamical description, these quantities are given
by the mass density, the linear momentum, the moment of
momentum (angular momentum), the total energy (internal
and kinetic) and the entropy. The quantities φφφ · n and ΦΦΦ n,
respectively, are the densities at the surface S of B (efflu-
xes) of the mechanical quantities resulting from the external
vicinity. Furthermore, n is the outward-oriented unit surface
normal. σ or σσσ , respectively, are the supply terms of the
mechanical quantities resulting from the external distance,
whereas Ψ̂ or Ψ̂ , respectively, are the production terms of
the mechanical quantities as a result of possible couplings of
ϕ with the surrounding of ϕ . Assuming steady and steadily
differentiable integrands, differentiation of the left-hand side
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of (22) and transformation of the surface integrals incorpo-
rated in the right-hand side of (22) into volume integrals
yields the local forms of the balance relations, viz.:

.
Ψ +Ψ div

.
x = divφφφ + σ +Ψ̂ ,

.
ΨΨΨ +ΨΨΨ div

.
x = divΦΦΦ +σσσ +Ψ̂̂Ψ̂Ψ .

(23)

Therein, the barycentric derivative (mixture derivative)
.

( ·)
is defined as follows:

.
( ·):=

d( ·)
dt

=
∂ ( ·)
∂ t

+ grad ( ·) · .
x . (24)

Note that the barycentric velocity
.
x is given in analogy to

(16), however, for the whole medium via

.
x =

1
ρ

k

∑
β=1

ραx′α , where ρ =
k

∑
α=1

ρα (25)

is the density of the whole aggregate (mixture density).
By taking the time derivative of (25)1 following the barycen-
tric motion of the mixture, one obtains the barycentric accel-
eration as

..
x =

1
ρ

k

∑
β=1

[ρα ′′
xα −div(ρα dα ⊗dα) + ρ̂α ] , (26)

where the diffusion velocities

dα = x′α−
.
x with

k

∑
α=1

ρα dα = 0 (27)

have been used. The specific balance equations of mass, lin-
ear momentum, moment of momentum (m. o. m.), energy
and entropy are introduced, as is usual in continuum ther-
modynamics, via axioms, thus leading to the representation
given in Table 1. Therein, T is the Cauchy stress tensor and
b the external volume force per unit mass or the gravitation,
respectively. Furthermore, ρ

.
x is the momentum of the over-

all medium, whereas x×(ρ
.
x) is the moment of momentum.

Concerning the energy and entropy balance relations, ε is
the internal energy, q is the heat influx vector, and r is the
external heat supply. In addition, η is the entropy, φηφηφη and
ση are the efflux of entropy and the external entropy supply,
whereas η̂ is the non-negative entropy production [18].

Inserting the quantities given in Table 1 into the local
balances (23), one obtains with the aid of the respective
“lower” balances the following relations known from con-
tinuum mechanics of single-phase materials, cf. e.g. [18,
40]:

• mass:
.
ρ + ρ div

.
x = 0 ,

• momentum: ρ
..
x = divT+ ρ b ,

• m. o. m.: 0 = I ×T −→ T = TT ,

• energy: ρ
.
ε = T · L − divq + ρ r ,

• entropy: ρ
.

η ≥ div φηφηφη + ση .

(28)

In the framework of single-phase materials, it is usual
(and correct) to proceed from the following a priori con-
stitutive assumptions for the entropy efflux and the entropy
supply,

φηφηφη = − 1
θ

q , ση =
1
θ

ρ r , (29)

where θ is the absolute Kelvin’s temperature. Given (29),
the entropy relation (28)5 reads

ρ
.

η ≥ div

(
− 1

θ
q
)

+
1
θ

ρ r . (30)

However, transferring this result to multiphasic materials
leads to a wrong result and can hence not be used. This prob-
lem, by the way, gave rise to considerable irritations in the
literature on mixture theories in the sixties of the last cen-
tury, cf. Ehlers [15].

4.3 Balance relations of the constituents

Following Truesdell’s principles, the general balance rela-
tions of a constituent ϕα of the overall medium ϕ yield in
analogy to (22):

dα
dt

∫

B
Ψ α dv

=
∫

S
(φαφαφα · n) da +

∫

B
σα dv +

∫

B
Ψ̂α dv,

dα

dt

∫

B
ΨαΨαΨ α dv

=
∫

S
(ΦαΦαΦα n) da +

∫

B
σασασα dv +

∫

B
Ψ̂αΨ̂αΨ̂α dv.

(31)

Therein, the mechanical quantities ( ·)α have the same phys-
ical meaning as the quantities ( ·) included into (22). Differ-
entiation of the left-hand side of (31) and transformation of
the surface integrals into volume integrals yields the local
forms

(Ψα) ′α +Ψα divx′α = div φαφαφα + σα +Ψ̂α ,

(ΨαΨαΨα) ′α +ΨαΨαΨα divx′α = div ΦαΦαΦα +σασασα +Ψ̂αΨ̂αΨ̂α .
(32)

From Truesdell’s metaphysical principles, the local bal-
ances of the overall medium ϕ are given, on the one hand,
by the balance relations (23) of single-phase media. On the
other hand, these balance equations can be obtained by the
sum of the balance relations (32) over all k constituents ϕα .
This statement leads to constraints expressed by sum
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Table 1 Balance relations for the overall medium ϕ

Ψ , Ψ φ , Φ σ , σ Ψ̂ , Ψ̂

mass ρ 0 0 0

momentum ρ
.
x T ρ b 0

m. o. m. x× (ρ
.
x) x×T x× (ρ b) 0

energy ρ ε + 1
2

.
x ·(ρ .

x) TT .
x −q

.
x ·(ρ b)+ρ r 0

entropy ρ η φη ση η̂

Table 2 Balance relations for a constituent ϕα of the overall medium ϕ

Ψ α ,Ψ α φα , φα σα , σα Ψ̂ α , Ψ̂ α

mass ρα 0 0 ρ̂α

momentum ρα x′α Tα ρα bα ŝα

m. o. m. x× (ρα x′α ) x×Tα x× (ρα bα) ĥα

energy ρα εα + 1
2 x′α · (ρα x′α ) (Tα)T x′α − qα x′α s · (ρα bα)+ρα rα êα

entropy ρα ηα φα
η σα

η η̂α

relations which, e.g. for scalar-valued mechanical quantities,
read:

• mechanical Ψ = ∑k
α=1 Ψα ,

quantity:

• efflux: φ · n = ∑k
α=1

[φ α −Ψα (x′α−
.
x)] ·n ,

• supply: σ = ∑k
α=1 σα ,

• production: Ψ̂ = ∑k
α=1 Ψ̂α .

(33)

Concerning vector-valued mechanical quantities, one analo-
gously obtains

• mechanical Ψ = ∑k
α=1 Ψα ,

quantity:

• efflux: Φ n = ∑k
α=1

[Φα −Ψα ⊗ (x′α−
.
x)]n ,

• supply: σ = ∑k
α=1 σα ,

• production: Ψ̂ = ∑k
α=1 Ψ̂α .

(34)

The individual balance equations of mass, momentum,
moment of momentum, energy and entropy are obtained in
direct analogy to those of single-phase materials provided
one allows for the interaction mechanisms between the con-
stituents by introducing additional production terms. The
quantities ( ·)α included into the balance relations of ϕα ,
cf. Table 2, have the same physical meaning as the cor-
responding quantities ( ·) of ϕ incorporated into Table 1.

Furthermore, the mass production ρ̂α allows for mass ex-
change or phase transition processes between the consti-
tuents, ŝα is the total momentum production of ϕα , and
ĥα represents the total moment of momentum production,
whereas êα is the total energy production term. Finally, η̂α

is the total entropy production of ϕα .
In the same way, as it was assumed in the theory of

single-phase materials, cf. (29), it is possible (and correct) to
specify the efflux of entropy and the external entropy supply
of any constituent ϕα as

φα
η = − 1

θ α qα , σα
η =

1
θ α ρα rα . (35)

Admitting different Kelvin’s temperatures θ α in the above
constitutive assumptions, one allows for the possibility that
each constituent has an individual temperature function.

In the framework of multi-component materials as well
as in mixture theories, the total productions can be split into
a direct term and additional terms governed by the “lower”
productions. Thus,

ŝα = p̂α + ρ̂α x′α ,

ĥα = m̂α + x × (p̂α + ρ̂α x′α) ,

êα = ε̂α + p̂α ·x′α + ρ̂α
(

εα +
1
2

x′α ·x′α
)

,

η̂α = ζ̂ α + ρ̂αηα .

(36)

In (36)1, the direct momentum production p̂α can be inter-
preted as the local interaction force per unit volume between
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ϕα and the other constituents of the overall medium,
whereas the second term represents the additional momen-
tum production as a result of the density production term.
Analogously, m̂α is the direct part of the total moment of
momentum production ĥα , whereas the further terms repre-
sent the additional productions of angular momentum result-
ing from the direct momentum production and the density
production. Furthermore, ε̂α is the direct energy production
term included into the total energy production êα , whereas
the remainder of terms represents the additional energy pro-
duction stemming from the momentum and the density pro-
ductions, respectively.

Using the same procedure as to obtain (28) from Table 1,
one obtains the following equations from Table 2 using the
above additive split of the production terms:

• mass: (ρα)′α + ρα divx′α = ρ̂α ,

• momentum: ρα ′′
xα= divTα + ρα bα + p̂α ,

• m. o. m.: 0 = I ×Tα + m̂α ,

• energy: ρα(εα)′α = Tα · Lα − divqα

+ρα rα + ε̂α ,

• entropy: ρα (ηα)′α = div

(
− 1

θ α qα
)

+
1

θ α ρα rα + ζ̂ α .

(37)

By summing up the relations (37) over the k constituents
ϕα , one obtains the following constraints of the production
terms in comparison with the relations (28) of the overall
medium ϕ :

k

∑
α=1

ρ̂α = 0 ,
k

∑
α=1

ŝα = 0 ,
k

∑
α=1

ĥα = 0 ,

k

∑
α=1

êα = 0 ,
k

∑
α=1

η̂α ≥ 0 . (38)

Proceeding from the general constraints given by (36),
the explicit relations between the total quantities of Table 1
and the partial quantities of Table 2 read

ρ b =
k

∑
α=1

ραbα ,

T =
k

∑
α=1

(Tα −ραdα ⊗dα) ,

ρ ε =
k

∑
α=1

ρα
(

εα +
1
2

dα ·dα

)
,

(39)

q =
k

∑
α=1

[
qα−(Tα )T dα +ραεα dα

+
1
2

ρα(dα ·dα)dα)
]
,

ρ r =
k

∑
α=1

ρα(rα + bα · dα ) ,

ρ η =
k

∑
α=1

ρα ηα ,

where to obtain (39)2−5, the diffusion velocities dα have
been used. The sum relations included in (39) can be inter-
preted as follows:

• As far as there is no diffusion process (dα = 0), all terms
of the overall medium are given by summing up the res-
pective terms of the constituents.

• In case that there is a diffusion process (dα �= 0), sum-
ming up Tα , ραεα , qα and ρα rα yields the so-called
inner parts (kernels) of T, ρ ε , q and ρ r. The remain-
der of terms included in the sum relations are governed
by the diffusion process through dα . These terms can be
interpreted as follows: That part of the stress tensor T
that is initiated, for a given constituent ϕα , by the diffu-
sion process is comparable to the Reynolds stress occur-
ring in turbulent flow situations of single-constituent
fluids. Furthermore, the volume-specific internal energy
ρ ε contains the diffusive kinetic energy of the consti-
tuents. The non-mechanical influx vector q is influenced
by the sum of the influx terms generated by the diffusive
work of the partial contact forces as well as by the influx
vectors generated by the diffusive internal and kinetic
energies. Finally, the non-mechanical supply term ρ r
contains additional terms which stem from the diffusive
work of the external volume forces.

Given the relations (37)–(39), the entropy principle for
mixtures and multiphasic porous media models yields

k

∑
α=1

[
ρα(ηα)′α + ρ̂α ηα

+ div

(
1

θ α qα
)
− 1

θ α ραrα
]
≥ 0. (40)

Applying the mixture derivative defined by (24) to the en-
tropy functions ηα , one obtains with the aid of (39)6 instead
of (40)

ρ
.

η ≥
k

∑
α=1

div

(
1

θ α qα −ραηα dα

)
+

k

∑
α=1

1
θ α ρα rα . (41)

This form of the entropy principle can easily be compared
with the entropy inequality (30) for single-phase materials.
Following this, it is concluded that
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φηφηφη = −
k

∑
α=1

(
1

θ α qα + ραηα dα

)
and

ση =
k

∑
α=1

1
θ α ρα rα . (42)

Given (42), it is immediately seen that the sum relations
defined by (33) are also valid for the entropy flux and the
entropy supply term. In comparison to the relations (35)
and (42), it is furthermore seen that the entropy principles
for single-phase and multiphasic materials only leads to the
same inequalities if the diffusion process vanishes (dα = 0)
and if all constituents ϕα additionally have the same Kelvin’s
temperature (θ α ≡ θ ).

Introducing mass-specific constituent free energy func-
tions ψα via

ψα := εα − θ α ηα , (43)

one obtains with the aid of the energy balance relations (37)3

the mostly used form of the entropy principle for multipha-
sic materials, viz.:

k

∑
α=1

1
θ α

[
Tα · Lα −ρα [(ψα)′α +(θ α)′α ηα ]− p̂α ·x′α

− ρ̂α(ψα + 1
2 x′α ·x′α)− 1

θ α qα ·grad θ α + êα
]

≥ 0. (44)

In case of single-temperature problems (θ α ≡ θ ), the above
inequality can be multiplied by θ . Then,

k

∑
α=1

[Tα · Lα −ρα (ψα)′α − p̂α ·x′α − ρ̂α

× (ψα + 1
2 x′α ·x′α)]−ρη

.
θ − 1

θ
h ·grad θ ≥ 0, (45)

where (38)4 together with the definitions

h :=
k

∑
α=1

hα and hα := qα + θ ραηα dα (46)

has been used.

5 Constitutive models and basic numerical setting

5.1 General framework

Any kind of porous media model can be embedded in the
framework discussed above. However, depending on the pro-
blem at hand, additional information is necessary. With res-
pect to the broad variety of problems that can be discussed
within the TPM, it is evident that only a very small selec-
tion can be discussed within this article. Following this, two

basic problems will be considered. The first one, as a fun-
damental geotechnical problem, concerns the mechanics of
unsaturated soil, while the second one describes the pos-
sibilities of electro-active polymers and gels and can eas-
ily be reduced to swelling phenomena of active soil and
biological tissue. Various further applications can be taken
from the literature [8,37,43,60,61] and from the work of the
author and coworkers, cf. e.g. [21–32]. While the first exam-
ple proceeds from small deformation of an elasto-plastic soil
with an immiscible combination of a fluid and a gaseous
pore content, the second one depends on finite elastic defor-
mations of swelling media driven through osmosis and
electro-chemical effects. Furthermore, to realise swelling
phenomena, there are fixed charges adhering at the solid
material, while the pore content is a real mixture of a liq-
uid solute with positively and negatively charged ions as
solutes. Both examples will be discussed within a frame-
work of isothermal processes, for non-isothermal circum-
stances, cf. e.g. the dissertation theses by Ghadiani [38] and
Graf [39].

5.2 Unsaturated soil as a triphasic material

General setting. Based on the balance equations (37)1,2, a
triphasic material composed of a soil skeleton ϕS and an
immiscible pore content ϕF consisting of a pore liquid
(water) ϕL and a pore gas (air) ϕG is governed by the fol-
lowing mass and momentum balances:

(ρα)′α + ρα divx′α = 0,

0 = divTα + ραbα + p̂α

}
α = {S, L, G}

and ϕF =
⋃

β=L,G

ϕβ . (47)

To obtain (47), it has been assumed, firstly, that only quasi-

static processes (
′′
xα= 0) have to be considered and that,

secondly, phase transitions can be excluded at ambient tem-
perature conditions such that there is no water vaporisation/
condensation or freezing/melting. As a result, mass exchan-
ges between the constituents can be excluded such that the
density productions ρ̂α vanish.

Furthermore, as a result of (37)3 combined with the
effect of symmetric stresses at the micro-structure of the
individual components yielding m̂α to vanish, cf. [19], it is
assumed that

Tα = (Tα )T , (48)

also cf. (28)3. As a result of (36)1 and (38)2, the direct
momentum productions p̂α or the local interaction forces
between the constituents ϕα , respectively, are constrained
by

p̂S + p̂F = 0 , where p̂F = p̂L + p̂G. (49)
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Assuming the solid material as well as the pore liquid to be
materially incompressible (ραR = const.), the mass balance
equation (47)1 reduces to the volume balance

(nα)′α + nα divx′α = 0 with α = {S, L}. (50)

In case of the skeleton material, an integration of (50) leads
to

nS = nS
0S (det FS)−1 , (51)

which, in the framework of a small strain approach, can be
formally linearised around the natural state of ϕS to yield

nS = nS
0S (1−DivS uS) . (52)

Therein, DivS( ·) is the divergence operator corresponding
to GradS( ·). Furthermore, nS

0S is the volume fraction of ϕS

in the solid reference configuration at time t = t0. Note in
passing that, in case of a small strain approach, it is generally
not necessary to distinguish between GradS( ·) and grad ( ·)
or between DivS( ·) and div( ·). Consequently, the remain-
der of this article is based on spatial gradient and divergence
operators.

Given (51) or (52), the overall fluid volume fraction nF

(porosity) is coupled with the solid deformation by the solid
volume fraction nS via the saturation condition (4). How-
ever, to determine the portions of the liquid and the gas con-
stituents, an additional constitutive equation for the liquid
saturation function sL or for the gas saturation function sG,
respectively, is required such that nL and nG can be deter-
mined through (7)2 together with

nF = nL + nG with nL = sLnF and

nG = sG nF , where sG = 1− sL . (53)

Proceeding from an isothermal triphasic formulation of
partially saturated soil, any computational procedure is based
on a basic set of five primary variables given by the solid
displacement uS, the seepage velocities wL and wG and the
effective pore-fluid pressures pLR and pGR. Under quasi-
static conditions, one obtains a coupling between the seep-
age velocities and the effective liquid and gas pressures
resulting from the individual fluid momentum balances and
the constitutive setting yielding Darcy-like relations. Fol-
lowing this reduces the set of primary variables from five to
three: the solid displacement uS and the effective pressures
pLR and pGR. The corresponding set of governing equations
is then given by the vector-valued overall momentum bal-
ance corresponding to uS and the scalar-valued liquid vol-
ume and gas mass balance equations corresponding to pLR

and pGR. Thus,

0 = divT + ρ g ,

0 = (nL)′S + nL div(uS)′S + div(nL wL) ,

0 = nG(ρGR)′S +(nG)′S ρGR + nGρGR div(uS)′S

+ div(nGρGR wG) .
(54)

Therein, (54)1 has been obtained by taking the sum of the
momentum balances (47)2 of ϕS, ϕL and ϕG, where the con-
straint (49) has been taken into consideration together with
the assumption of a constant gravitational force g such that
bα = b ≡ g. Furthermore,

T = TS + TL + TG ,

ρ = nSρSR + nLρLR + nGρGR
(55)

define the overall Cauchy stress and the overall density of
the triphasic material, cf. (6) and (39)2. Summing over Tα

yields the kernel of the total stress T which, in case of quasi-
static situations, is identical to T itself, since the diffusive
parts included in divT as well as those included in

..
x drop

off, cf. (26) in combination with (39)2. Furthermore, note in
passing that, by use of (6)2 and (50), the last two balances of
(54) are written with respect to the skeleton motion, where,
additionally, on the basis of (14) and (15)2,

x′β = x′S + (grad x′β )wβ with β = {L, G} (56)

has been used.

Restrictions obtained from the entropy inequality. To close
the triphasic model under consideration, constitutive equa-
tions are required for the partial Cauchy stresses Tα , the lin-
ear momentum productions p̂β of the pore fluids, the liquid
saturation sL and the effective gas pressure pGR. However,
since pGR is assumed as a primary variable, the constitutive
equation for pGR will be inverted to yield an equation for the
effective density ρGR.

Proceeding from standard arguments of Rational Ther-
modynamics, an evaluation of the overall entropy inequality

TS ·LS −ρS(ψS)′S + TL ·LL −ρL(ψL)′L

+ TG ·LG −ρG(ψG)′G − p̂L ·wL − p̂G ·wG ≥ 0 (57)

obtained from (45) for the triphasic model under considera-
tion imposes the necessary thermodynamical restrictions on
the process. However, since the process under discussion is
constrained by the saturation condition (4), it is necessary
to include this information into the entropy inequality. Tak-
ing the material time derivative of the saturation condition
following the skeleton motion yields
(

∑
α

nα
)

′
S = −

[
nSdivx′S + nLdivx′L + nGdivx′G

+ grad nL ·wL + grad nG ·wG +
nG

ρGR (ρGR)′S

]

= 0, (58)
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where (47)1 and (6)2 have been used for ϕG and (50) for
ϕS and ϕL. Multiplying the saturation constraint (58) by
a Lagrangean multiplier Λ and combining (57) with (58)
transfers the entropy inequality to its final representation,
viz.:

(TS + nSΛI) ·LS −ρS(ψS)′S

+(TL + nLΛI) ·LL −ρL(ψL)′L

+(TG + nGΛ I) · LG −ρG(ψG)′G

+ Λ
nG

ρGR (ρGR)′G − ( p̂L −Λ grad nL) ·wL

− ( p̂G −Λ grad nG) ·wG ≥ 0 . (59)

Evaluating (59) by use of the constitutive assumptions

ψS = ψS(FS), ψL = ψL(sL), ψG = ψG(ρGR) (60)

yields with the aid of standard arguments (e.g. [10,19,39])

TS = −nS pFR I+ TS
E ,

TG = −nG pGR I+ TG
E ,

p̂G = pGR grad nG + p̂G
E ,

TL = −nL pLR I+ TL
E ,

p̂L = pLR grad nL

+ pC[sG grad nL − sL grad nG]+ p̂L
E .

(61)

Therein, the solid extra stress TS
E , the effective pore pressure

P := pFR, the Lagrangean multiplier Λ and the capillary
pressure pC defined as the difference between the effective
pressure pGR of the non-wetting fluid, the gas, and the effec-
tive pressure pLR of the wetting fluid, the liquid, are given by

TS
E = ρS ∂ψS

∂FS
FT

S ,

P := pFR = sL pLR + sG pGR.

Λ = pGR = (ρGR)2 ∂ψG

∂ρGR ,

pC := pGR − pLR = −sL ρLR ∂ψL

∂ sL .

(62)

While (62)1 describes the extra stress of an elastic porous
solid, the viscous extra stresses of the fluid components,
TL

E and TG
E , are usually neglected in comparison with the

extra momentum productions p̂L
E and p̂G

E resulting from local
interaction forces between the constituents. Furthermore,
note in passing that Dalton’s law given by P = sL pLR +
sG pGR was recovered by thermodynamical considerations.
Moreover, as a result of the materially incompressible pore
liquid, the effective liquid pressure pLR acts as a Lagrangean
and is thus determined by the boundary conditions of the

problem under study. Finally, in the remainder of this sec-
tion, the pressures pLR and pGR are understood as “effective
excess pressures” exceeding a typical ambient pressure like,
e.g., the atmospheric pressure p0.

Finally, with the remarks given above, an addition of the
constituent stresses Tα yields

T = −P I + TS
E , (63)

where (55)1 has been used. Thus, the overall Cauchy stress
T yields the well-known “concept of effective stress” [2,19,
53], where, as is usual in geotechnical applications, the extra
stress TS

E is identified as the effective stress of a porous soil.

The fluid constituents. Concerning the fluid materials, liq-
uid and gas, the extra momentum productions p̂L

E and p̂G
E ,

the capillary pressure pC and the effective gas pressure pGR

have to be specified by constitutive equations. As was men-
tioned before, the model under consideration proceeds from
pGR as a primary variable. Thus, pGR = pGR(ρGR) is needed
in the inverse form ρGR = ρGR(pGR). Analogously, one pro-
ceeds from sL = sL(pC) instead of pC = pC(sL).

A combination of (59) with the constitutive assumptions
(60) and the results (61) and (62) yields the dissipation mech-
anism

D = −p̂L
E ·wG − p̂G

E ·wG ≥ 0 . (64)

Proceeding from

p̂β
E = −(nβ )2 γβ R(Kβ

r )−1 wβ , (65)

where γβ R = ρβ R|g| is the specific weight of ϕβ (β ={L, G})

and Kβ
r is the corresponding relative permeability tensor,

yields the dissipation mechanism (64) to hold with positive
definite permeabilities Kβ

r . Note that Kβ
r is related to the

Darcy permeability tensor Kβ through

Kβ
r = κβ

r Kβ . (66)

Therein, κβ
r is the so-called relative permeability factor de-

pending on the saturation of ϕβ , whereas Kβ is understood
as the permeability tensor of ϕβ specified under fully satu-
rated conditions (sβ = 1). Finally, Kβ is related to the intrin-
sic permeability KS of the porous skeleton material through

Kβ =
γβ R

μβ R
KS . (67)

Note that this equation can also be used to determine the
Darcy permeability tensor Kβ of various fluids from the
intrinsic permeability KS through the specific weights γβ R

and the effective shear viscosities μβ R. In order to describe
the deformation dependence of KS, it is assumed following
Eipper [34] that

KS =
(

1−nS

1−nS
0S

)
π KS

0S , (68)
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Fig. 2. Zones of partially saturated soil (left) and principle sketch
of the capillary-pressure-saturation relation (right).

where KS
0S is the intrinsic permeability tensor of the unde-

formed skeleton, and π is a material parameter governing
the exponential function (68). If an initially isotropic solid
is concerned, KS

0S reduces to

KS
0S = KS

0S I (69)

governed by a single initial intrinsic permeability coefficient
KS

0S. In analogy to (67), this coefficient is related to an initial

Darcy permeability coefficient kβ
0S by

kβ
0S =

γβ R

μβ R
KS

0S. (70)

Concerning partially saturated soil, three zones have to
be distinguished, cf. Figure 2. In the zone beneath the
ground-water table (saturated domain), most of the pore
space is filled with the pore liquid, which is mobile and is
governed by the Darcy permeability measured under fully
saturated conditions. Nevertheless, there is a small amount
of trapped pore gas in this zone with a residual saturation
sG

res. In a certain height above the ground-water table (empty
domain), the pore gas is mobile, whereas a small amount of
the pore liquid is trapped with the residual saturation sL

res.
In between these zones, there is the unsaturated or the par-
tially saturated domain, respectively, where both fluids are
mobile. The particular height of this domain depends on the
suction properties of the soil material under study. In order
to obtain a relation between the pore fluid mobilities through
a relation between the liquid saturation and the capillary
pressure, one usually proceeds from relations following
Brooks and Corey [12] or van Genuchten [57]. In the present
contribution, use is made of the van Genuchten model embed-
ded in the general constitutive framework (60)–(62). Parti-
cularly, the model is given by

sL
eff(pC) = [1 +(αgen pC) jgen ]−hgen . (71)

Therein, αgen, jgen and hgen are material parameters, whereas
the effective saturation function describing the area between

the two residual saturations is given with respect to Finsterle
[36], cf. Figure 3:

sL
eff :=

sL − sL
res

1− sL
res− sG

res
. (72)

In the van Genuchten model, the relative permeability func-
tions are given by

κL
r = (sL

eff)
εgen {1− [1− (sL

eff)
1/hgen ]hgen }2,

κG
r = (1− sL

eff)
γgen [1− (sL

eff)
1/hgen ]2hgen ,

(73)

where εgen and γgen are additional parameters governing
the hydraulic behaviour of the soil in the unsaturated do-
main, cf. Figure 3. If the effective saturation vanishes, κL

r
is zero, and one obtains an immobile pore liquid. On the
other hand, if the effective saturation is one, κL

r is one, and
the pore liquid is fully mobile with the Darcy permeability
under fully saturated conditions. Concerning the pore gas,
equivalent statements hold. Inserting (65) into the quasi-
static fluid momentum balances (47)2 yields the Darcy-like
equations

nGwG = − KG
r

γGR [grad pGR −ρGR g ] ,

nLwL = − KL
r

γLR

[
grad pLR −ρLR g

− pC

nL (sGgrad nL − sLgrad nG)
]
,

(74)

where nGwG and nGwG are the filter velocity of the pore gas
and the pore liquid.

Finally, the effective density function of the pore gas is
assumed to be governed by Boyle’s ideal gas law

ρGR =
pGR + p0

R̄G θ
. (75)

Therein, R̄G is the specific gas constant of the pore gas. Note
that θ is constant (θ = const.) due to the assumption of an
overall isothermal problem.

The solid constituent. Following the geometrically linear
approach of small strain elasto-plasticity, the solid strain ten-
sor ES is linearised to yield

ES lin. = εS =: 1
2 [grad uS +(grad uS)T ] . (76)

Furthermore, εS additively decomposed into an elastic and a
plastic part:

εS =: εSe + εSp . (77)
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Fig. 3. Capillary-pressure-saturation relation (left) and relative permeability factors (right) after [57] with αgen = 2 · 10−4, jgen = 2.3,
hgen = 1.5, εgen = 0.5 and γgen = 0.333.

Fig. 4. Single-surface yield criterion for cohesive-frictional mate-
rials; σ1, σ2, σ3: principal stresses of σS

E (tension positive).

Embedded in the general constitutive relations (60)–(62),
the solid extra stress is governed by the generalised Hookean
law

σS
E = ρS

0S
∂ψS

∂εSe
= 2 μS εSe + λ S (εSe · I)I , (78)

where μS and λ S are the Lamé constants of the porous soil
and σS

E is the solid extra stress under small strain conditions
(σS

E ≈ TS
E ), where no difference between the Cauchy, the

Kirchhoff, the Piola and the Piola-Kirchhoff stress must be
made.

In order to describe the plastic or the viscoplastic mater-
ial properties of the skeleton material, one has to consider a
convenient yield function to bound the elastic domain. Fol-
lowing this, the single-surface yield criterion by Ehlers [16,
17] is applied, cf. Figure 4:

F = Φ1/2 + β I + ε I2 − κ = 0 ,

Φ = IID(1 + γϑ)m + 1
2 α I2 + δ 2 I4 ,

ϑ = IIID/(IID)3/2.

(79)

In this yield function, which has been designed for cohe-
sive-frictional materials, I , IID and IIID are the first principal

invariant of σS
E and the (negative) second and third principal

invariants of the effective stress deviator (σ S
E)D. The mater-

ial parameter sets

Sh = {α, β , δ , ε ,κ} , Sd = {γ, m} (80)

govern the shape of the yield surface in the hydrostatic plane
(Sh) and in the deviatoric plane (Sd). Proceeding either
from the viscoplastic approach or from the perfect plasticity
concept, the parameters included in Sh and in Sd are kept
constant during the deformation process and can be com-
puted from standard experimental data by use of an optimi-
sation procedure [30,49,52].

Since the associated plasticity concept cannot be applied
to frictional materials [45], an additional plastic potential
[48]

G = Γ 1/2 + ν2 I+ εI2 with Γ = ν1 IID + 1
2 α I2 + δ 2 I4 (81)

is considered, where ν1 and ν2 serve to relate the dilatation
angle to experimental data. From the concept of the plastic
potential, it is straight forward to obtain the evolution equa-
tion (flow rule) for the plastic strain εSp via

(εSp)′S = Λ p ∂ G

∂ σS
E

, (82)

where Λ p is the plastic multiplier.
In the framework of viscoplasticity using the overstress

concept of Perzyna-type [50], the plastic multiplier included
in (82) is given by

Λ p =
1
η

〈
F(σS

E)
σ0

〉
r . (83)

Therein, 〈 ·〉 are the Macaulay brackets, η is the relaxation
time, σ0 the reference stress, and r is the viscoplastic expo-
nent. However, in the framework of elasto-plasticity, where
the plastic strains are rate-independent, Λ p has to be com-
puted from the Kuhn-Tucker conditions

F ≤ 0, Λ p ≥ 0, Λ p F = 0 (84)

rather than from (83).
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Weak forms and basic numerical setting. The numerical
treatment of initial boundary-value problems of unsaturated
soil described as a triphasic material is based on the weak
formulations of the governing field equations together with
discretisation methods in the space and time domains. As
was mentioned above, the isothermal problem is basically
governed by five independent fields: the solid displacement
uS, the seepage velocities wL and wG and the effective fluid
pressures pLR and pGR. However, under quasi-static condi-
tions, Darcy-like relations (74) have been found to elimi-
nate the seepage velocities by the effective fluid pressures.
Consequently, the problem is finally governed by the vari-
ables uS, pLR and pGR corresponding, in the framework of
the standard Galerkin procedure (Bubnov-Galerkin) to the
balance relations (54).

Following these remarks, the overall momentum balance
(54)1 is multiplied by a test function δuS and integrated over
the domain Ω . Thus, one obtains
∫

Ω
[div(σ S

E − pI) · δuS + ρ g · δuS ]dv = 0 , (85)

where (63) and TS
E ≈ σS

E have been used. Integration by
parts of the first term in (85) together with the Gaussian inte-
gral theorem finally yields
∫

Ω
(σ S

E − pI) · grad δuS dv =
∫

Ω
ρg ·δuS dv+

∫

Γt

t̄ ·δuS da.

(86)

Therein, t̄ = (σS
E − pI)n is the total external load vector act-

ing on the Neumann boundary Γt of the overall medium with
the outward-oriented unit surface normal n.

Analogously, multiplication of the pore-liquid volume
balance (54)2 with a test function δ pLR, integration over
the domain Ω , integration by parts and application of the
Gaussian integral theorem yields
∫

Ω
[(nL)′S + nL div(uS)′S]δ pLR dv

−
∫

Ω
nL wL · grad δ pLR dv = −

∫

Γv

v̄Lδ pLR da, (87)

where v̄L = nL wL · n is the efflux of liquid volume through
the Neumann boundary Γv. Applying the same procedure to
the pore-gas mass balance, a multiplication of (54)3 with a
test function δ pGR leads to
∫

Ω
[nG(ρGR)′S +(nG)′SρGR + nGρGR div(uS)′S]

× δ pGR dv−
∫

Ω
nGρGR wG · grad δ pLR dv

= −
∫

Γq

q̄G δ pGR da . (88)

Therein, q̄G = nGρGR wG · n is the efflux of gaseous mass
through the Neumann boundary Γq.

The constitutive setting of the problem and the weak
forms given through (86)-(88) are sufficient to solve initial
boundary-value problems in the framework of unsaturated
soil mechanics.

5.3 Swelling media and active materials as a biphasic,
four-component aggregate

In soil mechanics as well as in biomechanics and various
other fields, swelling problems occur and have to be des-
cribed on a computational basis. The phenomenon of swell-
ing is triggered by the fact that negative electrical charges
are fixed to the skeleton material such that the chemical
equilibrium can change as a result of the composition of
an external solution. To give an example for this behav-
iour, consider a soot-coloured hydrogel disc, cf. Figure 5,
that is taken from a given bathing solution, where it was in
chemical equilibrium, and put into another one with a lower
concentration of both cations and anions. As a result, the
chemical equilibrium in the disc is violated and can only be
gathered again, when the disc absorbs a certain amount of
liquid such that the internal and external solutions are again
in a state of chemical equilibrium. It is furthermore seen
from Figure 5 that swelling phenomena are often accom-
panied by large deformations of the solid skeleton.

To describe swelling processes, one has to consider a
biphasic material of solid skeleton ϕS with adhering fixed
charges ϕ f c and a pore fluid ϕF understood as a mixture of a
liquid solvent ϕL, e.g. water, and dissolved solutes, e.g. posi-
tive and negative ions ϕ+ and ϕ− of a salt such as the mono-
valent Na+CL−. Based on the balance equations (37)1,2, the
biphasic, four-component material under study is governed
by the following mass and momentum balances:

(ρα)′α + ρα divx′α = 0 ,

0 = divTα + ραbα + p̂α

}
α = {S,L,+,−} and

ϕF =
⋃

β=L,+,−
ϕβ . (89)

To obtain (89), the same assumptions as to obtain (47) have
been used, namely, quasi-static processes at constant tem-
perature and a general absence of phase transitions. Based

Fig. 5. Swelling experiment by Jacques Huyghe, TU Eindhoven
(left: unswollen disc, right: finally swollen disc).
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on the concept of material incompressibility (ραR = const.)
of the porous solid including the fixed charges and the fluid
components, liquid, cations and anions, the mass balances
reduce to volume balances

(nα)′α + nα divx′α = 0 . (90)

Although the component densities ραR are constant, the par-

tial densities ρβ
F (pore densities) of the fluid components as

well as the effective pore-fluid density ρFR given by (8) and
(9) can vary as a result of varying molar concentrations cβ

m

in the pore-fluid mixture:

ρFR = ∑
β=L,γ

ρβ
F with ρβ

F = cβ
mMβ

m and γ ={+,−}.

(91)

Since the molar masses Mβ
m of the fluid components are con-

stant, (89)1 is rewritten to yield

(nF cβ
m)′β + nFcβ

m divx′β = 0 or

nF(cβ
m)′β + cβ

m div(uS)′S + nFcγ
m divwβ

+ cβ
m grad nF ·wβ = 0 , (92)

respectively. Proceeding from the fact that the fixed charges
adhere to the skeleton material, thus sharing the skeleton
motion, a volume balance for the fixed charges density is
obtained as

(ρ f c)′S + ρ f c divx′S = 0, where ρ f c =: nFc f c
m M f c

m . (93)

Therein, c f c
m and M f c

m are the molar concentration and the
molar mass of ϕ f c. In analogy to obtaining (51) from (50),
an integration of (93) yields

c f c
m = nF

0S c f c
m0S (det FS −nS

0S)
−1 , (94)

where c f c
m0S and nF

0S = 1 − nS
0S are the initial concentration

and the initial fluid volume fraction (porosity) at t = t0.
Proceeding from an isothermal four-component formu-

lation of a biphasic material, quasi-static computational pro-
cedures are based on a basic set of seven primary variables
given by the solid displacement uS, the pore fluid seepage
velocity wF , the ionic seepage velocities w+ and w−, the
hydraulic pore-fluid pressures P and the cation and anion
concentrations c+

m and c−m . Under quasi-static conditions, one
obtains a coupling between wF and P as well as between wγ
and cγ

m resulting from the individual fluid momentum bal-
ances and the constitutive setting yielding Darcy-like and
Nernst–Planck-like relations. Following this reduces the set
of primary variables from seven to four: the solid displace-
ment uS, the pore fluid pressure P and the ion concentra-
tions cγ

m. Thus, the corresponding set of governing equations
is given by the overall momentum balance corresponding to

uS, the fluid volume balance corresponding to P and the ion
concentration balances corresponding to cγ

m. Following this,
one obtains in analogy to (54)

0 = divT + ρ g ,

0 = (nF)′S + nF div(uS)′S + div(nF wF)

+
nF

ρFR (ρFR)′F ,

0 = nF(cγ
m)′S + cγ

m div(uS)′S + div(nFcγ
mwγ) . (95)

Note that the ionic seepage and pore diffusion velocities are
coupled through

wγ = dγF + wF , (96)

cf. (15)2 and (16)2. Furthermore, (95)1 has been obtained in
the same way as (54)1, while (95)2,3 represent the pore-fluid
mass balance (89)1 and the ion concentration balances (92)2

both rearranged with respect to the skeleton motion.

Restrictions obtained from the entropy inequality. To close
the model under consideration, constitutive equations are
again required for the partial Cauchy stresses Tα and the
linear momentum productions p̂β of the fluid components.
In addition, it will be shown that there is the need to formu-
late further constitutive equations for the chemical potentials
and the osmotic pressure.

As was discussed in section 5.1, an evaluation of the
overall entropy inequality

TS · LS −ρS(ψS)′S

+∑
β

[Tβ · Lβ −ρβ (ψβ )′β − p̂β ·wβ ] ≥ 0 (97)

obtained from (45) for the swelling model under considera-
tion imposes the necessary thermodynamical restrictions on
the process. However, since the model includes a pore-fluid
mixture instead of an immiscible combination of pore liq-
uids and pore gases, the free energy functions of the fluid
components will be formulated per fluid volume [9] instead
of per constituent mass as in (97). Thus,

ρβ ψβ = nF(ρβ
F ψβ ) =: nFΨ β

F , where

Ψ β
F := ρβ

F ψβ . (98)

In addition, the pore-fluid free energy yields

ΨF
F := ∑

β
Ψβ

F . (99)

Inserting (98) and (99) into (97), the entropy inequality trans-
forms towards

(TS −nSΨF
F I) · LS −ρS (ψS)′S

+∑
β

[(Tβ −nFΨβ
F I) ·Lβ − nF (Ψ F

F )′F
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− grad Ψ β
F · (nFdβ F)

− (p̂β +Ψβ
F grad nF) ·wβ ] ≥ 0. (100)

Furthermore, the process is affected by two constraints, the
saturation constraint and the electroneutrality constraint. These
constraints read:
(

nS +∑
β

nβ

)′

S

=−nS div x′S−∑
β

(nβ div x′β + grad nβ ·wβ )=0,

(
ρ f c

e +∑
γ

ργ
e

)′

S

=−ρ f c
e div x′S −∑

γ
(ργ

e div x′γ + grad ργ
e ·wγ)=0. (101)

To obtain the first constraint, the solid material time deriva-
tive of the saturation condition (4) has been taken, while to
obtain the second constraint, the solid material time deriva-
tive has been applied to the the electroneutrality condition

ρe = ρ f c
e + ∑

γ
ργ

e = 0 . (102)

Therein, the densities of the volumetric electrical charges of
the free moving ions ϕγ and the ions ϕ f c adhering at the
skeleton are given by

ργ
e := nF zγ cγ

mF and ρ f c
e := nF z f cc f c

m F, (103)

where zγ are the valances of the ions, and F is the Faraday
constant.

Multiplying the saturation constraint (101)1 by the hy-
draulic pressure P and the electroneutrality constraint (101)2

by the electrical potential E , both acting as Lagrangean mul-
tipliers, the entropy inequality (100) yields after having been
combined with these equations

(TS
E −nSΨF

F I) · LS −ρS(ψS)′S

+∑
β

[(Tβ
E −nFΨβ

F I) · Lβ − nF (Ψ F
F )′F

− grad Ψβ
F · (nF dβ F)

− ( p̂β
E + Ψβ

F grad nF) ·wβ ] ≥ 0 . (104)

Therein, the electrical potential E occurs as a new field which
is not matched by a governing equation yet. Concerning
the further terms occurring in (104), the extra stresses TS

E

and Tβ
E as well a the extra momentum productions p̂β

E with
β = {L, γ} are defined as

TS
E = TS + nS

P I+ ρ f c
e E I ,

Tγ
E = Tγ + nγ

P I+ ργ
e E I ,

p̂γ
E = p̂γ −P grad nγ −E grad ργ

e ,

TL
E = TL + nL

P I ,

p̂L
E = p̂L −P grad nL .

(105)

From the above relations, it is seen that the extra quantities
and the total quantities are related to each other by the action
of the incompressibility constraint (101)1 multiplied by P

and by the electroneutrality constraint (101)2 multiplied by
E .

Combining (104) with the constitutive assumptions

ψS = ψS(FS) and Ψβ
F = Ψβ

F (cβ
m) (106)

yields with the aid of the standard evaluation procedure:

TS
E mech. := TS

E + nS

(

∑
β

cβ
m

∂Ψβ
F

∂cβ
m

−ΨF
F

)
I, where

TS
E mech. = ρS ∂ψS

FS
FT

S ,

Tβ
E dis. := Tβ

E + nF

(
cβ

m
∂Ψ β

F

∂cβ
m

−Ψβ
F

)
I ,

p̂β
E dis. := p̂β

E −
(

cβ
m

∂Ψ β
F

∂cβ
m

−Ψ β
F

)
grad nF .

(107)

Therein, TS
E mech. is the purely mechanical part of the solid

extra stress, while Tβ
E dis. and p̂β

E dis. are the frictional stresses
and the drag and diffusion forces of ϕβ . In addition to the
results obtained with (107), it remains the dissipation in-
equality

D = −∑
β

p̂β
E dis. · wβ ≥ 0 . (108)

As has been stated in the previous section, a dimensional
analysis has been used to neglect the frictional stresses Tβ

E dis.
in comparison with the momentum productions. As a result,
the dissipation inequality is fulfilled with

p̂γ
E dis. = −SγS wγ −SLγ (x′γ −x′L) ,

p̂L
E dis. = −SLS wL −∑

γ
SLγ (x′L −x′γ) .

(109)

Therein,

Sβ S = nF nβ μβ R

KS I and SLγ = nF nLRθ cγ
m

Dγ I (110)

are the positive definite permeability and diffusion tensors
under isotropic conditions, where Dγ is the ion diffusion
coefficients of ϕγ and, as in the previous section, μβ R is the
effective shear viscosity of ϕβ , and KS is the intrinsic per-
meability of ϕS. Concerning the deformation dependence of
KS, cf. (67)–(70).



16 Wolfgang Ehlers

The fluid components. Based on the the assumption of van-
ishing frictional stresses Tβ

E dis., the extra stresses of the fluid
components read

Tβ
E = −nF

(
cβ

m
∂Ψβ

F

∂cβ
m

−Ψβ
F

)
I

yielding Tβ
E −nFΨβ

F I = nF cβ
m

∂Ψβ
F

∂cβ
m

I. (111)

From these relations, it is easily concluded that (111)2

contains the molar chemical potential μβ
m of ϕβ , while (111)1,

as the “extra pressure” of ϕβ , is the contribution πβ of ϕβ

to the overall osmotic pressure π . Thus,

μβ
m =

∂Ψβ
F

∂cβ
m

, πβ = cβ
m

∂Ψ β
F

∂cβ
m

−Ψβ
F = cβ

mμβ
m −Ψβ

F

and π = ∑
β

πβ . (112)

Combining (105)(1−3), (107) and (111), one obtains the con-
stituent partial stresses as

TS = −nS(P + π) I −ρ f c
e E I+ TS

E mech.,

Tγ = −nγPI−nFπγ I ργ
e E I, (113)

TL = −nLPI−nFπLI,

where (99) has been used. Furthermore, one recovers the
total momentum productions (105)4,5 to yield

p̂γ = P grad nγ + πγ grad nF +E grad ργ
e + p̂γ

dis.,

p̂L = P grad nL + πL grad nF + p̂L
dis.. (114)

Finally, summing over the components of the pore-fluid
mixture yields the overall fluid stress and the overall fluid
momentum production, viz.:

TF = −nF(P + π)I−∑
γ

ργ
e E I,

p̂F = (P + π)grad nF +E ∑
γ

grad ργ
e +∑

β
p̂β

E dis.. (115)

Ion diffusion and fluid flow. Proceeding from the standard
assumption that the free energy of the fluid components can
be given as

Ψβ
F = cβ

mμβ
0m + cβ

m Rθ (lncβ
m −1), (116)

the chemical potentials and the osmotic pressure read

μβ
m = μβ

0m + Rθ lncβ
m and π = Rθ ∑β cβ

m. (117)

Therein, μβ
0m is known as the constant standard potential.

Inserting the partial ion stress Tγ from (114)2 and the ion
momentum production p̂γ from (114)1 into the ion momen-
tum balance (89)2 yields

0 = −nγ (grad P −ργRb)−nF grad πγ

−ργ
e grad E + p̂γ

E dis.. (118)

Since partial osmotic pressures cannot be measured, πγ must
be substituted by μγ

m with the aid of (112)2. Thus, with the
aid of (106)2 and (112)1, the ion momentum balance (118)
yields

0 = −nγ (grad P −ργRb)−nF cγ
m grad μγ

m

−ργ
e grad E + p̂γ

E dis.. (119)

Proceeding from the assumption that the ion volume fraction
nγ is negligible compared to the liquid volume fraction nL

including

nγ � nL and nL ≈ nF , (120)

one obtains with the aid of (8)

ρFR ≈ ρL
F with ∑

γ
ργ

F ≈ 0 and x′F ≈ x′L, (121)

and (119) transforms towards the extended Nernst–Planck
equation

nFdγF = − Dγ

Rθ cγ
m

(cγ
m grad μγ

m + ργ
eF grad E ), (122)

where dγF = x′γ −x′F ≈ x′γ −x′L has been used. Furthermore,
in analogy to (8)1, ργ

e = nFργ
eF . In order to obtain (122)

describing the ion diffusion process from (119), the first
term on the rhs of (119), the drag term, has been neglected
with respect to (121)1. Furthermore, p̂γ

E dis. from (109) and
(110) has been simplified with the same argument as before
by dropping SγS, cf. (110)1. Expressing the chemical poten-
tials μγ

m by the concentrations cγ
m yields the final version of

the diffusion equation (122), viz.:

nFdγF = − Dγ

Rθ cγ
m

(Rθ grad cγ
m + ργ

eF grad E ). (123)

Therein, (117) together with the assumption of isothermal
processes has been used.

Inserting the fluid stress and the fluid momentum pro-
duction given by (115) into the fluid momentum balance
obtained by summing (89)2 over β = {L,+,−} yields

0 = −nF

[
grad (P + π)−ρFRb−∑

γ
ργ

eF grad E

]

+ p̂F
E dis.. (124)
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Therein, p̂F
E dis. is obtained from (109), (110) and (121)1 as

p̂F
E dis. = p̂L

E dis. +∑
γ

p̂γ
E dis. = −(nF)2 μFR

KS wF . (125)

Combining (124) and (125), one recovers the extended Darcy
equation

nFwF = − KS

μFR

[
grad (P + π)−ρFRb−∑

γ
ργ

eF grad E

]

(126)

governing the fluid flow.

Electrical potential. The electrical potential E entering the
process through the entropy inequality (104) together with
the electroneutrality constraint (101)2 reveals that there is
no matching governing equation. Thus, this additional equa-
tion must be found and added to the process. To overcome
this situation, use is made of the Poisson equation of the
electrical potential of electrostatics yielding

divgrad E = − 1
εF ρe, (127)

where divgrad (·) =: Δ (·) is the Laplace operator, εF the
constant electric fluid permittivity, while the density ρe of
the electrical charges is given through (102) and (103). In con-
trast to the electroneutrality condition (102) stating ρe = 0,
ρe is usually obtained from the Gaussian law

divde = ρe, (128)

where de is the electric displacement obtained from the elec-
trical field e via

de = εF e with e = −grad E . (129)

Combining (127) with (103) finally yields

divgrad E = −nF F
εF

(

∑
γ

zγ cγ
m + z f cc f c

m

)
. (130)

This equation will be used in the numerical setting to match
E .

The solid skeleton. As was mentioned at the beginning of
this subsection, swelling phenomena are usually combined
with large solid deformations, cf. Figure 5. Following this
results in the fact that a non-linear elasticity law is needed
to describe the elastic solid deformations. Following Ehlers
and Eipper [20], a combination of the Neo-Hookean law
with a non-linear volumetric deformation yields by use of
(107)1

TS
E mech. =ρS ∂ψS

FS
FT

S =(det FS)−1
[
2 μS KS + λ S (1−nS

0S)
2

(
JS

1−nS
0S

− JS

JS −nS
0S

)
I
]
, (131)

where μS and λ S, as in Subsection 5.2, are the Lamé con-
stants. Concerning the description of finite volumetric defor-
mations of a materially incompressible solid skeleton, recall
that the property of material incompressibility (ρSR = const.)
does not include total incompressibility (ρS = const.), since
ρS can still change through nS. As a result, the volumetric
deformation included in (131) is only due to variations of
the pore space, such as those initiated by swelling processes,
and is not due to volumetric changes of the matrix material
itself.

Weak forms and basic numerical setting. As was discussed
before, the numerical treatment of initial boundary-value
problems is based on the weak formulations of the gov-
erning field equations together with discretisation methods
in the space and time domains. Concerning swelling media
described as a biphasic, four-component material of a
swellable solid skeleton ϕS including the fixed charges ϕ f c

and the pore fluid ϕF consisting of the liquid solvent ϕL

and the cations ϕ+ and anions ϕ−, the isothermal problem
under consideration is basically governed by eight indepen-
dent fields: the solid displacement uS, the seepage and dif-
fusion velocities wF , d+F and d−F , the hydraulic pressure
P as well as the ion concentrations c+

m and c−m . In addi-
tion, the electrical potential E has to be considered. How-
ever, under quasi-static conditions, Nernst–Planck-like and
Darcy-like relations, cf. (123) and (126), have been found to
eliminate the seepage and diffusion velocities by the effec-
tive hydraulic pressure P and the ion concentrations cγ

m.
Thus, the remaining set of five independent fields must be
matched by a corresponding set of five governing equations
given through (95) by the overall momentum balance corre-
sponding to uS, the fluid volume balance corresponding to
P and the ion concentration balances corresponding to cγ

m.
In addition, the Poisson equation (130) is considered corre-
sponding to E .

In analogy to (85)-(88), one obtains the weak forms of
the governing equations in the framework of the standard
Galerkin procedure. In particular, the overall momentum bal-
ance (95)1 is multiplied by a test function δuS and integrated
over the domain Ω . Integration by parts together with the
Gaussian integral theorem yields the following result in the
same way as to obtain (86) from (85):
∫

Ω
[TS

E mech. − (P + π)I] ·grad δuS dv

=
∫

Ω
ρ g · δuS dv +

∫

Γt

t̄ ·δuS da. (132)
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Therein, as in the previous section, t̄ = [TS
E mech. − (P +

π)I]n is the external load vector acting on the Neumann
boundary Γt of the overall aggregate.

Proceeding from the assumption ρFR ≈ ρL
F resulting from

nγ � nL, cf. (121), (ρFR)′F vanishes and the fluid volume
balance (95)2 reduces to

div [(uS)′S + nF wF ] = 0, (133)

where (90) with α = S has been used. Multiplying (133) by
δP and using the same procedure as before results in

∫

Ω
nF wF ·grad δP dv−

∫

Ω
div(uS)′S δP dv

=
∫

Γv

v̄F δP da. (134)

Therein, v̄F = nF wF ·n is the efflux of fluid volume through
the Neumann boundary Γv.

In a next step, the ion concentration balances (95)2 have
to be considered. After having multiplied these equations by
δcγ

m, one obtains in analogy to the above procedure

∫

Ω
nF cγ

m (dγF + wF) ·grad δcγ
m dv

−
∫

Ω
[nF (cγ

m)′S + cγ
m div(uS)′S]δcγ

m dv

=
∫

Γjγ
j̄γ δcγ

m da. (135)

Therein, with the aid (96), j̄γ = nF cγ
m wγ ·n is the ionic efflux

through the Neumann boundary Γjγ .
Finally, multiplying the Poisson equation (130) by δE

and applying the same procedure as before results in

∫

Ω
grad E ·grad δE dv

−
∫

Ω

nF F
εF

(

∑
γ

zγ cγ
m + z f cc f c

m

)
δE dv

= −
∫

Γe

ēδE da, (136)

where ē = e · n is the electrical field across the Neumann
boundary Γe.

The constitutive setting of the problem and the weak
forms given through (132)–(136) are sufficient to solve ini-
tial boundary-value problems in the framework of swelling
media.

6 Numerical examples

6.1 Preliminary remarks

The following numerical examples can only present some
showcases exhibiting the behaviour of both unsaturated soil
and electro-chemically-driven swelling media. In any case,
the computational results of the initial boundary-value prob-
lems presented in this Section are computed by use of the
Finite Element Analysis (FEA) satisfying the necessary sta-
bilisation criteria.

Based on the weak forms (86)–(88) for partially satu-
rated soil or on (132)–(136) for swelling media, the numer-
ical scheme generally proceeds from a spatial discretisation
(semi-discretisation with respect to the space variable x) of
the field equations by use of mixed finite elements (Taylor-
Hood elements) satisfying the Ladyzhenskaya-Babuška-
Brezzi (LBB) condition combined with a finite difference
scheme in the time domain. In both regimes, the spatial and
the temporal one, adaptive computations can be applied and
can furthermore be combined with parallel computational
strategies. Concerning further implementary and computa-
tional details, the interested reader is basically referred to the
work by Lewis and Schrefler [46] or by Borja [8], if unsat-
urated soil mechanics is concerned, or to Chen et al [13],
Frijns et al [37], Huyghe and Janssen [41], Huyhge et al
[42], Kaasschieter et al [43], Loret et al [47], Samson et al
[51] and Wallmersperger [58], if swelling media are con-
cerned, and to the work by the group of the author [1,24–28,
31,32,39,44,59–61] and references therein.

6.2 Unsaturated soil

Based on the weak forms (86)–(88), the numerical scheme
governing the spatial domain is based on extended Taylor-
Hood elements with quadratic shape functions for the solid
displacement uS and linear shape functions for the effective
fluid pressures pLR and pGR. In contrast to the computation
of the external variables uS, pLR and pGR, the plastic strains
εSp and the plastic multiplier Λ p determined by (82) and
(83) act as internal variables and must thus be computed,
in the sense of the collocation method, at the integration
points of the numerical quadrature, cf. Ellsiepen [35] for
details.

The following numerical example concerns a 2-dimen-
sional (2-d), plane-strain description of the liquid flow
through an embankment with elasto-plastic soil properties,
cf. Figure 6. In particular, the embankment has a height of
10 m and a slope gradient on both sides of s = 1/3.

Furthermore, the ground level is assumed to be more
or less impermeable governed by an intrinsic permeability
of KS

0S = 10−15 m2 implying a liquid Darcy permeability of
kL

0S = 10−8 m/s. The embankment itself proceeds from the
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Fig. 6. Embankment with a central seal unit.

Fig. 7. Pore-liquid saturation in the stationary state: embankment without a seal unit (top), embankment with a central seal unit (bottom).

values of KS
0S = 10−12 m2 and kL

0S = 10−5 m/s, whereas the
filter at the right-hand side of the structure is assumed to be
governed by KS

0S = 10−9 m2 and kL
0S = 10−2 m/s. In order

to exhibit the differences between typical embankment con-
structions, the embankment problem is discussed twicely,
namely, with and without a central seal unit governed by
the same permeability properties like the ground level.

Based on the triphasic formulation, it is assumed that a
water table of 2 m height at the left side (water side) of the
embankment is rapidly increased towards 8 m, cf. Figure 6.
As a result, water streams into the embankment and finally
reaches a stationary state, cf. Figure 7, where three differ-
ent domains can be distinguished. These are the fully water-
saturated domain (blue) with only a few parts of immobile
air, the air-saturated domain (red) with only a few parts of
immobile water and the unsaturated domain in between (yel-
low) with both mobile water and mobile air. Because of the
different embankment constructions, the stationary state is
reached after very different times. If there is no seal unit,
the fluid flow in the dam reaches the stationary state 57
days after the increase of the water table. In contrast, as a
result of the seal unit, the sealed dam only reaches the sta-
tionary state after 6.3 years, which makes a big difference

concerning the safety of the overall construction. In partic-
ular, it is easily realised that the seal unit prevents the right
part of the embankment (air side) from an increasing water
table. As a result of not being under buoyancy conditions,
the stability of the air side of the embankment is signifi-
cantly improved.

The investigation of embankment stability problems is a
crucial issue and has to be investigated very carefully. In par-
ticular, instabilities are usually initiated by the localisation
of plastic deformations in narrow bands, the so-called shear
bands, driven by gravitational forces and local saturation
values. Furthermore, the onset of localisations can appear on
both sides of the embankment, the water side as well as the
air side. However, both a moderate embankment slope angle
and the existence of a filter unit at the air side help to pre-
vent the embankment construction from stability problems.
Concerning the construction and the geometry of the exam-
ple computed above, no shear band development could be
found. Nevertheless, there are geometries and technical lay-
outs of embankments which are very sensitive to stability
phenomena. To support this statement, a further boundary-
value problem is presented, where the construction, on the
one hand, has neither been provided with a seal unit nor with
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Fig. 8. Saturation of the pore liquid (top) and localisation of the accumulated plastic strains [10−1] (bottom).

Fig. 9. Chemical loading and geometry of a 2-d free swelling simulation. The solid and the dashed concentration curves on the left
side belong to the respective boundaries on the right side. The dotted line at the bottom’s left corner of the right-hand picture denotes the
interval with the transition zone from the value of the solid concentration curve to the dashed one.

a filter at the air side and, on the other hand, the slope at the
air side is much steeper than before.

In this regard, it is assumed that the slope gradient at
the water side keeps its original value of s = 1/3, whereas,
at the air side, there is a stronger inclination given by an
angle of 35◦. As a result of the water table at the left side
of the embankment in combination with the missing filter
unit, water is leaking from the embankment at the air side
through the slope, cf. Figure 8, thus effecting major parts
of the embankment by buoyancy forces. As a consequence,
one observes the onset of a shear band at the air side, start-
ing at the kink between the slope and the ground level. Note
in passing that this situation is very typical to appear in case
of natural hazards initiated, e.g., by extremely heavy rainfall
events and comparable situations. If shear banding occurs,
the embankment needs to be prevented from destruction.
For example, this can be done by loading the air side of the
embankment by additional weights given, e.g., by sandbags.

Finally, it should be mentioned with respect to the well-
known ill-posedness of the localisation problem that a non-

regularised space-adaptive computation would reveal a shear
band thickness shrinking with the element size. In order to
overcome this unphysical behaviour, a regularisation of the
problem is mandatory and has been applied to the present
computations by the consideration of a slightly modified
solid behaviour by adding viscoplastic effects, cf. (83). Fur-
ther regularisation strategies are possible and have been com-
mented in the literature.

6.3 Swelling media and electro-active gels

Swelling media. Based on the weak forms (132)–(136), the
numerical scheme governing swelling media is again based
on extended Taylor-Hood elements with quadratic shape func-
tions for the solid displacement uS and linear shape func-
tions for hydraulic fluid pressure P , the ion concentrations
c+

m and c−m and the electrical potential E .
The following numerical example concerns a 2-d plane-

strain simulation of the swelling experiment carried out
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Fig. 10. Qualitative comparison between the numerical simulation and the experiment with a soot-coloured hydrogel disc carried out by
the group of Jacques Huyghe. The most upper geometry on the left is the stress-free and non-swollen reference configuration. Beneath,
there is the pre-swollen initial state. The following contour plots show the deformation and the overall pressure (hydraulic and osmotic)
up to the final equilibrium state.

by the group of Jacques Huyghe in Eindhoven (The
Netherlands), cf. Figure 5. To simulate this experiment, a
rectangular cross section is discretised under symmetry con-
ditions. During the computation, the chemically uncharged
hydrogel is firstly equilibrated in a bathing solution with the
initial external concentration c̄m0. This is necessary in order
to transform the hydrogel from a fictitious non-loaded ref-
erence configuration in the sense of a natural state at t = t0
towards a pre-swollen initial configuration. Note in passing

that there is no uncharged configuration in any real exper-
iment, since swelling materials are always somehow in a
swollen state. In the fictitious non-loaded reference con-
figuration, there is neither a solid stress (TS

E mech.0S = 0)
nor an osmotic pressure (π0 = 0). To avoid numerical prob-
lems during initial loading, the initial osmotic pressure is
applied slowly by increasing the referential concentration of
the fixed charges from 0 to the prescribed value c f c

m0S over
time.
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Fig. 11. Deformation behaviour of the cantilever made of an EAP. The largest deflection of 1.3 mm is displayed in black, while white
represents a deflection of 0 mm.

After a certain time of computation, an equilibrium state
is reached defined as the “initial configuration” at which the
initial osmotic pressure π∗

0 , the initial concentration c∗m0 and
the initial purely mechanical solid extra stress TS∗

E mech.0S fits
the volumetric deformation (det FS)∗0S through the balance
equations and the constitutive setting.

Concerning the numerical simulation prior to the actual
swelling process, cf. Figure 9, the specimen is equilibrated
for a period of t0 = 7000 s in a c̄m0 = 4.1 molar NaCl solu-
tion, where c f c

m0S is increased from 0 to 0.8 meq/l within
the first 4000 s. After an equilibrium state is obtained, the
initial configuration is reached, and the hydrogel is placed
in another NaCl solution. There, the external salt concen-
tration is decreased at all boundaries from c̄m0 = 4.1mol/l
to c̄m1 = 2.7mol/l until t1 = 7080s. Thereafter, only the
boundaries denoted by the solid line are exposed to the solu-
tion. Here, the concentration is further decreased to c̄m2 =
0.3mol/l until t2 = 7220s, while the concentration at the
bottom is kept constant. At t3 = 8000s, the bottom of the
hydrogel gets in contact with the bathing solution as well.
Therefore, c̄m1 is decreased here to c̄m2 = 0.3mol/l until
t4 = 10000s.

In Figure 10, the simulation results on the left-hand side
are compared to the experiment on the right-hand side.
Besides the comparison of the deformation, the contour plots
show the development of the overall fluid pressure within
the material. The left top picture shows the artificial stress-
free reference configuration at t = 0s, where there is no
deformation and no osmotic pressure. Beneath, one can see
the computed initial configuration (t0 = 7000s) after hav-
ing increased c f c

0S from 0 to its full amount and after having
reached chemical equilibrium. This is a swollen state, i. e.,
there is an osmotic pressure and a deformation. The third
line shows the phase of the negative osmosis (t = 7107s),
during which the hydrogel shrinks initially in its inner region.
Note in passing that this effect results from the state of chem-
ical non-equilibrium at the domain boundary yielding an
influx of liquid both from the bathing solution through the
domain boundary and from the inner part of the specimen

to outer parts. Thereafter, the state with the greatest bending
is shown (t = 7224s). The subsequent pictures present how
the final equilibrium state is reached (t = 7650s and t =
11000s). At the end of the simulation process, the cross-
sectional area of the specimen is approximately 2.2 times
larger than the area of the computed initial state.

Electro-active polymers. In order to simulate the response
of an electro-active polymer (EAP) to an applied electrical
field, the final example concerns a 3-d hydrogel cantilever
(1 mm by 1 mm by 10 mm) which is exposed to a voltage
of 0.8 V. Following this, the displacements at the bottom
surface are disabled such that the applied voltage leads to
a bending of the EAP. In particular, the electrical poten-
tial E included in the boundary term ē, cf. (136), is linearly
applied within 4 s, thereby increasing the left side from 0 V
to 0.4 V, while decreasing the voltage from 0 V to −0.4V on
the opposite (right) side. Moreover, since the EAP is placed
in a bathing solution, the molar concentration c̄γ

m = 1.0mol/l
of both ions is kept constant at all boundaries. Figure 11
illustrates the deformation behaviour of the cantilever at dif-
ferent time steps, whereas the shading indicates the deflec-
tion of the cantilever.

7 Conclusion

It was the goal of the present article to range from basic
continuum-mechanical approaches of the Theory of Mixture
(TM) and the Theory of Porous Media (TPM) via the con-
stitutive modelling of sophisticated multiphasic and multi-
physical problems to computational simulations of challeng-
ing initial boundary-value problems. However, apart from
the general setting of continuum-mechanically coupled prob-
lems, only two instructive models could be discussed in
detail, namely, the unsaturated soil problem treated as a tri-
phasic aggregate of an elasto-plastic soil skeleton saturated
by an arbitrary combination of a pore liquid (water) and a
pore gas (air) and a biphasic, four-component material des-
cribing swelling media and electro-active polymers. While
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the solid deformations of the first example have been con-
sidered geometrically linear, swelling media generally exhi-
bit finite deformations. In the numerical range, both
problems have been embedded in the Finite Element Analy-
sis, thus yielding sound numerical results. In particular, the
numerical results of the unsaturated soil example have been
taken from Ehlers, Graf and Ammann [27], whereas the
results of the swelling media example have been taken from
Ehlers and Acartürk [31] and those of the electro-active poly-
mer from Ehlers and Karajan [33]. Material parameters which
have not been included in this article, can also be found in
these articles. The interested reader who wants to see further
computational examples from the broad field of mechani-
cal, civil, environmental and biomechanical engineering is
referred to the relevant literature or to the work by the author
and his group, cf. http://mechbau.uni-stuttgart. de/ls2.
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