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Abstract
Fertilizers produce over half of the world’s food and permit less encroachment into pristine lands. Yet, the low uptake efficiency
by crop plants causes nutrient losses that drive global change. Mitigating measures have been insufficient to address the
problems, and policy interventions, NGO involvement, and R&D investments have been too insignificant to transform the
fertilizer sector. Here, we discuss the contribution of balanced mineral fertilizers to increasing the nutritional value of crop
produce to improve human nutrition and health; healthier plants to reduce biocide use; plant robustness to enhance tolerance
to abiotic stresses; and increased metabolite production to improve taste and shelf-life. We reflect on raising awareness about
these multiple fertilizer-based public good services for realizing several Sustainable Development Goals which can be achieved
through a comprehensive nutrient assessment to catalyze transformation in research, policy and industry.
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1 Background

Global food demand is expected to increase by 70% in 2050,
due to a rise in population growth, along with improving in-
comes and associated dietary changes. This projection reaches
100%–170% for developing countries (Alexandratos and
Bruinsma 2012), where close to 800 million people are
food-insecure and hidden hunger affects two billion people,
with micronutrient and vitamin deficiencies contributing sig-
nificantly to high mortality rates (McClafferty and
Zuckermann 2015). The path of agricultural intensification
through advanced technologies, principally high-yielding
crop varieties, irrigation development, mechanization and en-
ergy use, and agronomic inputs including fertilizers and bio-
cides, prevented larger-scale famine in the past. The use of
mineral fertilizers, especially nitrogen (N), phosphorus (P)
and potassium (K), has been at the core of agricultural

productivity increase, with synthetic N contributing to roughly
half of the world’s food production (Erisman et al. 2008).
Fertilizers also have been useful for increasing biomass pro-
duction to be incorporated into soils to sequester carbon.
Furthermore, fertilizer use has increased crop yields, which
contributed to curtailing encroachment into natural lands
(Gibbs et al. 2010), and with that, to saving almost a billion
hectares of biodiverse ecosystems since the 1950s.

However, fertilizers also have caused significant ecological
damage. The global landscape of fertilizer-related issues can be
broadly categorized into two. First is the need to reduce losses
from mineral fertilizers, while maintaining or increasing crop
yield. This is the situation in Northern America, Europe, and
South and East Asia (Bouwman et al. 2017). Second is the need
to increase the use of balanced mineral fertilizers on soils with
low and unbalanced nutrient availability, as is the case in sub-
Saharan Africa, where green and animal manures are insuffi-
cient to sustain soil health, and where continuous cropping with
insufficient nutrient replenishment leads to the depletion of
over 50 kg ha−1 year−1 of N, P and K combined (e.g.
Lesschen et al. 2007; Cobo et al. 2010). This estimate does
not account for secondary elements and micronutrients.

Nitrogen and phosphorus fertilizers, collectively, have been
identified among the nine major drivers of global change
(Rockström et al. 2009). Fertilizers, directly and indirectly,
affect other drivers as well, including climate change, ozone
depletion, ocean acidification, land use, water quality and
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biodiversity (Angle et al. 2017). The effects of N and P losses
can, for instance, be seen in the pollution of waterbodies,
including eutrophication and dead coastal zones like the
Chesapeake Bay and the Great Barrier Reef. Most prominent
is the impact of N, of which total global loss from agricultural
production should not exceed 50–100 Mt. N y−1 to remain
within the safe operating space of the planetary boundaries
(Steffen et al. 2015). Whereas Zhang et al. (2015) estimate
that the overall global N use efficiency must increase from
the current 0.4 to 0.7 (Nyield/Ninput) to limit N losses to 50
Mt. y−1, Conijn et al. (2018) estimate that even a comprehen-
sive set of agronomic and dietary measures by 2050would not
push back the N losses to within the safe operating space.

These unintended side effects of fertilizers have led, for
instance, to policy regulations in Europe in the 1980s to limit
losses (Bindraban 2012) and also to a cap on the use of fertil-
izers by 2020 in China (Heffer and Prud’homme 2015). The
fertilizer industry, particularly in North America, promotes 4R
Nutrient Stewardship, i.e. the application of the right fertilizer,
at the right amount, right time and right place (IPNI 2014) to
increase the uptake efficiency of fertilizer nutrients and reduce
losses. As an example in this regard, the International
Fertilizer Development Center (IFDC), helped to develop
the urea deep placement technology (UDP) several decades
ago (Savant and Stangel 1990), i.e. compressing prilled urea
kernels into urea super granules of 1 cm diameter weighing
about 1.2 g that are individually paced at 7–10 cm below the
soil surface in the center of 4 rice plants 1–7 days after
transplanting. Following adjustments to local conditions for
Bangladesh, primarily in mechanization of application, the
technology has been adopted by an estimated two million
farmers and has recently been demonstrated to contribute sig-
nificantly in reducing N application rates, in increasing N
uptake efficiency, and in reducing N losses as volatilized am-
monia or emitted N-oxides, especially in lowland rice produc-
tion systems (Gaihre et al. 2015; Angle et al. 2017).
Furthermore, a derived technology, fertilizer deep placement
(FDP), is being expanded for adoption as a broader fertilizer
management strategy in many Sub Saharan African countries,
following its successes in Bangladesh (IFDC 2017).
Numerous studies in Africa confirm the need for balancing
fertilizer nutrients to obtain highest yield responses and uptake
efficiency (e.g. Kihara and Njoroge 2013). In Europe,
recapturing of nutrients from air, water, waste and offal is
being promoted, as included in policies for the development
of a circular economy (Haas et al. 2015).

However, while these agronomic measures to mitigate
losses may have improved the situation in specific geograph-
ical areas, they have globally been insufficient to curtail
fertilizer-related problems as evident from the planetary
boundary assessments, and have not yet led to drastic policy
interventions. This is in addition to the dismal investments in
fertilizer R&D by the industry, wherein Fuglie et al. (2011)

estimate that the fertilizer industry invests only 0.1–0.2% of its
revenue in R&D, compared with about 10 and 15–20% by the
seed and pharmaceutical sectors, respectively. Public concern,
however, results in an ever-louder call from society for less-
intensive production systems, like disallowing the use of
chemicals, including mineral fertilizers in organic agriculture
(Bedoussac et al. 2015). Nevertheless, crop productivity under
natural conditions, without use of mineral fertilizers, remains
at maximum levels of 2–2.5 t ha−1 grain equivalents, given the
limited availability of nutrients (WRR 1995). These levels are
recorded from the most advanced ancient civilizations such as
China and Latin America, for pre-green revolution wetland
rice cultivation (Bindraban et al. 2006) and around 1900 in
Europe and can sustain food volumes for no more than 2–3
billion people. Indeed, there is an expanding body of liter-
ature that shows fertilizers to be an essential component for
sustained yield increase in cropping systems and to be very
profi table in much of Sub Saharan Africa (e.g. ,
Droppelmann et al. 2017; Jama et al. 2017). Moreover, it
is not likely that overall nutrient losses from organic
sources would be much less than from mineral fertilizers
(Lorenz and Lal 2016; Angle et al. 2017).

Hence, the current dialogue on fertilizers has not trig-
gered policymakers to put firm policies in place for the
transformation of the fertilizer sector. It has not propelled
NGOs to develop a balanced and unifying strategy to ad-
vocate for dramatic changes, nor for the industry to make
significant investments. Yet, all these are needed to ensure
global food security, while reducing the negative side-
effects of fertilizers within the limits of our planetary
boundaries. It is from this view that Bindraban et al.
(2015) reflected on current fertilizers and called for a par-
adigm shift on fertilizer Bdesign,^ Bpackaging^ and
Bdelivery^ of nutrients to plants by a more deliberate adop-
tion of knowledge of plant physiological processes, rather
than mainly chemistry, as an entry point. This approach
would align nutrient supply to plant demand, and feed the
plant rather than the soil. Dimkpa and Bindraban (2016)
elaborated on these basic principles, and argued for height-
ened emphasis on secondary and micronutrient-containing
NPK fertilizers, also referred to here as Bbalanced
fertilizers.^

In this paper, we expand these arguments, and present
evidence for a broad spectrum of additional plant-based
benefits that can be attained from systems-specific and
judicious adoption of balanced fertilization. We present
evidence for balanced mineral fertilizers contributing to
increased nutritional value of plant produce that can im-
prove human nutrition and health; to healthier plants that
could reduce the need for pesticides and herbicides; to
plant robustness that enhances tolerance to drought; and
to increased production of metabolites that improves
taste and shelf-life. Subsequently, we reflect on the need
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to raise awareness, likely through a comprehensive nutri-
ent assessment, about these multiple public good services
that fertilizers can deliver, thereby contributing to realiz-
ing several Sustainable Development Goals (SDGs),
which can catalyze the needed transformation in policy,
civil society, research and industry.

2 Fertilizers in plant and human nutrition

Increasing the genetic yield potential, and the actual yield of
cereal crops through optimized agronomic practices, over the
past six decades has been a formidable achievement that im-
proved world food security. At the core of such agronomic
practices is increased use of macronutrient fertilizers com-
posed of NPK. At the same time, however, use of
micronutrient- containing fertilizers has not similarly ad-
vanced, globally. Concomitant with increased use of NPK is
the introduction and adoption of high-yielding crop varieties
that require high rates of N to meet their yield potentials.
Under these conditions, the concentration of micronutrients
in grains of cereal crops and in shoots of vegetables have
declined, sometimes by more than half (Davis et al. 2004;
Fan et al. 2008; Garvin et al. 2006; Graham et al. 2007;
Mayer 1997; White and Broadley 2005). This decline may
be attributed to the dilution of micronutrients in shoot and
grain biomasses due to breeding (Monasterio and Graham
2000; Bänziger and Long 2000), and the continuous mining
of soil micronutrients because of non-replenishment by fertil-
ization, especially in resource-poor countries (e.g. Jones et al.
2013; Shukla et al. 2015).

The global burden of human malnutrition, arising from
insufficient intake of secondary and micro elements like Ca,
I, Fe, Zn, and Se, and metabolites like Vitamins A and C, is
estimated to cost about US$35 trillion by 2030 (Bereuter and
Glickman 2015), due to a decline in global human productiv-
ity arising from stunting, loss of cognitive skills, and other
chronic illnesses. Strategies to address human malnutrition
include diversity of diets, nutritional supplementation, fortifi-
cation of processed food, and biofortification through breed-
ing of crops with higher contents of micronutrients (Stein
2010). The effectiveness of each intervention varies depen-
dent on the conditions and circumstances of the target group.
Here, we propose to complement these strategies through ag-
ronomic fortification: i.e., the application of mineral micronu-
trient fertilizers to soil or plant leaves to increase micronutrient
contents of edible plant parts. There is ample evidence that the
application of micronutrients increases yield and/or nutrient
contents above the levels obtained when NPK alone is added,
certainly so in soils not responsive to NPK (Kihara et al. 2017;
Vanlauwe et al. 2015). Accordingly, Dimkpa and Bindraban
(2016) presented evidence of increases in micronutrient con-
tents in edible parts of several crops from fertilization, on

which basis more emphasis on agronomic fortification was
argued, firstly, to revive and increase crop micronutrient con-
tents, and, secondly, to utilize this option to improve human
nutrition, down the line. Use of Zn-containing NPK fertilizers
in crops such as wheat, rice, sorghum, and soybean, at specific
timings and application routes, has, for instance, resulted in
dramatic improvements in crop yield and nutritional quality
(Cakmak 2008; Cakmak et al. 2010; Phattarakul et al. 2012;
Zou et al. 2012; Dimkpa et al. 2017a, b). In their comprehen-
sive review and modelling study, Joy et al. (2015) found soil
and foliar applied Zn to increase median Zn concentration in
maize, rice and wheat grains by 23, 7 and 19%, and 30, 25 and
63%, respectively. They estimated that using micronutrient-
containing fertilizers could reduce disability-adjusted life
years (DALYs) lost due to Zn deficiency by around 10%,
depending on their modelled scenarios, in ten Sub Saharan
African countries. Similar findings of significant and cost-
effective interventions of Zn on DALY has also been reported
for Pakistan (Joy et al. 2017) and China (Wang et al. 2016). In
their review, De Valença et al. (2017) also show that agronom-
ic fortification increases the content of several micronutrients,
but argue that there is a lack of evidence that this leads to
improved human health. Identifying such direct relationships
will be difficult when diets are composed from complex food
chains, but easier where food is produced and consumed lo-
cally (Akeredolu et al. 2011). In any case, humansmust obtain
several of their essential micronutrients from plants; therefore,
there must be a link among soil, food, and under-nutrition
(Oliver and Gregory 2015). In line with these authors, we
argue for multidisciplinary research that includes soil and
plant sciences, human nutrition, epidemiology, and medical
sciences, to explore the relationship between agronomic forti-
fication and human nutrition, which should be rooted in a
sound understanding of the biological aspects of nutrient me-
tabolism by plants.

3 Fertilizers in plant nutrition and human
health

While there is a recent surge in papers linking agriculture,
nutrition and human health through multidisciplinary research
because of the growing attention to nutrition-sensitive agricul-
ture (e.g., McDermott et al. 2015), few papers explicitly ad-
dress agronomic fortification. And although the relationship
between plant nutrition and human health appears distant,
circumstantial evidence indicates a promising role of plant
nutrition in human health. The role played in this regard by
essential nutrient elements such as calcium (Ca), iron (Fe), and
zinc (Zn), among others, is documented in the literature (see
for example, White and Brown 2010; Oliver and Gregory
2015). Here, we provide additional insights on the role of
other elements like selenium (Se) and silicon (Si) (Marafon
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and Endres 2013). These elements are regarded as non-
essential for plant growth, as their deficiency does not inter-
rupt the plant’s life cycle. However, they do enhance growth
and confer other benefits to plants.

In a recent review, Ros et al. (2016) noted agronomic for-
tification to be highly effective for increasing Se content in
plant and dairy products through feeding by cattle, ultimately
increasing human uptake. Along this line, the Finnish govern-
ment mandated Se fortification in fertilizers, which increased
Se levels of 125 indigenous food items including wheat, meat
and dairy products, with human intake increasing from 25 μg
day−1 in 1975 to 124 μg day−1 in 1989 (Eurola et al. 1991).
Similar results of crop and soil fertilization with Se with dra-
matic impacts on animal and/or human Se intake have been
reported for Australia, New Zealand and France. Compared to
direct Se supplementation to food, agronomic Se fortification
is advantageous in that (i) inorganic Se is assimilated into
organic forms which are more bioavailable to humans, and
(ii) plants act as an effective buffer against accidental exces-
sive Se intake (Hartikainen 2005). Nevertheless, the direct
impact on human health is difficult to assess, because the
nationwide intervention in Finland does not allow a placebo-
controlled comparison within the country. The incidence and
mortality in cardiovascular diseases and cancers as endpoints
that could have been affected by the increased Se intake ap-
pear to be more strongly determined by medical and life-style
factors (Alfthan et al. 2015). Vinceti et al. (2015), however,
suggest that epidemiologic investigations relating Se to hu-
man health should consider specific individual chemical
forms of the metalloid, rather than overall Se content because
of greatly differing toxic and nutritional properties.

Similarly, Si is also considered non-essential for plants and
humans, but there is growing evidence for its significant im-
pact on human health (Martin 2013), such as the potential to
reduce osteoporosis (Rodella et al. 2014). Silicon modulates
physiological and metabolic responses in both plant and hu-
man biology; evidence of the significance of silica nutrition
for human health has mainly been contributed by plant-based
foods. While the earth’s crust contains large amounts of Si,
only monosilicic acid (Si(OH)4) is available to plants, but it is
highly unstable and precipitates with heavy metals, leading to
deficiencies. Laane (2016) reports significant yield responses,
increased contents of other nutrients, and increased tolerance
to biotic and abiotic stresses in several crops under field con-
ditions, upon foliar application of stabilized non-colloidal si-
licic acid (produced through a patented process that prevents
polymerization) in combination with other nutrients. Through
controlled treatments, the author argues that the sole impact of
Si could be demonstrated, and that the increased nutrient up-
take could be explained by the catalytic impact of Si on en-
hanced root growth. The foliar substance comprising other
nutrients might suggest synergistic effects among nutrients.
Some of these findings are also reported by Farooq and

Dietz (2015; and references herein). Si mitigates both toxicity
and deficiency of phosphorus and heavy metals, including
aluminum (Al), arsenic (As), cadmium (Cd), iron (Fe), man-
ganese (Mn), and Zn, in plants by complexation and precipi-
tation in the rhizosphere, apoplast and/or cell wall, which dis-
solves under deficiency to supply the relevant nutrient. Silicon
also alleviates biotic stress through the production of anti-
bacterial and anti-fungal compounds, deposition of silica near
lesions, and overall strengthening of the cell wall (Cherif et al.
1994). The latter mechanism also helps to prevent lodging,
reduce transpiration, which enhances drought tolerance, and
maintain leaf erectness, which facilitates light interception. In
humans, Si is necessary for the biosynthesis of collagen and
glycosaminoglycans, which are required for organic bone ma-
trix formation that strengthens bones and connective tissues.
Si, through intermediary processes, prevents the occurrence of
neurodegeneration in the brain, which reduces the risk of
Alzheimer’s disease. Farooq and Dietz (2015), therefore, sug-
gest that Si-biofortification of crop plants can significantly
affect silica nutrition for human health.

4 Fertilizers in plant health and resistance
to disease and weed

Micronutrients are critical in the defense of crops against
disease. Infections induce a cascade of reactions that re-
sult in the production of secondary metabolites that sup-
press progression of the infection. Enzymes required to
generate these metabolites are activated by micronutrient
cofactors. For example, Mn, Cu, and Zn enhance disease
resistance by activating the host defense enzymes. Kaur
et al. (2016) expanded on the impact of non-essential
micronutrients for plants in resisting biotic stress, by trig-
gering activation of genes to synthesize compounds that
inactivate the pathogen. The speed with which plants re-
spond to infections could depend, among other factors, on
the micronutrient content in tissues. Servin et al. (2015)
provide an overview of the impact of several essential and
non-essential micronutrients in plant resistance to biotic
stress. These authors focused on the role of nanoparticle
micronutrient fertilization in specific diseases and, where
known, provided the functional mechanisms involved.
However, regardless of the form in which they are pre-
sented to plants, micronutrients act either systemically to
trigger the activation of genes for the synthesis of anti-
pathogenic compounds, or by directly inactivating the
pathogen in the plant’s environment.

Whereas broadcast application of fertilizers generally en-
hances weed infestation, they can be effective in controlling
specific weeds as well. Innovation in crop fertilization can
support the control of parasitic weeds such as striga (Striga
hermonthica). Striga infestation dramatically reduces crop
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yield; its incidence is more pronounced under poor soil fertil-
ity. However, in infertile soils, plants such as maize, rice and
other cereals, produce exudates, namely strigolactones, to
stimulate the symbiotic relationship with arbuscular
mycorrhizal fungi which assists the plant to scavenge the
soil and overcome nutrient deficiency. Coincidentally,
strigolactones also induce germination of striga seeds, of
which, subsequently, the emerging striga plant parasitizes
the host plant and competes for nutrients. Jamil et al. (2012,
and several subsequent studies) showed that N and P fertiliza-
tion and seed priming with P has significant impacts in reduc-
ing striga infestation in greenhouse experiments, albeit with
less consistent results under field conditions. The lowered
effectiveness in the field setting was ascribed to complex
edaphic processes related to nutrient availability, climatic con-
ditions, and plant responses. Notably, micronutrient fertiliza-
tion could suppress striga infestation, given that specific
micronutrients can enhance the bioavailability of N or P to
cereal crops (Rietra et al. 2017; Dimkpa et al. 2017a, b) under
a variety of conditions. For example, under drought stress,
where strigolactone production is stimulated (López-Ráez
2015), micronutrient application, which enhances N uptake
(Dimkpa et al. 2017a), may also help the plant to optimize
nutrient use. Also, because striga biosynthesis involves carot-
enoids as precursors, and micronutrients inhibit carotenoids
production (Pandey et al. 2009), they could potentially also
reduce striga infestation.

5 Fertilizers in plant tolerance to drought

Drought affects nutrient bioavailability and uptake,
resulting in low yields and nutritionally compromised pro-
duce quality. Drought is addressed through integrated
soil-water management practices, along with the introduc-
tion of drought-tolerant crop varieties, such as for maize
(Kamara et al. 2003). Yet, the ability of micronutrients
such as Zn, Cu or B, as well as specific non-essential
elements, in positively influencing crop response to
drought stress through affecting root growth, the produc-
tion of reactive oxygen species (ROS) that damage cells
during abiotic stresses, and through cell wall strengthen-
ing, is notable (Dimkpa and Bindraban 2016). Silicon is
involved in drought tolerance in grain crops by reducing
leaf transpiration and water flow rate in the xylem vessel
(Gao et al. 2004), facilitating water uptake and transport
under drought conditions (Sonobe et al. 2010), and regu-
lating the activities of antioxidant enzymes under drought
stress (Ahmad and Haddad 2011). Kaur et al. (2016) pre-
sents an overview of non-essential nutrients in enhancing
drought tolerance as well.

Dimkpa et al. (2017a) demonstrated the impact of micro-
nutrient fertilization on water-deprived soybean, which,

despite the application of NPK, suffered at maturity from
drought stress, relative to watered plants: with 27%, 54%
and 43% decreases in growth, grain yield, and shoot N uptake,
respectively. However, with application either of soil or foliar
micronutrient formulations composed of Zn, Cu and B, as a
salt solution or nanoparticle suspension, the growth reduction
caused by drought was virtually eliminated; biomass reduc-
tion was less by 27%; and loss in grain yield was lowered by
36%. Similarly, about 36%, 28%, and 45% more N, K, and
Zn, respectively, were recovered in the shoot from the dry soil
by the crop due to soil application of the micronutrient formu-
lation. Notably, drought lowered grain Zn concentration by
24%, but this loss was virtually negated by Zn fertilization
under drought. Thus, the nutritional quality of the edible pro-
duce can be improved under harsh environmental conditions
with micronutrient fertilization. Similar findings have also
been reported for other crops, including wheat and rice
(Ashraf et al. 2014; Bagci et al. 2007; Movahhedy-Dehnavy
et al. 2009), upon Zn treatment under drought.

Therefore, given that drought effects can be mitigated
by incorporating Zn, B, Cu, and/or Si into fertilizer re-
gimes in drought-prone agro-ecosystems, we argue for the
integration of these nutrients in fertilizer recommenda-
tions, certainly so in crop varieties with enhanced drought
tolerance, in order to maximize the expression of the
crops’ yield potential. This also implies a strategic inte-
gration of micronutrient fertilization in soil-water manage-
ment practices for drought-tolerant crops to sustain pro-
ductivity, and possibly improve the nutritional quality of
produce under increasing water limitation. Moreover, be-
cause fertilizer supply via soil can be less efficient in
availing nutrients in drying soils, we envisage that an
interplay of soil-applied fertilizers based on geo-spatial
exploration of soil-plant relations (Kempen et al. 2015),
complemented with foliar application of micronutrients, in
particular, one or all of Zn, Cu, B and Si, can enhance the
drought tolerance of improved crop varieties. Optimizing
nutrient blends for soil application, whenever necessary
combined with foliar fertilization, may yield results in
the immediate term given the current evidence from on-
farm trials (Vanlauwe et al. 2015).

6 Fertilizers and plant post-harvest losses

Roughly one-third of food crop produce (almost 1.3 bil-
lion tonnes) is discarded, resulting in losses and waste
(Gustavsson et al. 2011). Such wastage is associated with
water, land and fertilizer losses, ranging from about 20 to
30% for different continents (Shafiee-Jood and Cai 2016).
However, even greater losses might occur due to rapid
urbanization, globalization, and climate change, suggest-
ing that several integrated approaches and actions are

Innovative fertilizers to serve multiple societal goals 277



needed to reduce food waste. In this regard, appropriate
fertilization could contribute to reducing losses through
impacting post-harvest produce quality. For example, cal-
cium (Ca) increases cell wall stability and membrane in-
tegrity, and, therefore, firmness (Bing 2011). Leaky mem-
branes due to Ca deficiency accelerates senescence,
resulting in crop produce of lesser quality (integrity),
and hence, in post-harvest losses. In potato tubers, Ca
deficiency causes physiological disorders such as internal
brown spot, hollow heart, and bruising. Because Ca
moves with water in the xylem and less water moves to
fruit and tuber tissues compared to leaves; and because Ca
is less mobile in phloem (Karley and White 2009), Ca
deficiency may easily occur in potato tubers, causing skin
disorders (Palta 2010). Accordingly, the application of Ca
during tuber bulking when roots arising from stolons and
tubers supply Ca to tubers have been reported to reduce
physiological skin disorder, in turn elongating shelf life
(Ginzberg et al. 2012).

Similarly, boron plays a role in the synthesis and connec-
tion of hemicelluloses and other related cell wall materials
involved in improving cell wall structure (Bing 2011;
Cakmak and Römheld 1997). Moreover, B is involved in sev-
eral enzymatic and metabolic processes, including transloca-
tion of sucrose by enhancement of a sucrose transporter (Shi
et al. 2012); regulation of rubisco enzymatic processes (Bing
2011); and increasing ascorbic acid content (Molassiotis et al.
2006), which inhibits Reactive Oxygen Species (ROS). Boron
deficiency lowers carbohydrate content, thereby affecting
firmness and reducing fruit quality. Accordingly, a foliar ap-
plication of B on tomato plants improved epidermal integrity
and reduced susceptibility to cracking (Huang and Snapp
2009), and in watermelon, resulted in accumulation of sucrose
(Li et al. 2010). Application of B on carrots increased Vitamin
C content, inhibiting ROS production and preventing cellular
damage (Gill and Tuteja 2010). In preliminary studies
(Kendristakis 2017), cucumber fruits dipped twice in solutions
of Ca, B and their combination showed enhanced firmness
and greenness. This prolonged fruit shelf-life and increased
carbohydrate content; the latter being an attribute for tastiness
(Breslin 2013). Therefore, the inclusion of Ca and B, and
likely other micronutrients, in fertilizer regimes could be stra-
tegic for improving produce quality, thereby reducing post-
harvest losses.

7 Novel products and fertilization
technologies to unlock fertilizer benefits

With the application of blended fertilizer granules, the
benefits of micronutrient-containing fertilizers can already
be unlocked. The application of 1–3 kg ha−1 or more of
specific micronutrients can increase yield (Vanlauwe et al.

2015), as can for instance be observed through nutrient
omission that elucidates the relative influence of each nu-
trient under specific crop and agroecological situations
(Nziguheba et al. 2009), but the crop uptake of
micronutrients is typically less than 5–10% (Baligar
et al. 2001), and even less so for grain translocation.
Because segregation of fertilizer blends can hamper ho-
mogenous distribution in fields, uptake efficiency might
be increased by coating N or NPK fertilizer granules with
micronutrients. This strategy has been observed to in-
crease yields at least equally with less than half the
amounts of micronutrients in preliminary maize trials
(IFDC, unpublished data). Over time, innovative fertilizer
products and alternative delivery mechanisms to plants
should be developed and deployed to achieve improved
agronomic, nutritional, and ecological outcomes.
However, unlocking the spectrum of fertilizer benefits
calls for aligning chemical, edaphic, and plant physiolog-
ical processes. The occurrence of antagonism or syner-
gism among the 14+ plant nutrients during uptake and
growth (Rietra et al. 2017) ought to be considered in fer-
tilizer formulations. That way, mutually compatible nutri-
ents can be leveraged, while antagonistic ones are avoided
during fertilizer formulation. Also, most nutrient-limiting
phenomena such as antagonism among nutrients, extreme
pH, and other complex chemistries occur mainly in the
soil, as compared to the plant. This problem can be alle-
viated, at least partly, by complementing soil applications
with foliar application, and possibly by injection or infu-
sion of nutrients.

It has been noted that many of the nutrient transport
proteins are active in both root and shoot. As such, specific
micronutrients can be administered to the plant via the soil
or leaves, dependent on which organ uptake would be bet-
ter facilitated. However, systematic views about the effec-
tiveness of foliar fertilizers remains rather haphazard
(Voogt et al. 2013), due to the numerous environmental,
edaphic and plant conditions affecting effectiveness
(Noack et al. 2011), and despite systematic insights about
uptake mechanisms (Fernandez and Eichert 2009). Yet,
these and novel insights in biological uptake mechanisms
along with ecological processes could be exploited to gov-
ern aerial uptake. Some plants, such as epiphytes (e.g.,
Bromelia tillandsia), have few roots and obtain nutrients
mainly through their leaves (Benzing et al. 1976), like
aquatic plants. Though this phenomenon is not found un-
der production situations of Bromelia (Sonneveld and
Voogt 2009), epiphytes appear to use their roots when they
can and the foliar route when they must. This however
suggests that there might be unbeaten paths that could
guide breeders in exploiting genetic variations in this re-
gard, and in modifying plant anatomical and morphologi-
cal traits to enhance nutrient uptake.
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One notable recent development with promise for applica-
tion in fertilizer advancement is the growing knowledge that
certain nutrients can be taken up by plants as intact particles,
through a variety of uptake mechanisms, including endocyto-
sis, aquaporin transport, ion channels, plamodesmata trans-
port, stomata, or entry facilitated by organic matter, including
root exudates (Schwab et al. 2016). Nutrient packaging as a
mixture of micro- and nano-particles, coined ‘micnobits’ by
Dimkpa and Bindraban (2016), can enhance nutrient avail-
ability to, and translocation within, the plant (Dimkpa et al.
2013; Subbaiah et al. 2016; Wang et al. 2012) of both partic-
ulate and dissolved ionic nutrients. Upon uptake, particulate
micnobits release the active ions (Dimkpa et al. 2013). For
other micnobits that dissolve prior to plant entry, uptake is
dependent on solubility, which, because it happens at a slower
rate than salts, could reduce immediate ionic losses from soils;
reduce competition for transporter-driven ionic nutrient up-
take; and potentially preclude accumulated ions from readily
intoxicating the plant (discussed in Dimkpa and Bindraban
2016). Using particulate ZnO in soil applications, Watson
et al. (2015) generated a Zn uptake efficiency of 37% in wheat
grown in alkaline soil (pH 7.8), while excessively high uptake
of Zn – >700%, relative to the control – resulted in phytotox-
icity in an acidic soil (pH 4.5). With foliar treatments of nano
Zn, Zn uptake efficiency of 24% has been recorded in cabbage
(Xiong et al. 2014), and 11% in maize grain (Subbaiah et al.
2016). In another study, a formulation of micnobits containing
ZnO, CuO and B2O3 enhanced grain Zn and B uptake effi-
ciencies by 38% and 54%, respectively, under drought stress,
where nutrient uptake from soil was severely hampered.
However, in foliar applications the efficiency of Zn uptake,
but not of B, was less from the micnobits than from ionic Zn
(Dimkpa et al. 2017a). Strategically, micnobit-packaging in
paint-like foliar fertilizers, and advancement into bio-nano
packaging could boost nutrient use efficiency in the longer
term (Monreal et al. 2015). Dimkpa and Bindraban (2017)
reviewed the phytotoxicity of nanoscale nutrients and found
that, when deployed as fertilizers at the right doses, toxic
effects, if any, may be as inconsistent as effects observed with
conventional fertilizers in different soils. In other words, the
nano size of the material may be less critical in evoking tox-
icity than the exposure dose and environmental condition in
different plant-soil systems.

In more field-practical application, plants such as bananas
possess interesting characteristics that seem suitable for novel
fertilization approaches to dramatically enhance nutrient up-
take efficiency, while suppressing environmental perturba-
tions, such as diseases, that lower yield. Banana production
systems show high variability in response to soil-applied fer-
tilizers. Moreover, bananas are heavily threatened by two ma-
jor diseases (i) Black Sigatoka transmitted through an air-
borne fungus, Mycosphaerella fijiensis, and (ii) Panama dis-
ease, caused by a soil-borne fungus, Fusarium oxysporium f.

sp. cubense (Foc). Whereas some authors argue that address-
ing pest and disease infestation has priority over (NPK) fertil-
ization, in order to prevent yield decreases (e.g. Smithson et al.
2001), others have reported secondary and micronutrient-
containing fertilizers, including Ca, Mg, S and B, to reduce
Sigatoka disease (Freitas et al. 2015, 2016). Moreira and
Fageria (2009) demonstrated the positive effects of Zn fertil-
ization on banana Zn content and yield using an application
rate of 40 kg Zn ha−1 as ZnSO4. Similarly, the application of B
has been reported to enhance yield, with optimal application
rates at 3.4 kg B ha−1 in the first cycle, and 1.3 kg B ha−1 in the
second (Moreira et al. 2011). As a strategy to simultaneously
increase yield and suppress fungal pathogen infection in ba-
nana, we hypothesize that foliar application, and/or injection
of micronutrient suspensions into the corm could increase
nutrient use efficiency, thereby addressing multiple produc-
tion constraints. The basipetal flow of nutrients from the root
or shoot starting points with the phloem or xylem stream
(Wang et al. 2012) can provide plant-systemic effects that
enhance resistance or improve tolerance to both soil- and
shoot-borne diseases, while providing nutrients to drive ba-
nana productivity (Servin et al. 2015). A similar argument can,
thus, be made for stem-injected nutrients which could flow
acropetally with the xylem or phloem streams, to support car-
bohydrate formation in leaves and provide nutrition for fruit
development, while inhibiting growth of the leaf or shoot
pathogen. Relevant for this reasoning is the demonstration of
P redistribution between mother and daughter banana plants
(Cavalcante et al. 2005). Although Rodrigues et al. (2007)
evaluated the effect of different proportions of ionic ZnSO4

(20% Zn) and boric acid (17% B) applied directly in the cut-
off seedlings of banana, and found hardly any impact on leaf
nutrient content and crop performance, uptake and utilization
could depend on how nutrients are packaged, resulting in a
different outcome. Micnobit packaging would not only facil-
itate uptake and use of the cognate micronutrients, it would
permit continuous availability of the nutrient in the plant sys-
tem, due to slower but continuous dissolution of the constitu-
ent particles, compared to ionic forms that rapidly dissolve
and become available all at once.

Another related approach to nutrient injection into plant
stems could be the implantation, or infusion of plant stems
with nutrients, which could rapidly supply plants with nutri-
ents and/or nutrient-based pesticides. Scott et al. (2015) stud-
ied the effectiveness of commercially available liquid injec-
tions and implants of various pesticide (phosphoric acid-
based) formulations of nutrients including K, Fe, Mn, Zn, B
and Cu. Implant products of porous gelatin capsules were
applied through holes drilled on the outer bark layer into the
sapwood, and the liquid solution was injected using syringes
that locked tightly onto the trees of Banksia grandis and
Eucalyptus marginata. They reported significant reduction
of disease lesions by the phosphoric acid with K implant and
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liquid injection, but found no statistically significant reduction
with implants containing the micronutrients. Unfortunately,
no additional growth related parameters were reported, to
assess other potential ly beneficial effects of the
micronutrients. Larbi et al. (2003) found Fe sulphate implants
in branches of Fe deficient peach trees to have a favorable
effect on reducing chlorosis, even a year after the treatment.
Ma et al. (1998) infused labelled N15 in maize stem internodes
at anthesis, just below the primary cob. They observed rapid
translocation of N towards dominant sinks, which, 3 days lat-
er, resulted in more than 40% of the N15 being located in the
cob, husk, and kernels; 30% in leaves above the ear; and
another 15–20% in the upper stem. Notably, by physiological
maturity, 65–75% of the infused N15 had been deposited in the
kernels. While these authors’ interest was in exploring infu-
sion for studying N translocation, their findings suggest that
nutrients can be taken up through Binfusion^ in stems, and
likely, barks, and that this could be an effective mechanism
for rapid nutrient delivery to plants. This strategy could boost
productivity in tree crops, like coffee or cacao. As the total
amounts of all nutrients removed by cacao harvests are small,
nutrient infusion, complemented with foliar application, may
come into play for this crop, considering the tediousness of
soil application of fertilizers (Van Vliet et al. 2015). With such
an approach, trees in reforestation programs (e.g., the United
Nations REDD program) could be instantaneously fertilized
to allow, and sustain, production that can, in turn, help to
regenerate degraded soils that are unable to sustain soil-
applied fertilizer nutrients. While application in small food
crops may appear unfeasible, developments in precision ap-
plication with sensing technologies could allow automated
injection into larger crops such as maize.

8 A comprehensive nutrient assessment
to unlock fertilizer benefits

The societal view about the role of fertilizers to increase
yields but at a huge environmental cost is rather limited
and has not helped to catalyze a well-informed dialogue
among policy makers, civil society, the research and pri-
vate sector to push for the much-needed change in fer-
tilizer technologies (Bindraban et al. 2015). In contrast to
fertilizers, pesticides, for instance, have over the past
decades developed from toxic, persistent chemicals, to
targeted, systemic and bio-pesticides, based on a better
understanding of the relevant biological processes, even
up to the breeding of crops with enhanced resistance
against pests and diseases. The evolution of pesticides
has been a multi-stakeholder, society-wide process aris-
ing from concerns for animal and human health, and
environmental degradation (e.g. BSilent Spring^ by
Carson in Carson 1962), and driven by heavy pressure

from NGOs; strong government regulations and support
for public research; and consequent significant private
sector R&D investments (Barzman and Dachbrodt-
Saaydehb 2011). At present, only modest innovations
are introduced in fertilizers by the industry, such as with
biostimulants, which are insufficient to mainstream the
process of transformation.

Building on prior conceptual thoughts by Bindraban
et al. (2015), Dimkpa and Bindraban (2016), and other
review reports and papers about fertilizer products and
fertilization technologies (see https://ifdc.org/vfrc-
reports/), we, in this paper, present perspectives on
smart balancing of nutrients and novel (bio-)chemical
packaging of fertilizers along with creative delivery of
fertilizer nutrients directly into plants, to unlock a
broad spectrum of ecological and plant-based functional-
ities. Innovative fertilizer products and fertilization tech-
nologies will also contribute in mitigating the negative
environmental impacts of fertilizers. Depending on how
the technologies are implemented, the enhanced function-
alities generated with innovative fertilizers could help to
directly and indirectly drive the realization of several
SDGs, including reaching zero hunger; improving life
in water and on land; combating climate change;
attaining good health, inclusive and sustainable economic
growth; and responsible consumption and production.

Awareness among policymakers, NGOs, and the general
public about the broad set of public good services that fertil-
izers can deliver, rather than its perception as a mere commod-
ity, could catalyze a process of transformation of the fertilizer
sector through public-private initiatives to unlock these poten-
tials. Strong negative pressure could be exerted on fertilizers
as with pesticides, but we argue that a positive perspective of
multiple societal benefits and significant reductions in en-
vironmental problems could also drive the process of
transformation in fertilizer design, development and use.
A few global initiatives describe specific nutrient related
challenges on N (Sutton et al. 2013) and P (Scholz et al.
2014) which unveil parts of the overall challenges. We
call for drafting of a comprehensive nutrient assessment
to set out the technicalities, as was done for water
(Molden 2007) and biodiversity (FAO 1996), by a multi-
disciplinary research team that includes soil and plant sci-
entists, environmental and climate change experts, chem-
ical engineers, human nutritionists, epidemiologists, med-
ical scientists, social and economic scientists, and repre-
sentatives of other related sectors. Such an assessment
will reflect upon and highlight the multifaceted implica-
tions of fertilizers as a fundamental driver of life on earth,
and on how an effective and economically viable imple-
mentation of the technologies would set a solid founda-
tion for well-informed dialogue for transformation in fer-
tilizer products and technologies.
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