
1 3

https://doi.org/10.1007/s12567-017-0162-8
CEAS Space J (2018) 10:63–77

ORIGINAL PAPER

Spacecraft formation control using analytical finite‑duration 
approaches

Mohamed Khalil Ben Larbi1   · Enrico Stoll1 

Received: 13 January 2017 / Revised: 7 June 2017 / Accepted: 7 June 2017 / Published online: 24 June 2017 
© CEAS 2017

simple and effective and thus also suitable for on-board 
implementation. Simulations show that the proposed con-
cept improves the timing of the thrust maneuver executions 
and thus reduces the residual error of the formation control.

Keywords  Gauss’ variational equations · Relative orbital 
elements · Impulsive thrust · Continuous thrust

1  Introduction

The theory of spacecraft (s/c) formation flying has become 
the focus of considerably extensive research and develop-
ment effort during the last decades. Earlier design tech-
niques addressed rendezvous and docking missions such as 
those of the Apollo space program, which had the Lunar 
Excursion Module and the Command and Service Module 
being assembled in orbit. The purpose is not to correct the 
Earth relative orbit itself during this maneuver, but rather to 
adjust and control the relative orbit between two vehicles. 
The relative distance is decreased to zero in a very slow and 
controlled manner during the docking maneuver [17].

The modern-day focus of s/c formation flying has 
extended to maintain a formation of various s/c. Several 
formation flying missions are currently operating or in the 
design stage: synthetic aperture interferometers for Earth 
observation (e.g., TanDEM-X/TerraSAR-X), dual s/c tel-
escopes (e.g., VTDM) and laser interferometer for the detec-
tion of gravitational waves (e.g., LISA). It became obvious 
that the formation flying concept overcomes significant 
technical challenges and even avoids financial limitations. 
Indeed, the distribution of sensors and payloads among 
several s/c allows higher redundancy, flexibility and new 
applications that would not be achievable with a single s/c 
[2]. Recently, formation flying with non-cooperative objects 
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has emerged as a new focus, motivated through the increas-
ing number of such objects, especially in low Earth orbit. 
The exploitation of satellite-based resources has led to an 
ever-increasing number of non-cooperative objects such as 
defunct satellites and rocket upper stages termed as space 
debris. A collisional cascading effect has been postulated by 
Kessler in the late 1970s [12] and seems more real than ever 
since 2009 when two intact artificial satellites, Iridium 33 
(operational) and Kosmos 2251 (out of service), collided dis-
tributing debris across thousands of cubic kilometers. Using 
the NASA long-term orbital debris projection model (LEG-
END), Liou showed that, besides already implemented miti-
gation measures, the annual active debris removal (ADR) 
of 5–10 prioritized objects from orbit is required in order to 
stabilize the low Earth orbit (LEO) environment [14]. Those 
results have been backed by several other studies [11] and are 
meanwhile widely accepted in the space debris community.

This evolution has led to a substantial research effort to 
develop a theory that could simply and explicitly address 
the relative motion and collision avoidance issue in control 
design. Thus the development of the upcoming theories, 
such as ROE and eccentricity/inclination (E/I) vector sepa-
ration, originally developed for collocation of geostationary 
satellites [10], was conducted.

The control of satellite formation is performed by the 
activation of on-board thrusters. Typically, impulsive con-
trol (very short-duration thrust) is preferred to continuous 
control (finite-duration thrust). This is due to historical limi-
tations on propulsion technologies, typical payload require-
ments especially for scientific missions and the simplicity 
of impulsive maneuver planning often allowing pure ana-
lytical maneuver design. Recent advances in propulsion and 
computer technologies suggest a deeper study of continuous 
maneuver planning. This approach is not only justified by 
the precision of continuous maneuvers planning (the finite 
duration is explicitly addressed, and no impulsive assump-
tions are made) but also because of the typical advantages of 
low thrust propulsion systems, such as reduced mass, lim-
ited required power and variable exhaust velocity.

A vast amount of literature exists on formation recon-
figuration maneuvers with impulsive thrust mainly mod-
eled with Clohessy-Wiltshire (CW) and Lawden’s equa-
tions of relative motion. The Gauss’ variational equations 
(GVE) of motion however offer an ideal mathematical 
framework for designing impulsive control laws [3]. 
These equations have been extensively used in the last 
decades for absolute orbit keeping of single s/c, but 
have only recently been exploited for formation flying 
control in LEO as introduced by Schaub et  al. [16] and 
subsequently by Vaddi et  al. [19], Breger et  al. [8] and 
D’Amico [9]. The reason for such slow development is 
that GVE describe the effect of control acceleration on 
the time derivative of the Keplerian orbital elements 

which were normally used to parameterize the motion of 
a single s/c but not the relative motion of a formation [8].

In this paper, we build upon the previously mentioned 
references and give the following original contributions. 
Firstly, a comprehensive literature survey of the relative 
motion parameterization and Gauss’ variational equations 
for relative motion is presented demonstrating the con-
venience of ROE and GVE-based maneuver planning as 
opposed to Cartesian parameterization. Secondly, GVE 
for relative motion using finite-duration thrust are derived 
for a specific set of ROE. Thirdly, an impulsive maneu-
ver plan based on [2] is extended to the general case of 
nonzero relative semimajor axis and finally translated 
to the case of finite-duration thrust. The paper is organ-
ized as follows: in Sect. 2, an overview of the theory of 
relative motion, including ROE, is presented. In Sect. 3, 
an overview of the GVE and their application in rela-
tive orbit control is presented and the integrated GVE 
are derived. Section  4 is dedicated to the study of the 
effects of impulsive and finite-duration thrust on ROE. 
Subsequently the impulsive and finite-duration maneuver 
schemes are derived in Sect. 5 and verified via numerical 
simulation.

2 � Dynamics of relative motion

First of all we define some notations adopted in this 
paper. The motion of a single s/c orbiting the Earth is 
described in the Earth-centered inertial (ECI) frame. The 
relative motion of two s/c orbiting the Earth is described 
in the radial–tangential–normal (RTN) frame (Fig. 1).

The �(·) operator indicates arithmetic differences 
between absolute Cartesian or orbital parameters. The δ(·) 
operator indicates the relative Cartesian position and veloc-
ity in the RTN frame. It refers generally to a nonlinear 
combination of the absolute Cartesian/orbital parameters.

The s/c about which all other s/c motions are referenced 
is called the Target and is denoted with subscript (·)1. The 
second s/c, referred to as Chaser, is to fly in formation 

Target Satellite

Target inertial orbit

Chaser inertial orbit

Chaser Satelliterelative orbit

Fig. 1   Illustration of a s/c formation in RTN frame
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with the Target and is denoted with the subscript (·)2.  
Absolute Cartesian and orbital parameters without sub-
script are to be understood as Target parameters.

2.1 � Linearized equations of relative motion

The Target position vector in the ECI is noted r1. The rela-
tive orbit will be described in the rotating local orbital 
frame RTN in terms of the Cartesian coordinate vector 
δr =

(

x y z
)T.

We introduce dimensionless spatial coordinates δρ and a 
dimensionless time τ via the equations:

with n the mean motion. The differentiation with respect to 
the independent variable τ is written here as

The dimensionless state vector is then noted

The CW equations of motion take a very elegant numeri-
cally advantageous form if written in a non-dimensional 
form [1]: 

 Note that these equations of motion are valid only if:

•	 the Target orbit is circular,
•	

∥

∥δρ
∥

∥ ≪ r1,
•	 the Target and Chaser s/c have a pure Keplerian motion.

Further, the out-of-plane component z̄ in Eq.  (4c) decou-
ples from the radial and along-track directions (in-plane). A 
more detailed view on how the equations are obtained can 
be found in [1, 17].

2.1.1 � State‑space approach

From a system theoretical perspective, based on Eq.  (4), 
one can describe the dynamics of motion in state-space 
form:

where A is the state matrix, B the control input matrix and 
d the process disturbances induced through environmental 

(1)δρ =
δr

r1
=

(

x̄ ȳ z̄
)T

and dτ = ndt

(2)()′ ≡
d()

dτ
.

(3)δζ =
(

δρ δρ ′
)T

.

(4a)x̄′′ − 2ȳ′ − 3x̄ = 0

(4b)ȳ′′ + 2x̄′ = 0

(4c)z̄′′ + z̄ = 0.

(5)δζ ′ = Aδζ + Bδu+ d

perturbations. The state matrix is described by Eq.  (6), 
where 0

3
 is a 3 × 3 null matrix and I

3
 is a 3 × 3 identity 

matrix.

2.2 � Solution of the linearized equations of motion

CW equations (4) are a set of three coupled ordinary 
homogeneous second-order equations with constant coef-
ficients. Six independent constants are thus required to 
determine a unique solution for a relative orbit. The gen-
eral homogenous solution can be written as the product 
of a state transition matrix Φ(τ , τ0) with an integration 
constant vector c. A possible representation is:

c is a vector containing a set of six independent integra-
tion constants as described in [15]. To study the geom-
etry of the relative path we rewrite the first three rows of 
Eq. (7) in amplitude-phase form 

The amplitudes c34, c56 and phases ϕ, θ of the in-plane 
and out-of-plane relative motion oscillations are

We can easily see from (8) that the Chaser moves in 
an elliptical-like pattern around the Target as illustrated in 
Figs. 1 and 2. Indeed:

(6)

(7)δζ (τ ) = Φ(τ , τ0)c, with

Φ(τ , τ0) =















1 0 − cos τ − sin τ 0 0

− 3
2
(τ − τ0) 1 2 sin τ −2 cos τ 0 0

0 0 0 0 sin τ − cos τ

0 0 sin τ − cos τ 0 0

− 3
2

0 2 cos τ 2 sin τ 0 0















and

c =
�

c1 · · · c6

�T

.

(8a)x̄ = c1 − c34 cos (τ − ϕ)

(8b)ȳ = c2 − c1
3

2
(τ − τ0)+ 2c34 sin (τ − ϕ)

(8c)z̄ = + c56 sin (τ − θ).

(9)c34 =

√

c23 + c24 c56 =

√

c25 + c26

(10)ϕ = arctan

(

c4

c3

)

θ = arctan

(

c6

c5

)

.
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•	 The projection of the relative path in the RT plane is 
an ellipse centered in (c1, c2). Because of the drift term 
c1

3
2
(τ − τ0) the ellipse is instantaneous and the ȳ-value 

of the center is valid only at τ = 0. Bounded relative 
motion is hence obtained for c1 = 4x̄0 + 2ȳ′0 = 0.

•	 The RN projection is an ellipse centered in (c1, 0) for 
(ϕ − θ) ∈ {0,π} which gets tighter and dwindle to a line 
for (ϕ − θ) → π

2
. In the case of bounded relative motion 

(c1 = 0) the Target lies on this line which leads to colli-
sion risk if along-track position uncertainties exist and 
suggests choosing (ϕ − θ) ∈ {0,π} to minimize this 
risk. This presumption will be discussed in Sect. 2.4.

2.3 � Relative orbital elements

In conventional analysis, the set of independent variables c 
could be computed using the initial conditions consisting 
of the position r and velocity v at some specific initial time 
t0, often taken at zero for convenience. However, any six 
independent constants can describe the solution, with the 
physical nature of the problem usually dictating the choice. 
Many authors worked on that issue searching combinations 
of Keplerian elements of the co-orbiting s/c to describe 
their relative motion [18]. The motivation for this effort 
was the advantages of the Keplerian elements description, 
experienced for single s/c in the last decades, compared 
with the classical position-velocity description. Similar 
advantages were expected and could be noticed. This new 
approach provides direct insight into the formation geom-
etry and allows the straightforward adoption of variational 
equations such as the Gauss’ ones to study the effects of 
orbital perturbations on the relative motion.

In this paper a set of non-singular orbital elements 
α =

(

a u ex ey i �
)T is used to describe the absolute orbit 

of a s/c with u = M + ω, ex = e cosω, and ey = e sinω 
where a denotes the semimajor axis, e the eccentricity, i the 
inclination, � the right ascension of the ascending node, ω 
the argument of periapsis, M the mean anomaly and u the 
mean argument of latitude.

We define the ROE introduced by D’Amico [9]:

where δ� denotes the relative mean longitude, δe and 
δi the relative eccentricity and inclination vectors, sub-
scripts 1 and 2, respectively, Target and Chaser. The ROE 
defined in Eq.  (11) are all invariants of the unperturbed 
relative motion with the exception of δ�, which evolves 
linearly with time. The variable δ�̇ can be approximated 
to first order as

The general linearized relative motion of the Chaser rela-
tive to the Target is provided in terms of ROE by

where j denotes the vector index (j = 1, . . . , 6), the sub-
script 0 indicates quantities at the initial time t0 and δ2j  
is the Kronecker delta. Note that the only assumptions 
made here are pure Keplerian motion and �u,�a << r1.  
These equations are hence valid for arbitrary 
eccentricities.

2.4 � Final comments

These ROE have the distinct advantage of matching 
exactly the integration constants of Eq. (7) [9]. It follows

The variables ϕ and θ are the arguments of the vectors δe 
and δi in polar coordinates as depicted in Fig. 3.

That means that the vector c is not only an integration 
constant vector which could be geometrically interpreted 

(11)δα =

















δa

δ�

δex
δey
δix
δiy

















=

















(a2 − a1)a
−1
1

(u2 − u1)+ (�2 −�1) cos i1
ex2 − ex1
ey2 − ey1
i2 − i1

(�2 −�1) sin i1

















,

(12)δ�̇ = �u̇ = n2 − n1 = −
3

2
n1

�a

a1

(13)δαj(t) = δαj0 −
3

2
(u(t)− u0)δα10 δ

2
j

(14)(c1, c2, c34, c56) = a(δa, δ�, �δe�, �δi�)

Fig. 2   Illustration of the 
integration constants in the pro-
jected instantaneous (no drift) 
relative motion ellipse at τ = τ0

c34c34

2c34

c1

c2 

Target

Chaser

c56

eT

eR eR

eN

c1

τ-φ=π   

τ-φ=0   

τ-φ=π/2   
τ-φ τ-θ =3π/2   τ-θ 

τ-θ =π   

τ-θ =π/2   

τ-θ =0



67Spacecraft formation control using analytical...

1 3

in the relative trajectory (Fig. 2) but also receives a geo-
metrical meaning by means of Chaser’s and Target’s Kep-
lerian elements. Statements about the relative orbit geom-
etry can directly be made based on the absolute Keplerian 
elements without solving any equation. For example if �i 
and �� are found to be zero, then it can immediately be 
concluded that the amplitude of the out-of-plane motion 
is zero (c56 = �δi� =

√

(�i)2 + (�� sin i1)2).
Furthermore, we obtain a mapping tool between the 

relative state vector δx(τ ) at a generic time τ and the ini-
tial ROE vector δα(τ0). Keeping in mind the equivalence 
between mean argument of latitude u and the independent 
variable τ, we write:

Of practical use is mainly the inverse linear mapping 
from the relative state vector to the initial ROE vector 
with

It may be noted that this choice of the ROE maintains the 
decoupling of the motion. In other words δa, δ� and δe 
describe the in-plane motion, whereas δi describes the 
out-of-plane motion.

Moreover, the usage of ROE increases the accuracy 
of the CW general solution because it retains higher-
order terms which are normally dropped using Car-
tesian description [17]. For example the first-order 
Cartesian constraint for bounded relative motion 
(c1 = 4x̄0 + 2ȳ′0 = 0) translated in ROE yields δa = 0 . 
This is in fact the only condition on two inertial orbits 
to have a closed relative orbit since their energies are 
equal. The ROE constraint is thus universally valid (no 
linearization).

(15)δζ (u) = Φ(u, u0)δα(u0)

(16)

Φ−1(u, u0) =



















4 0 0 0 2 0

6(u− u0) 1 0 −2 3(u− u0) 0

3 cos u 0 0 sin u 2 cos u 0

3 sin u 0 0 − cos u 2 sin u 0

0 0 sin u 0 0 cos u

0 0 − cos u 0 0 sin u



















.

Because of the coupling between semimajor axis and 
orbital period, small uncertainties in the initial position and 
velocity result in a corresponding drift error and thus in a 
growing along-track error [9]. Long-term predictions of the 
relative motion between Chaser and Target are therefore sen-
sitive to both orbit determination errors and maneuver execu-
tion errors. In order to minimize the collision risk of the two 
s/c in the presence of along-track position uncertainties, they 
must be properly separated in RN directions. As expected 
from the results of Sect. 2.2 and shown in [10] this can be 
achieved by a (anti-)parallel alignment of the δe and δi vec-
tors ((ϕ − θ) ∈ {0,π}). In this case RN separations never 
vanish at the same time and provide a minimum safe separa-
tion between the s/c at all times. This principle is termed E/I 
separation.

Perturbations of the motion such as J2 and atmospheric 
drag effects can be easily incorporated through the con-
venient orbital elements description. From these two, the 
only perturbation which affect the E/I separation is the 
Earth oblateness [9]. It turned out that choosing δix = 0 
avoids a secular motion of δ� and δi due to J2 and pro-
vides hence a more stable configuration. Therefore the 
passively safe and stable configuration given through 
δαnom =

(

δa δ� 0 ±||δe|| 0 ±||δi||
)T is adopted as nom-

inal configuration in this work.
Finally, all six relative state variables (position and 

velocity) are fast varying variables, meaning that they vary 
throughout the orbit. Using ROE simplifies the relative orbit 
computation because even within a perturbed orbit, e.g., 
gravitational perturbations, ROE will only change slowly. 
Due to its curvilinear nature large rectilinear distances 
can be captured by small ROE variations. This property is 
exploited and illustrated by the use of GVE for the relative 
control as described in the next section.

3 � Gauss’ variational equations

The GVE derived in [3] describe the alteration of Kep-
lerian orbital elements due to a disturbance acceleration 

Fig. 3   Illustration of the 
relative orbital elements in the 
projected instantaneous (no 
drift) relative motion ellipse at 
u = u0 a1δe

a1δ e

a1δ a

a1

Target

Chaser

a1 i

a1δau-φ
2a1δ e

eR eR

eT eN

u-θ 
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γ
p
= (γR, γT, γN)

T  in radial, tangential and normal direc-
tion. If the perturbation acceleration is due to a con-
trol thrust, GVE show what effect such a control thrust 
would have on the Keplerian orbital elements. Based 
on the general GVE description in [3] it is possible to 
derive the GVE in terms of the non-singular orbital ele-
ments vector α and build the limit for e → 0 for a circu-
lar orbit. As a result we get 

 Given a constant acceleration γ
p
 at a generic time tM, 

the integration of the system of equations  (17) over the 
thrust duration provides the relation between the maneu-
ver �v

M
 and the subsequent change in orbital elements 

�α where

The subscript (·)M denotes the maneuver execution 
time; 2ǫ denotes the thrust duration. For impulsive 
maneuver planning, the velocity increment is given by 
limǫ→0 �vM . For proximity operations, these equations 
can be generalized from describing the motion of sin-
gle spacecraft to the description of the relative motion 
of two spacecraft. This approach is the most natural 
way to control relative orbital elements and have the 
main advantage that it allows us to translate the afore-
mentioned advantages of the ROE parameterization into 
maneuver planning.

3.1 � Impulsive thrust

We can extend the result above for relative motion. The 
alteration in ROE can be expressed as a function of the 
absolute orbital elements of Target and Chaser. We obtain 

(17a)
da

dt
= 2a

γT

na

(17b)
du

dt
= n− 2

γR

na
−

sin u

tan i

γN

na

(17c)
dex

dt
= 2 cos u

γT

na
+ sin u

γR

na

(17d)
dey

dt
= 2 sin u

γT

na
− cos u

γR

na

(17e)
di

dt
= cos u

γN

na

(17f)
d�

dt
=

sin u

sin i

γN

na

(18)�v
M
=

∫ t+M

t−M

γ
p
dt =

∫ tM+ǫ

tM−ǫ

γ
p
dt.

the direct relation between velocity increments in the 
RTN frame and the consequent change of ROE:

The variables �δα denote the alteration of the ROE, (·)M 
the maneuver execution time and �v

M
 the velocity incre-

ment. It is possible to summarize the factor 1/n2a2 and 
�v

M
 to obtain the dimensionless velocity increment �ρ′

M
 . 

Taking into account the evolution of the ROE described 
in Eq.  (13) we deduce that the alteration of δ� evolves 
after the maneuver linearly according to the following 
law

This result has been already incorporated in Eq.  (19), 
so that G(uM, uM) describes the instantaneous change in 
ROE at uM while G(u, uM) takes into account the linear 
evolution of δ� after uM.

3.2 � Relation to the state transition matrix

It is worth noting that the inverse state transition matrix 
Φ−1(u, u0) in Eq.  (16) and the variation matrix G(u, uM) 
in Eq.  (19) are closely connected. We rewrite the map-
ping rule for convenience: 

If we set δρ = 0, implying that both spacecrafts have the 
same position but different velocities in the inverted lin-
ear motion model of Eq.  (21b), we obtain the effect of 
an instantaneous velocity increment on the ROE vector 
[9]. Let Φ−1 in Eq. (16) be divided into four 3× 3 blocks 
Φ−1

ij
(u, u0); it follows

Equations  (22) and (19) are equivalent; the only dif-
ference between them is the opposite sign in the term 
−3(u− uM). This is due to the fact that the result is 

(19)�δα(u) =
1

n2a2
G(u, uM)�v

M
, with

G(u, uM) =

















0 2 0

−2 −3(u− uM) 0

sin uM 2 cos uM 0

− cos uM 2 sin uM 0

0 0 cos uM
0 0 sin uM

















.

(20)�δ� = δ�M − 3(u− uM)

(21a)�δα(u) = G(u, u0)�ρ′

0

(21b)δα(u0) = Φ−1(u, u0)δζ (u)

(22)δα(u0) =
[

Φ−1
12

(u, u0) Φ−1
22

(u, u0)
]

δρ′(u)
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calculated for different mean argument of latitudes: u 
refers to after the maneuver, while u0 refers to the initial 
state.

The equations above assume impulsive maneuver 
which would require a propulsion source of infinite 
thrust. In practice thrusts have always a finite duration 
which can be approximated as follows:

with m2 the mass of the Chaser and Fmax the available 
thrust level. Considering the execution as impulsive is a 
valid assumption for small maneuvers and thus adequate 
for maneuver planning. For large maneuvers the finite 
duration of the thrust has to be considered explicitly.

3.3 � Finite‑duration thrust

Depending on the amplitude of the maneuver, the mass 
of the s/c and the available thrust level, it is possible that 
the computed maneuver duration in Eq. (23) is too large 
to be considered as impulsive. In this case, uM cannot 
be considered constant during the maneuver anymore. 
Let γ

M
 be the available level of acceleration in the RTN 

directions and [t1, t2] the maneuver execution time inter-
val. Based on Eqs. (17) and (19), integration over [t1, t2] 
yields

Note that ûM is the halved dimensionless maneuver dura-
tion and ũM the mean argument of latitude at the middle 
point of the maneuver.

4 � Assessment of orbital maneuvers

We assume that there are three different thrust directions: 
radial, along-track and normal. The fuel consumption 
(F) due to a single impulse is proportional to the norm 
of the impulse vector. One impulse in normal direction 

(23)�tM = m2
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∥�v
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∥
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n22a2
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M
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,

(26)ũM =
u(t2)+ u(t1)

2
and ûM =

u(t2)− u(t1)

2

is required to reconfigure the out-of-plane motion, while 
two in RT-direction are needed to reconfigure the in-
plane motion. Based on the results of Vaddi et  al. [19] 
and D’Amico [9] we choose π as the optimal separation 
between two impulses.

Based on Eq. (19), one can deduce that radial maneu-
vers are safer than along-track ones since they do not 
affect the relative semimajor axis and thus do not induce 
an evolving change (drift) in mean longitude. How-
ever, they are twice as expensive as along-track and are 
not able to achieve complete formation reconfiguration 
because the relative semimajor axis can only be changed 
using along-track maneuvers. In this paper far-range for-
mation (several kilometers) is considered, in which an 
approach via drift is desirable and thus exclusively along-
track maneuvers are used for in-plane control. The inse-
curity is compensated through appropriate separation in 
RN-direction.

4.1 � Impulsive thrust maneuvers

4.1.1 � Out‑of‑plane maneuvers

The desired variation in the inclination vector can be 
obtained using maneuvers in normal direction. The influ-
ence of impulsive thrusts is given by Eq. (19) where �vN 
is the normal impulsive thrust (scalar value) and uN the 
location of the thrust. The non-trivial solution is given 
by a single thrust located at u

N1
 or u

N1
+ π. Depending 

on the actual position on the orbit, the closest solution to 
the actual position can be chosen. However, operational 
constraints may suggest splitting the out-of-plane maneu-
ver in two components located at u

N1
 and u

N1
+ π. This 

allows for example to correct maneuver execution errors. 
Let p be the thrust distribution coefficient, the double 
thrust solution is:

4.1.2 � Out‑of‑plane delta‑v budget

Single and double thrust impulsive maneuvers have the 
same delta-v budget:

4.1.3 � In‑plane maneuvers

The desired variation of the relative eccentricity vector 
δe , relative semimajor axis δa and relative mean longi-
tude δ� can be obtained using maneuvers in along-track 
and/or radial direction. The influence of impulsive thrusts 

(27)

{

�v
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= pna||�δi|| at u
N1

= arctan
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�δiy
�δix

)

�v
N2

= (p− 1)na||�δi|| at u
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N1
+π , p∈[0,1]

(28)F = |�v
N1
| + |�v

N2
| = na||�δi||
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is given by Eq. (19) where �vR and �vT are, respectively, 
the radial and along-track impulsive thrusts (algebraic 
values); uR and uT are the locations of the thrusts.

It is possible to control the relative eccentricity with 
a single thrust. The side effect is a persistent variation of 
the mean semimajor axis and thus, an increasing change 
of the mean longitude. Besides operational constraints 
suggesting the splitting of maneuvers, a double thrust 
solution can limit the instantaneous variation of semima-
jor axis between the thrust. That means that, for p = 0.5 , 
there is no change of the semimajor axis but a change of 
the mean longitude at the end of the maneuver.

The pair of along-track maneuvers planned to settle the 
new δe vector changes temporarily the relative semimajor 
axis δa and thus causes a change of δ�. The caused drift 
between the maneuvers is �δ� = ± 3

2
pπ ||�δe||. Along-

track maneuvers can be exploited to correct additionally 
the semimajor axis [2]. One solution for the control of δa 
and δe is given by

The double thrust solution induces a non-vanishing semi-
major axis difference that makes the spacecraft drift from 
each other. We have to take that into account in our con-
trol strategy and plan a second pair of maneuvers to stop 
the drift and acquire the desired mean longitude δ� altera-
tion (along-track separation). To stop (counteract) the 
variation of δ� we aim a (slightly non) zero at the end of 
the second pair of maneuvers which make the spacecraft 
maintain the Target separation (drift back). The caused 
drift between the maneuvers remains �δ� = ± 3

4
π ||�δe||.

4.1.4 � In‑plane delta‑v budget

Since the choice of p does not influence the total fuel 
consumption we set p = 0.5 and obtain a homogeneous 
distribution.

(29)
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1

2
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4.2 � Finite‑duration thrust maneuvers

4.2.1 � Out‑of‑plane maneuvers

The equation describing the influence of finite-duration 
thrusts on the out-of-plane motion is given by Eq.  (24) 
where �tN is the duration of the thrust, γN the normal thrust 
acceleration (scalar value) and ũN the location of the thrust. 
The solution is given by:

Analogously to the impulsive case, the solution for a homo-
geneous distribution (p = 0.5) is given by

where γN = ±|γN |.

4.2.2 � Out‑of‑plane delta‑v budget

Without loss of generality, we consider the simple case of 
p = 0.5. The index refers to the number of maneuvers

Lemma 1  The splitting of out-of-plane maneuvers 
reduces the propellant consumption.

Proof  We define the function 
h(x) = arcsin

(

x
2

)

− 1
2
arcsin(x). It can be shown that this 

function is monotonically decreasing for x ∈ [−1, 1] . The 
following relations hold

it follows ⇒ arcsin
(

x
2

)

< 1
2
arcsin(x)
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In a physical sense we can derive this result in the fol-
lowing way. The finite-duration thrust takes place along 
the arc length ûM. The effectiveness of the maneuver is at 
maximum near the middle point ũM. Splitting the maneu-
ver provides two arcs separated by π and thus increases 
the effectiveness of the maneuver since the length of the 
portion in vicinity of ũM (two in our case) increases as 
depicted in Fig. 4.

Lemma 2  The minimum of the (splitted) out-of-plane 
maneuver cost is given by a homogenous distribution 
(p = 0.5)

Proof  Let h(p) = arcsin(kp)+ arcsin(k(1− p)), where k 
is a positive constant and p a real variable in [0, 1].

Since d2

dp2
h(0.5) > 0, we deduce that h(p) has a global 

minimum at p = 0.5. �
In a physical sense, we can derive this result in the 

following way. The length of the arc in vicinity of ũM is 
maximized for homogenous distribution, and thus, the 
effectiveness of the maneuver is maximized for p = 0.5.

4.2.3 � In‑plane maneuvers

The equation describing the influence of finite-duration 
thrusts on the in-plane motion is given by Eq. (24) where 
�tR/�tT is the duration of the thrust, γR/γT the radial/
along-track thrust acceleration (scalar value) and uR/uT 

d

dp
h(p) = 0 ⇔ k[(1− (kp)2)−1 − (1− k2(1− p)2)] = 0

⇔ p2 = (1− p)2

⇔ p = 0.5

the location of the thrust. Analogously to the impul-
sive case, the solution for a homogeneous distribution 
(p = 0.5) is given by

 respectively, at ũ
T1

= arctan
(

�δey
�δex

)

 and ũ
T2

= ũ
T1

+ π 
with γT = ±|γT |

4.2.4 � In‑plane delta‑v budget

The delta-v budget for single and double thrust maneuvers 
is given by

5 � Control of relative motion

5.1 � Control scheme

The control scheme in this paper is based on the following 
considerations:

•	 The presented dynamics of relative motion does not 
take gravitational and atmospheric perturbations into 
account while planning the maneuvers. However, the 
simulation environment presented in section  5.2.1 
incorporates disturbances. The atmospheric drag and 
the gravitational perturbation are also not considered 
during the maneuver planning because they do not have 
a significant impact on the achievement of the desired 
formation as shown in section 5.2. The incorporation of 
disturbances has been discussed in [9] and will be sub-
ject of future work.

•	 Three different thrust directions (radial, along-track and 
normal) are available. This increases the fuel consump-
tion in case skewed thrusts are needed but is still a valid 
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Fig. 4   Illustration of maneuver splitting
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Fig. 5   Exemplary maneuver sequence for complete formation recon-
figuration
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assumption since maneuvers are typically constraint to 
certain directions.

•	 The reconfiguration of δe using two along-track maneu-
vers is an optimal solution in that case [9, 19].

•	 The two along-track thrusts can be used to simultane-
ously reconfigure δex, δey and δa (and hence a non-
vanishing variation of δ�). This is still an adequate sub-
optimal solution for the in-plane reconfiguration since 
generally δa remains small.

•	 To stop a drift (i.e., set δa to zero) we need two pulses 
so that only δa is affected. Obviously, δ� is also affected 
from the maneuver but has a constant value after the exe-
cution. δex and δey change only between the two maneu-
vers and finally take on their initial values at the end of the 
maneuvers.

The formation reconfiguration and formation keep-
ing are performed using the concept illustrated in Fig.  5 
which is valid for the general case of δa �= 0 and for the 
finite-duration thrust case. The desired change of the rela-
tive semimajor axis is split into �δa = �δaI +�δaII. Two 
along-track maneuvers settle a change of the relative eccen-
tricity vector �δe and the intermediate change of the rela-
tive semimajor axis �δaI. Due to the new settled semimajor 
axis δ� will evolve with a constant rate until a second pair 
of along-track maneuvers provoke the second semimajor 
axis change �δaII. Commonly the second pair will stop 
the drift by setting δa to zero. �δaI has to be chosen in a 
way so that the total drift (inclusive between the maneu-
ver pairs) corresponds to the desired change �δ�. For the 
out-of-plane motion a single-pulse split in two equivalent 
pulses will reconfigure δi.

5.1.1 � Impulsive scheme

Based on the results of the last section, we derived the six 
impulsive thrusts as follows: 
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 The intermediate change of the relative semimajor axis can 
be determined analytically [4]:

5.1.2 � Finite‑duration scheme

Based on Eq. (24), we extended the solution in Eq. (37) 
to the case of finite-duration thrusts 

Note that the middle point of each maneuver ũM 
matches exactly the pulse location uM of the IT above. 
Furthermore �δaI involves solving a transcendental 
equation and cannot be calculated analytically in case of 
finite-duration maneuvers. One possible approach is to 
approximate �δaI to the value computed via impulsive 
planning in Eq. (38) [5]. The transcendental equation can 
be approximated to a polynomial equation and solved 
via numerical iteration. First tests show that sufficiently 
accurate results are obtained after three to six iteration 
steps. This issue will not be treated in this paper.
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T1

= arcsin





n2a||�δe||

8|γ
T
| cos

�

n2a�δaI
8|γ

T
|

�



+
an2�δaI

8|γ
T
|

(39b)û
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Table 1   Selected high-risk objects for active debris removal

NORAD-ID m (kg) hP (km) hA (km) i° �°

17,590 8111 839.3 847.8 71.0 355.8
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5.2 � Simulation results

5.2.1 � Simulation scenario

In this section the proposed control schemes are verified 
through a numerical integration of the nonlinear differ-
ential equations of motion using a MATLAB–Simulink 
simulation environment. The simulation environment 
includes additionally modeling blocks to incorporate 
gravitational and atmospheric perturbations. An assess-
ment of the achievable performance via closed-loop 
simulation is presented. The boundary conditions were 
defined assuming an active debris removal mission sce-
nario via rendezvous and docking. As Chaser we assume 
a spacecraft of 500  kg and a maximal thrust level of 
0.4  N. Table  1 shows the detailed orbital parameters of 
a selected representative high-risk debris object which 
will be used as a test case in this work: a rocket upper 
stage (Zenit) with an inclination of about 70° which has 
been identified as the object with the highest environmen-
tal criticality [6, 11] in LEO. As described in Sect. 2.4 a 
passively safe and stable configuration has been defined 
as δαnom =

(

δa δ� 0 ±||δe|| 0 ±||δi||
)T. The dedicated 

formation flying scenario is that of the Chaser being 
injected in almost the same orbit as the Target with an 
initial along-track separation of −8 km. The Chaser gets 
position measurements via GNSS. The Target is uncoop-
erative and can only be observed from ground using radar 
measurements at an update frequency of 12 h. The initial 
and targeted final ROE used in the simulation are listed in 
Table 2. The scenario is simulated using a J40,40 gravity 
model, NRLMSISE-00 atmospheric model and a Runge–
Kutta fourth-order integration algorithm with a step size 
of 1 s.

Two initial position errors can be assumed, the radar 
orbit determination (radar/OD) measurement error, 
affecting the Target, and the GNSS orbit determination 
(GNSS/OD) measurement error, affecting the Chaser. To 
overcome the 12-h gap of Target radar-based measure-
ments, orbit propagation is then considered. Two differ-
ent navigation strategies based on on-ground absolute 
propagation and on-board relative propagation are pos-
sible. For relative orbit propagation the relative posi-
tion is needed und thus both GNSS/OD and radar/OD 
errors have to be taken into account for the initial error. 
However, if the relative state is derived from absolute 
orbit propagation, the GNSS/OD measurement does not 

influence the position of the Target and the Chaser is 
assumed to be supported the whole time via GNSS/OD 
measurements. For this reason the GNSS/OD inaccuracy 
should not be incorporated as an initial error but has to 
be considered over the entire propagation time as a pos-
sible offset. In addition to the position errors, also errors 
in velocity can occur, for example due to uncertainties in 
thrust vector, activation time and spacecraft mass. These 
errors cannot be directly observed using relative propaga-
tion. A study of the navigation solution with a non-coop-
erative Target is discussed in detail in [6].

In this work however, we do not take navigation uncer-
tainties and environmental perturbations into account while 
planning the maneuver reconfiguration. The main reason 
for that is that we are essentially interested on validat-
ing the derived guidance equations. The guidance algo-
rithm assumes a precise knowledge of the state and does 
not incorporate drag or Earth oblateness terms. However, 
the Simulink-based simulation environment models gravi-
tational and atmospheric perturbations and—as presented 
in the next section—the desired formation is nevertheless 
achieved with very good accuracy. The passively safe and 
stable final configuration defined in Table  2 guarantees a 
collision-free formation flight by setting a safe radial–nor-
mal separation as explained in Sect. 2.4.

5.2.2 � Formation reconfiguration

We examine an approach phase including a complete for-
mation reconfiguration (FR) and keeping (FK) with a 
maneuver set interval �t = �u/n corresponding to the 
radar measurement update period of 12 h. The implemented 
algorithm compares the measured configuration (initial) to 
the desired one (final) and computes a set of six maneuvers 
based on the finite-duration scheme. This step is repeated 
after 12 h to compute a maneuver set for formation keeping 
in case the desired configuration has not been reached or 
did not remain stable.

Figures 6 and 7 show the temporal evolution of the indi-
vidual ROE. The desired formation is achieved with high 
precision within the first 12  h and remains stable so that 
no maneuvers are needed for the formation reconfigu-
ration. The error is 10  m for aδ� and remains under 1  m 
for the rest of the ROE. The temporal evolution of the ele-
ments coincides with the predicted behavior described in 
Sect. 5.1 with the exception of small variations in aδex and 
aδix which are supposed to remain zero. This would be the 

Table 2   Formation initial and 
final configurations

aδa aδ� aδex δey aδix aδiy

Initial (m) 29 −8000 0 0 0 0

Final (m) 0 −2000 0 −900 0 500
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case if the maneuvers are executed in an impulsive man-
ner. Since maneuvers are executed along an arc centered 
at uM a temporal change is induced which sums up to zero 
at the end of the maneuver. Further small discrepancies 
are explained as linearization errors and effects of orbits 
disturbance.

Figure  8 shows the three-dimensional trajectory of the 
formation and its projection on the radial–tangential and 
radial–normal planes. The ellipsoid depicted at the start 
position of the Target shows typical two-line-element 
(TLE) initial position uncertainties  [7, 13]. The desired 

formation configuration has through the application of the 
E/I separation technique a safe separation in radial and nor-
mal direction and thus guarantees a collision-free forma-
tion as depicted in Fig. 8. Velocity uncertainties have been 
neglected, which is a common practice in collision risk 
estimations  [13]. For a more rigorous assessment, these 
uncertainties have to be incorporated and the complete state 
vector errors have to be propagated until the next measure-
ment is available. Uncertainty propagation can be achieved 
using different methods as described in [7, 13] and is sub-
ject of future work.

Fig. 6   Temporal evolution 
of the ROE during formation 
reconfiguration and in-plane 
formation keeping maneuvers
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Fig. 7   Temporal evolution of 
the out-of-plane motion ROE 
during formation reconfigura-
tion maneuvers
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Fig. 8   3D trajectory and its 
projection on the RT and RN 
planes

−0.50
0.5

−8
−7

−6
−5

−4
−3

−2
−1

0

−0.4
−0.2

0
0.2
0.4

rx [km]

ry [km]

r z
[k
m
]

Trajectory

Trajectory
Start
End
Target

−8 −6 −4 −2 0
−1

−0.5

0

0.5

1

ry [km]

r x
[k
m
]

Trajectory yx

−1 0 1
−1

−0.5

0

0.5

1

rz [km]

r x
[k
m
]

Trajectory zx



76 M. K. Ben Larbi, E. Stoll

1 3

5.2.3 � Integrated GVE as error assessment tool

It is possible to use the integrated GVE as precise 
(opposed to the standard GVE) analytical tool to propa-
gate the effect of thrust maneuvers on ROE. We approx-
imate the duration of maneuvers �tM for impulsive 
thrusts using (23). Inserting this �tM in Eq.  (24) yields 
the induced alteration in ROE. This provides an analyti-
cal tool to estimate the error induced through impulsive 
planning. Depending on mission profile, this allows us to 
determine a threshold value (targeted alteration in ROE), 
for which impulsive planning is sufficient to achieve the 
required precision. Figure  9 depicts the analytical error 
estimation for aδey and aδiy. The estimated errors (1.6% 
for aδey and 2% for aδiy) coincide with simulation results.

6 � Conclusion and future work

The major contribution offered by this work is delivering a 
control method for finite-duration thrust maneuver. This 
method allows a clear amelioration of the achieved forma-
tion accuracy in terms of aδe and aδi which are the key for 
safe formation flight. To compute the finite-duration control 
scheme an approximation has been made to determine the 
intermediate change of the relative semimajor axis �δaI as 
detailed in Sect. 5.1.2. This approximation is sufficient for the 
purpose of safe formation reconfiguration but could provoke 
an undesired relative semimajor difference and hence triggers 
an undesired drift. To solve this problem, the transcendental 
equation evoking �δaI has to be numerically solved. First 
tests show that sufficiently accurate results are obtained after 
three to six iteration steps. Furthermore, the gravitational and 
atmospheric perturbations could be incorporated analytically 
in a generalized perturbed equation of motion and thus taken 
into account while computing the control scheme.
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