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1  Introduction

In the last two decades, humanity achieved amazing goals 
with space missions in Low Earth Orbit, creating the base 
for what can be called prolonged human habitation in space. 
In the same time, robots have been targeted throughout the 
solar system to explore different planets and numerous 
celestial objects. Now, the time for another step forward in 
space exploration has come. In fact, the future exploration 
of solar system will be driven by a cooperation of astronauts 
and robots in space missions that will be aimed progres-
sively further away from the Earth. The roadmap to drive 
this ambitious program has been already proposed by the 
International Space Exploration Group (ISECG) [1], and 
one of the key points in the whole mission scenario is the 
so-called Evolvable Deep Space Habitat: a modular space 
station in lunar vicinity.

At the current level of study, the optimum location for 
space infrastructure of this kind has not yet been determined, 
but a favorable solution can be about one of the Earth–Moon 
libration points, such as in a Earth–Moon Lagrangian Point 
no 2 (EML2) Halo orbit. Moreover, the final configuration 
of the entire system is still to be defined, but it is already 
clear that to assemble the structure, several rendezvous and 
docking activities will be carried out, many of which to be 
completely automated.

Unfortunately, the current knowledge about rendezvous in 
cis-lunar orbits is minimal and it is usually limited to point-
mass dynamics. The aim of this paper is to present some 
preliminary results about a possible rendezvous scenario 
with a large space infrastructure in non-Keplerian orbits. 
The dynamical analysis is based on a coupled orbit-attitude 
model of motion in a circular restricted three-body problem 
(CR3BP) environment, and includes the flexibility of the 
structure with a lumped parameter technique.
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The research is started with the definition of a possible 
rendezvous strategy that can be inserted as a part of a broad 
mission framework in cis-lunar space. It exploits invariant 
manifolds associated with unstable periodic orbits, such 
as EML2 Halo orbits, by finding a heteroclinic connection 
between two different orbits. A tool to optimize this class 
of transfers is developed and discussed. Moreover, a tool to 
simulate the relative dynamics during final approach phases 
is also presented. The analysed rendezvous strategy is an 
example of application of the simulation tools and the cou-
pled dynamical model that have been and are being devel-
oped from the authors. A separate section is dedicated to 
highlight the effects of the extended flexible bodies on the 
dynamics in non-Keplerian orbits.

This work is intended to pose a preliminary base for fur-
ther developments within the research area on very large 
and flexible structure in three-body problem environments. 
The purpose is the definition of a new astrodynamics tool, 
able to simulate such a class of space systems. At the current 
stage of development, the model does not yet include per-
turbing effects, such as solar radiation pressure and fourth-
body (Sun) gravity, and the analysis is still concentrated on 
a single element of the structure. However, the model has 
been founded on a “multi-body-friendly” approach, and the 
extension of the results is of easy implementation.

Looking at recent literature, it is possible to find other 
research works that investigated the coupled orbit-attitude 
dynamics in non-Keplerian environment. For example, the 
works of Guzzetti and Knutson [2, 3] considered both pla-
nar and full three-dimensional motion, providing a method 
to study families of periodic orbit-attitude solutions. More 
recently, Colagrossi [4] investigated the coupling between 
orbit-attitude dynamics and the flexibility of the structure in 
a slightly different way than the one presented in this paper. 
A comparison between the two different approaches of the 
authors will be discussed in the conclusions of this paper.

2 � Theoretical background

The present research is based on circular restricted three-
body problem modelling approach, which consider the 
motion of three masses m1, m2, and m, where m ≪ m1,m2 
and m2 < m1. m1 and m2 are denoted as primaries, and are 
assumed to be in circular orbits about their common center 
of mass. The motion of m does not affect the trajectories of 
the primaries.

The dynamics is written in a rotating reference frame, S, 
which is called synodic frame and is represented in Fig. 1. 
It is centered at the center of masses, m1 and m2, of the 
system, O; the first axis, �̂, is aligned with the vector from 
m1 to m2; the third axis, �̂, is in the direction of the angular 

velocity of S, � = 𝜔�̂; �̂ completes the right-handed triad. 
The system can be defined by the mass parameter:

the magnitude of the angular velocity of S,

and the distance between the primaries r12. The equations of 
motion are usually normalized with respect to r12, � and the 
total mass of the system mT = m1 + m2. After the normaliza-
tion, the universal constant of gravitation is G = 1.

The mass m is an extended body, and the model is cur-
rently based on a simple and generic structural element: a 
rigid rod. In this way, it is possible to have a solid founda-
tion, which can be easily extended to more complex con-
figurations of the space system, with a multi-body tech-
nique [5]. The body m has five degrees of freedom: the 
position of its center of mass B, �B, and two independent 
parameters to define the orientation of the versor aligned 
with the rod, �̂.

The equations of motion can be derived starting from a 
Lagrangian Formulation, where the Lagrangian function, 
 =  − , includes the kinetic energy,  , and the general-
ized potential, .

(1)� =
m2
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Fig. 1   Synodic reference frame
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The kinetic energy   of the rigid body can be expressed 
as the kinetic energy of the translational motion of the center 
of mass plus the kinetic energy of the rotational motion of m 
as follows:

where 𝐫̇B is the velocity of B, � is the angular velocity of 
the body relative to the S frame, and �B is the inertia tensor 
about B.

The generalized potential  is related with the gravitational 
forces and with the inertia forces, since the synodic frame S 
is a non-inertial reference frame that is rotating with the two 
primaries. It can be expressed as the sum of the ordinary gravi-
tational potential, Vg = Vg1

+ Vg2
, and the generalized potential 

of the inertia forces, Vi.
The gravitational action exerted by the ith spherical primary 

on m can be derived from:

where rBi
 and �̂Bi

 are, respectively, magnitude and direction 
of �Bi

: position vector of m with respect to the i-th primary. 
The previous expression is an expansion up to the second 
order of the gravitational potential generated by a spherical 
attractor on a small extended body [6].

The generalized potential of the inertia forces is needed to 
write the equations of motion in S, and it can be expressed as 
follows:

It is important to remember that a generic generalized poten-
tial ( , ̇), where  is the position and ̇ the velocity, is 
defined in a way that the related force can be computed as 
follows:

To write the normalized equation of motion,  has to be 
written in non-dimensional form. In fact, from now on, all 
the variables will be intended to be non-dimensional: lengths 
will be divided by r12, masses by mT and times by 1∕�. In the 
same way, from now on, the time derivative will be taken 
with respect to the non-dimensional time � = �t: ◦̇ = d◦∕d𝜏.

At this point, it is possible to derive the equations of motion 
as follows:

(3) =
1
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−

1
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(6) =
d
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(
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)
−
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.

(7)
d

d𝜏

(
𝜕

𝜕q̇j

)
−

𝜕

𝜕qj
= Aj,

where qj, j = 1,… , 5 are the generalized coordinates, and Aj 
the generalized non-dimensional contributions due to differ-
ent external forces, such as the solar radiation pressure or the 
presence of a fourth body. In the present analysis, Aj = 0.

Applying the previous equations to the case of the rigid rod 
m of length l,  can be expressed as follows:

where �0 is the non-dimensional length of the rod: �0 = l∕r12,  
and it is usually a small number.

Limiting the expansion to the second order, our system of 
equations becomes:

where x, y, and z are the non-dimensional cartesian coordi-
nates of B in S, while � and � are, respectively, the in-plane 
and out-of-plane libration angles that define univocally the 
orientation of �̂.

It is interesting to note that limiting  to the main order 0, 
Eqs. (9)–(13) reduce to the usual circular restricted three-body 
problem equations. In this case, the size of the rigid rod disap-
pears from the problem.

The attitude dynamics of a one-dimensional body, such a 
rod, is fully defined by � and �. However, it is possible to use 
another set of attitude parameters that, despite it can be redun-
dant, it is usually more convenient, and allows more intui-
tive analyses [7]. In this work, a set of Euler angles in 1–2–3 
sequence, commonly called Bryant Angles [8], is employed. 
The singularity condition of these attitude parameters happens 
when �̂ is perpendicular to the orbital plane, which is not likely 
to happen in this research work. The angles associated with the 
1–2–3 rotations are, respectively, �1, �2, and �3; they allows to 
express orientation of m as follows:

The equations of motion in terms of Bryant angles can be 
derived using a Newton–Euler formulation. In fact, the 
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angular momentum at B, �B, is related to the torque applied 
to the center of mass, �B, as follows:

A new system of reference attached to the rod can be 
defined: it is centered in B; �̂1 = �̂; �̂2 is aligned with the 
direction of the variation of �̂, ̇̂�; �̂3 completes the right-
handed frame as in Fig. 2. In this body frame, the angular 
momentum of m is as follows:

where Ω
⟂
= |�̂ × ̇̂�| = | ̇̂�|, and IB the moment of inertia of 

the rod with respect to B.
From Eqs. (15) and (16), with some algebraic manipula-

tion, it is possible to write a system of three equations with 

(15)
d �B

dt
= �B.

(16)�B = IBΩ⟂
�̂3,

the time evolution of Ω
⟂
, �̂1 and �̂3. However, exploiting the 

Bryant angles to describe the orientation of the body frame 
with respect to S, the attitude equations of motion are four. In 
non-dimensional form, they are:

where M2 and M3 are the components of �B along the second 
and the third direction of the body frame. It must be noted 
that in the present analysis, all the torques are normal to 
the rod, and this conditions must be respected in the frame-
work of this research. The torque �B is computed from the 
forces that are derived from the already presented potentials 
in Eqs. (4) and (5). Both the inertial forces and the gravita-
tional forces must be considered to compute �B, because this 
research is carried out in the synodic frame S. In this paper, 
any other external force is neglected.

The coupled orbit-attitude dynamical model is, therefore, 
represented by Eqs. (9)–(11) and (17) to (20).

The astrodynamics tool that is presented and discussed 
in this paper is based on the dynamical model that has been 
previously described, and it is intended to simulate the orbit-
attitude dynamics of large and flexible space infrastructures 
in cis-lunar environment. In particular, it is mainly dedi-
cated to analyse transfer trajectories and rendezvous dynam-
ics with extended space systems in non-Keplerian orbits. 
The structural properties of the proposed space station are 
not completely known yet, but its probable dimensions 
and typical structural characteristics of the existing space 
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Fig. 2   Body reference frame
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systems require to analyse and simulate the dynamics with 
the inclusion of flexible effects. The main reason is to high-
light possible couplings between orbit-attitude dynamics and 
flexible dynamics. In fact, orbital and rotational motion of 
the space station may be perturbed by the natural vibrations 
of the flexible structure or, inversely, the frequencies asso-
ciated with the non-Keplerian dynamics may be an issue 
with respect to possible resonances of the flexible system. 
At the current stage of development of the dynamical tool, 
the flexibility of the system is included in the model with 

a lumped parameters technique, exploiting lumped masses 
connected to a rigid structure with a massless spring; in a 
way to have an equivalent spring–mass system, able to rep-
resent a pseudo-mode of vibration [9, 10].

The spring–mass systems are attached to the rod in 
arbitrary points at a fixed distance from B. Their motion is 
excited from the dynamics of the rod itself. In this prelimi-
nary analysis, it is assumed that the lumped masses do not 
interact directly with the gravitational field. Their effect is 
inserted in the equations of motion through �B; in fact, the 
spring generates a force on the rod and, therefore, a torque 
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Table 1   Operational and Parking Halo parameters

Name Az (km) T (d) C (nd)

Operational Halo 10,000 14.808 3.149
Parking Halo 8000 14.813 3.150

Fig. 5   Possible heteroclinic connections for xSP < 1 − 𝜇

Table 2   Optimal transfer parameters

ttransfer (days) Δv1 (m/s) Δv2 (m/s) Δv3 (m/s) Δvtransfer (m/s)

26.14 5.49 152.29 0.51 158.29
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with respect to B. The net force on B is neglected; hence, the 
flexibility effect is considered only in the attitude dynamics. 
However, the orbital motion is influenced by the coupling 
with the attitude equations.

Each i-th spring–mass system, represented in Fig. 3, is 
located at a distance li from the barycenter of the rod, and 
it is defined by a pseudo-modal mass m̃i and an equivalent 
stiffness k̃i. All the modal masses are scaled to 1, and each 
pseudo-mode is entirely represented through k̃i. From the 
natural frequency of each mode of the structure �̃i, the stiff-
ness can be computed as follows:

 

(21)k̃i = �̃2
i
m̃i.

The motion of the spring–mass systems is constrained to 
be orthogonal to the rod to simulate only the bending modes. 
The elongation of the spring, with respect to the linking 
point, is �̃i. The acceleration of the linking point is �̈�i, and it 
can be easily computed knowing the dynamics of the body 
m. In addition, in this case, the equations of motion have to 
be normalized with the same process that has been described 
for the rigid body dynamics; all the aforementioned vari-
ables are in non-dimensional form. For each spring–mass 
system, it is possible to write:

The torque exerted on the rod, with respect to B, by a single 
spring–mass system is as follows:

(22)�mi(�̈�i + �̈�i) +
�ki��i = 0.

Fig. 6   Optimal transfer
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The results that are presented in this paper refer to a configu-
ration with two spring–mass systems at the ends of the rod. 
In this way, it is possible to simulate the first bending mode 
of two cantilever beams attached to B.

3 � Rendezvous definition

Rendezvous in space involves a spacecraft already in a oper-
ational orbit, which is commonly called target, and a space-
craft that is approaching to it, chaser. The different phases 
of a generic rendezvous have been extensively studied in 
the past and consist of a series of orbital manoeuvres and 
controlled trajectories, which have to progressively bring the 
chaser into the vicinity of the target [11].

The rendezvous between two spacecrafts in Earth orbits, 
i.e., in the framework of the restricted two body problem, is 
nowadays well studied and tested, thanks to the experience 
of the International Space Station (ISS). However, this deli-
cate phase is strongly supported by the direct control of the 
astronauts. The technology to support completely automated 
and unmanned rendezvous missions has not yet reached an 
high level of maturity. Moreover, if the autonomous rendez-
vous operations have to be conducted in CR3BP, the studies 
are even more preliminary and not completely developed yet. 
Furthermore, as already said, studies in the literature were 
always limited to point-mass spacecrafts.

Possible rendezvous strategies have been recently pro-
posed with a target on a Earth–Moon L2 Halo orbit by differ-
ent authors [12–14]. An example involving the same family 

(23)�Bki
= li�̂1 ×

�ki��i.

of operational orbits is presented in this paper, in accord-
ance with the existing feasibility studies about the cis-lunar 
space station mentioned above. However, the tool that is 
being developed from the authors is already able to work 
around the other collinear Lagrangian points, even though 
only L1 can be a valid alternative for this kind of space 
infrastructures.

The automated transfer vehicles (chaser) will have to 
reach the cis-lunar space station (target) from different loca-
tions, such as the Earth, the Moon, or a different non-Kep-
lerian orbit, within a reasonable time and cost. Therefore, a 
preliminary analysis involves the design of a trajectory con-
necting the operational Halo orbit with the desired location. 
A vast literature addresses this problem, and many solutions 
were proposed to solve it. For example, the one proposed in 
the same department of the authors [15] injects the space-
craft on an highly eccentric orbit from a Low Earth Orbit 
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(LEO) or Low Lunar Orbit (LLO), and near the apogee, 
a dedicated manoeuvre pushes the spacecraft on a stable 
manifold, which is progressively converging to the opera-
tional Halo orbit.

By assuming the evolvable space infrastructure on an 
EML2 Halo orbit, it is reasonable to have the injection point 
of the stable manifold in the vicinity of the Moon. In this 
way, it is possible to find many injection points that can be 
easily reached from an LEO, an LLO, the Lunar surface, 
or a safe parking orbit. The complete scenario of logistic 
transfers and operational missions on the Moon is out of the 
scope of this work, and it is just employed to contextualize 
the presented solution, which considers a parking Halo orbit 
for the chaser and the operational Halo orbit of the target.

According to the definition introduced by Koon [16], this 
kind of rendezvous can be denoted as Halo Orbit Insertion 
(HOI), being the chaser on a different Halo orbit when the 
sequence of manoeuvres is started. The other type of ren-
dezvous is called Stable Manifold Orbit Insertion (MOI), 
because in that case, the chaser is travelling from the Earth, 
or the Moon, and is directly inserted in the stable manifold 
of the operational orbit.

The rendezvous that is presented in this work is composed 
by the following phases, similar to what has been proposed 
by Lizy–Déstrez [12]:

•	 Starting phase  The chaser and the target are orbiting 
their own Halo orbits, which are characterized by two 
different values of maximum elongation in z, Az.

•	 Departure  The chaser is injected in an unstable manifold 
of the parking orbit with a first manoeuvre, Δv1.

•	 Switching manoeuvre  The chaser is injected in the stable 
manifold of the target operational orbit. The injection 
point is at the intersection of the unstable and the stable 
manifolds. A second manoeuvre, Δv2, is needed. If an 
MOI rendezvous is considered, the starting point is here.

•	 Approach manoeuvre  The chaser arrives in proximity 
of the target and, with a third manoeuvre, Δv3, is moved 
very close to the operational Halo orbit. The relative dis-
tance between chaser and target is maintained within the 
safety standards.

-100 -50 0 50 100 150 200

XLV LH (km)

-50

0

50

100

150

Z
L
V
L
H

(k
m
)

∆v4

∆v5

∆v51

Target
Target X-FOV
Target Z-FOV
Rendezvous traj.

Fig. 9   Proximity operations in LVLH frame, x–z view: closing and 
final approach phases
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Fig. 10   Final approach in LVLH frame, x–z view
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Fig. 11   Mating phase in LVLH frame, x–z view

Table 3   Proximity operations parameters

tproximity 
(day)

Δv4 (m/s) Δv5 [m/s] Δv51 (m/s) Δv6 (m/s) Δvproximity 
(m/s)

3.36 1.27 3.41 2.52 0.44 7.64



95Dynamical analysis of rendezvous and docking with very large space infrastructures in…

1 3

•	 Closing phase   A fourth manoeuvre, Δv4, aligns the 
chaser with the docking axis of the space station. This 
phase starts as soon the chaser enters in the field of view 
of the space station.

•	 Final approach  A series of manoeuvres, Δv5 and Δv51, 
progressively reduces the relative distance between cargo 
and space station. The chaser is maintained aligned with 
the docking axis of the space station, which is rotating.

•	 Mating phase   A continuous manoeuvre, Δv6, is per-
formed to reduce to zero the relative distance between 
the two spacecrafts and brings the chaser at the docking 
port, before the final contact.

The case that is presented in this paper involves an opera-
tional EML2 Halo orbit with Az = 10,000 km in positive 
direction, Northern Halo. The chaser’s parking orbit is a 
different Northern EML2 Halo orbit with Az = 8000km. The 
switching point is assumed to be in the vicinity of the Moon, 
in the space between Earth and Moon: xSP < 1 − 𝜇. This 
choice is motivated from the willing to simulate a possible 
cyclic chaser that is continuously transferring between the 
operational and the parking Halo orbit; the passage between 
Earth and Moon allows an easy encounter with a cargo com-
ing from the Earth, the Moon, or a Low Lunar orbit. The 
chaser is a point mass, while the target (space station) is a 
rod with lT = 100 m, and mass mT = 300,000 kg. The dock-
ing axis is aligned with the rod axis, �̂1T. The halo orbits con-
sidered in this work are shown in Fig. 4, with data reported 
in Table 1.

4 � Rendezvous simulation

The dynamical tool that is used to simulate the rendez-
vous of the chaser with the target propagates the coupled 

Fig. 12   Relative distance dur-
ing mating phase
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Fig. 13   Relative velocity dur-
ing mating phase as a function 
of relative distance
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û2

û3
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orbit-attitude dynamics of the space station and the point-
mass orbital motion of the chaser.

First of all, it is important to find an heteroclinic connec-
tion between the two Halo orbits: the transfer trajectory. In 
this work, it has been assumed that the chaser and the tar-
get are approximately phased in their own orbits according 
to the chosen transfer, i.e., the target needs the time of the 
transfer, ttransfer, to move from its starting point to the ending 
point of the heteroclinic connection. Such requirement can 
be always satisfied with a Phasing Phase to be conducted 
before the Starting Phase of the rendezvous operations; 
moreover, the proximity operations after the heteroclinic 
transfer are able to correct some errors in the phasing of 
chaser and target.

The heteroclinic connection is individuated, computing 
the unstable manifold of the parking orbit and the stable 
manifold of the operational orbit. Manifolds can be com-
puted from the eigenvectors of the Monodromy Matrix, �, 
which is the State Transition Matrix, �, evaluated after one 
orbital period, T. The intersections of the two manifolds are 

analysed on a Poincarè section and different sub-optimal 
solutions are located for xSP < 1 − 𝜇. Then, a correction 
procedure is applied to all the sub-optimal solutions, to 
exactly connect in position starting point, switching point, 
and ending point. In Fig. 5, the sub-optimal solutions are 
shown before and after the correction procedure. Among the 
selected sub-optimal solution, the best one is chosen as the 
one with the smallest Δvtransfer = Δv1 + Δv2 + Δv3. This best 
sub-optimal transfer is then optimized with an optimization 
algorithm.

The transfer optimization algorithm starts from the 
already mentioned sub-optimal connection and slightly 
varies the state vector of the chaser at the starting point, 
��Start = [xStart, yStart, zStart, ẋStart, ẏStart, żStart]. The starting 
position, �BStart

= [xStart, yStart, zStart], is constrained to lie on 
the Halo orbit. Moreover, also the state vector at the switch-
ing point can be varied with the constraint to preserve the 
continuity in position with the stable manifold of the opera-
tional Halo orbit. The algorithm is based on a constrained 
multiple-shooting corrector with a multi-variable Newton 

Fig. 15   Bryant angles evolution 
along one orbital period
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methods [17]. The optimum solution is searched with a 
derivative-free method. The result of the transfer optimiza-
tion algorithm is shown in Fig. 6, and the characteristics of 
the best heteroclinic transfer are reported in Table 2. From 
these data, the low-cost transfer capabilities of invariant 
manifolds are evident, but the time of flight during this con-
nection can be somewhat too long for certain applications, 
e.g., humans’ transportation or emergency cargos. However, 
this is only a limit for transfers that have to pass between 
Earth and Moon; in fact, for xSP > 1 − 𝜇, the typical time of 
transfer is in the order of few days.

After Δv3, the relative distance between chaser and tar-
get is usually in the order of few hundreds of kilometers; 
in the presented example |�Rel| ≃ 150 km. In the following 
phases, the dynamical tool performs more convenient analy-
ses exploiting a local vertical local horizontal (LVLH) ref-
erence frame, similar to what is usually done in LEO. The 
CR3BP LVLH reference frame is centered at the barycenter 
B of the target; �̂LVLH (R-bar) is always directed towards the 

Lagrangian point associated with the studied Halo; �̂LVLH is 
opposite to the direction of the orbital momentum vector; 
�̂LVLH (V-bar) completes the right-handed frame, as shown 
in Fig. 7.

When the chaser enters in view of the target along the 
R-Bar, Δv4 is performed to align the chaser with the dock-
ing axis, �̂1T, of the space station. After this closing phase 
manoeuvre, the chaser is maintained always aligned with the 
docking axis of the target, within the field of view along �̂1T. 
During the final approach phase, this alignment is checked at 
different interface points; the first is at a distance of 200 km 
from the target, the second at 10 km, and the third at 500 m. 
These interface points are needed to break the rendezvous 
trajectory with some check-and-go points, to have a more 
gradual and safe final approach.

The different phases after the transfer are computed and 
optimized with a constrained optimization algorithm. The 
cost of the manoeuvre at each interface point and the differ-
ence in velocity between chaser and target at the end of the 
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arc, as a preliminary measure of the next Δv, are the objec-
tive functions of the optimization algorithm. In this way, 
the rendezvous path is evaluated minimizing the cost of all 
the proximity manoeuvres. The constraint is used to reduce 
the relative distance and maintain the alignment between 
chaser and target. Thus, at each interface point, the chaser 
reaches the desired location with a desired attitude relative to 
the target. The velocity of the chaser is used as design vari-
able to connect the different interface points minimizing the 
overall Δv cost. It has been assumed to control the dynam-
ics with impulsive manoeuvres, and, therefore, the actual 
design variable is not directly the velocity of the chaser, but 
the instantaneous Δv that are applied at the interface points 
to control the chaser along the rendezvous trajectory with 
the minimum possible cost. If the optimization algorithm 
converges to a feasible solution, the result is a trajectory that 
matches the final position vector of the target and minimizes 
the Δv cost. The initial guesses at each interface point are 
obtained randomly. The programming algorithm chosen in 
this work is a particular version of the barrier method [18, 
19], belonging to the class of the so-called interior point 
methods [20].

In Figs. 8 and 9, the proximity phases are shown in the 
synodic and in the LVLH frame. Both frames are useful 
to analyse the rendezvous, but the latter is more insightful 
when the distance between chaser and target is in the order 
of few hundreds of kilometers. In Fig. 9, it can be noted how 
the closing phase starts when the chaser enters in the field of 
view along the R-bar, then the following phases are main-
tained within the field of view in direction of the docking 
axis. Moreover, in the same figure, the approach along �̂1 is 
evident; the interface points follow the approach axis that is 
changing in time because of the rotation of the space station.

Figure  10 shows a more detailed view of the final 
approach phase, while the mating phase can be analysed in 
Fig. 11. In the aforementioned pictures, the typical behaviour 
of relative motion in CR3BP is confirmed: the approaching 
trajectories are almost rectilinear and the carving feature of 
LEO rendezvous trajectories is missing.

In Fig. 11, the interface point before Δv6, 500 m from the 
target, is characterized by an hold in the procedures. In fact, 
for safety reasons, the chaser cannot enter in the Keep-Out 
Sphere until the authority to proceed is obtained. After the 
final approach, the mating phase begins.

In this dynamical analysis tool, the guidance during the 
mating phase is assumed to be continuous. The trajectory is 
computed using a Linear Quadratic Regulator (LQR) and a 
linearised model of the CR3BP dynamics for the chaser [21]. 
The relative distance between chaser and center of mass of 
the target is reported in Fig. 12, as a function of the time of 
flight in the mating phase, which lasts for approximately 3 
h and brings the chaser few meters away from the docking 
port. In Fig. 13, the evolution of the relative velocity in this 

phase is presented as a function of the target-chaser distance. 
In Table 3, time of flight and Δvs during the proximity oper-
ations are reported. Hence, remembering the data in Table 2, 
the analysed rendezvous lasts for 29.5 days and requires a 
total Δv of 165.93 m/s.

5 � Flexible orbit‑attitude analysis

In the previous analyses, the coupled orbit-attitude model 
has been used to simulate the dynamics of the large space 
flexible infrastructure (target). However, the effects of this 
refined model are not so evident from the previously shown 
results. This section reports some analyses that have been 
conducted to preliminarily study the effects of the flexible 
extended structure on the dynamics in non-Keplerian orbits.

In Fig. 14, the attitude evolution of the rod infrastruc-
ture is reported. The attitude motion that has been examined 
in this analysis is set to be quasi-periodic with the orbital 
period: the space station performs almost one rotation in the 
first orbital period.

An interesting analysis is reported in Figs. 15 and 16, 
where the motion is propagated along four different Halo 
orbits, which are different in Az. In this way, the influence 
between the orbital frequencies and the spring–mass fre-
quencies is highlighted and some preliminary considerations 
are possible. The spring–mass systems have �̃i = 50 (nd).  
The most elongated orbits have a particular influence on 
the oscillations of the Bryant angles, while more the orbit 
is close to be planar, more the variations are evident in Ω

⟂
. 

This results can be explained considering that in the limit of 
planar orbits, all the torques are exerted along �̂3.

A different preliminary study is targeted to point out the 
influence of the natural frequencies of the structure on the 
orbital motion. The difference in x, y, and z of the coupled 
flexible model with respect to the point-mass CR3BP model 
is shown in Fig. 17. However, in this case, a unique trend 
does not exist among the different components and the dif-
ferent Halo orbits. Each orbit has its peculiar frequency in 
each spatial direction, and the influence on flexible systems 
with different natural frequency must be analysed isolating 
each single effect and coupling term.

6 � Conclusions

This paper presented an example of a possible rendezvous 
scenario with a very large and flexible space infrastructure 
in an EML2 Halo orbit. The example has been used to 
show a dynamical analysis tool that is being developed 
by the authors. Moreover, some reference parameters 
for such a rendezvous have been presented, and they can 
be exploited to assess the feasibility of a cyclic mission 
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between two different Halo orbits, when the cargo has to 
pass on the Earth side of the Moon.

At this point, as introduced in Sect. 2, it is relevant to note 
that in a different research work of the authors [4], an addi-
tional model has been developed and exploited to represent 
and study the dynamics of large and flexible space structures 
in non-Keplerian orbits. The other dynamical model resulted 
in a more efficient and adaptable way to study this kind of 
space systems. In fact, that dynamical representation can be 
easily integrated with more complex structural model, such 
as distributed parameters semi-analytical techniques, or with 
additional control devices, such as dual-spinning rotors. For 
these reasons, the future research will be addressed with 
that formulation. Notwithstanding, what has been pre-
sented in this paper, gave to the authors many information 
on orbit–attitude–flexible couplings and on rendezvous and 
docking operations; the extensions and the refinements of 
the additional modelling approach cannot overlook the pre-
sent results.

Future works will increase the fidelity of the simulations, 
including some perturbing phenomena in the rendezvous 
analyses and enhancing the modelling approach with the 
aforementioned additional developed model. An extensive 
study on the possible couplings between the structural fre-
quencies of the space infrastructure and the control action 
is needed. This is because the higher frequencies associated 
with an active control system can be more dangerous with 
respect to possible resonances of the flexible system. Finally, 
further investigations on the entire system configuration and 
on the proposed assembly strategies are necessary to high-
light some drivers for the whole lunar infrastructure design.
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