
1 3

https://doi.org/10.1007/s12567-017-0155-7
CEAS Space J (2018) 10:37–49

ORIGINAL PAPER

Experimental evaluation of model predictive control and inverse 
dynamics control for spacecraft proximity and docking 
maneuvers

Josep Virgili‑Llop1   · Costantinos Zagaris1 · Hyeongjun Park1 · 
Richard Zappulla II1 · Marcello Romano1 

Received: 16 October 2016 / Revised: 5 May 2017 / Accepted: 8 May 2017 / Published online: 22 May 2017 
© CEAS (outside the USA)  2017

Ground-based experimental evaluations of emerging guid-
ance, navigation, and control (GNC) approaches may be 
used to raise their technological readiness level and deter-
mine their performance and limitations on flight-equiva-
lent hardware (i.e., sensors, actuators, and computational 
systems) [2].

An experimental campaign to evaluate the performance 
of the model predictive control (MPC) and inverse dynam-
ics in the virtual domain (IDVD) guidance methods has 
been performed at the Naval Postgraduate School POSEI-
DYN1 air-bearing test bed [4]. The focus of this research is 
limited in scope to the guidance and control of the simu-
lated spacecraft. The navigation problem is solved by the 
POSEIDYN test bed motion capture system, which, aug-
mented by onboard sensors, is used to provide accurate 
navigation data. The test vehicles operating in the POSEI-
DYN test bed float on top of a 4-by-4 m granite table and 
exhibit a drag-free and weightless motion on a plane  [4]. 
These test vehicles are referred to as floating spacecraft 
simulators, or simply as FSS.

A spacecraft docking problem is selected for the 
experimental evaluation of these two different control 
approaches. A keep-out zone, an entry cone, and a maxi-
mum force constraint are added to the docking scenario 
to evaluate the constraint handling abilities of the two dif-
ferent controllers. A linear–quadratic MPC (LQ-MPC) 
algorithm with a quadratic programming (QP) solver and 
an IDVD algorithm with a nonlinear programming (NLP) 
solver have been chosen for this comparative study. These 
two controllers have been implemented and, when exe-
cuted in real-time on board the FSS, they are successful in 

1  POSEIDYN stands for Proximity Operation of Spacecraft: Experi-
mental hardware-In-the-loop DYNamic simulator

Abstract  An experimental campaign has been conducted 
to evaluate the performance of two different guidance and 
control algorithms on a multi-constrained docking maneu-
ver. The evaluated algorithms are model predictive control 
(MPC) and inverse dynamics in the virtual domain (IDVD). 
A linear–quadratic approach with a quadratic program-
ming solver is used for the MPC approach. A nonconvex 
optimization problem results from the IDVD approach, and 
a nonlinear programming solver is used. The docking sce-
nario is constrained by the presence of a keep-out zone, an 
entry cone, and by the chaser’s maximum actuation level. 
The performance metrics for the experiments and numeri-
cal simulations include the required control effort and time 
to dock. The experiments have been conducted in a ground-
based air-bearing test bed, using spacecraft simulators that 
float over a granite table.

Keywords  Rendezvous and proximity operations · Model 
predictive control · Inverse dynamics · Hardware-in-the-
loop

1  Introduction

Rendezvous and proximity operations (RPO) are essen-
tial for a wide range of future space missions  [1–3]. 
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autonomously guiding the chaser FSS towards its docking 
target.

The MPC approach is a receding horizon control 
that results in a QP problem when a linear–quadratic-based 
approach  is used   [5]. This type of programming prob-
lem can be efficiently solved, has guaranteed convergence 
regardless of the initial guess (as long as the problem is 
feasible), and an upper bound on the number of required 
computations can be predetermined  [6]. The drawback of 
an LQ-based MPC is that the problem constraints must be 
linear. Any nonlinear constraints must be linearized before 
the LQ-MPC problem can be formulated. This linearization 
may over-constrain the problem, providing  a sub-optimal 
solution when compared to the solution of the original 
nonlinear problem. The use of MPC has been recently pro-
posed for spacecraft RPO [7] and experimental evaluations 
using a kinematic test bed have already been conducted [8, 
9], but to the best knowledge of the authors, this is the first 
time that the use of MPC is experimentally demonstrated 
for spacecraft RPO in a dynamically representative test 
bed. After conducting the experiments presented in this 
paper, the authors have experimentally demonstrated the 
use of a nonlinear MPC approach for spacecraft docking 
maneuvers [10].

The IDVD control approach is a direct optimization 
method based on the inversion of the system’s dynamics 
and the parametrization of the trajectory using a family 
of functions  [11, 12]. This approach is also operated as a 
feedback controller but, unlike MPC, the IDVD approach 
optimizes the full length of the trajectory. As an NLP 
problem arises from the IDVD formulation, the IDVD 
approach can directly handle any nonlinear (and noncon-
vex) constraints. This capability comes at the expense of 
having to solve a more complex programming problem. 
In this research effort, the resultant NLP problem is solved 
onboard the FSS using the open-source NLP Interior Point 
OPTimizer (IPOPT)  solver  [13]. The application of the 
IDVD approach for spacecraft RPO has been extensively 
studied in the past by the authors, both on simulation [12, 
14–16], and experimentally in the POSEIDYN test bed [17, 
18]. Notably, none of the previously reported experimental 
results included a keep-out zone constraint. As the IDVD 
optimizes the full maneuver and does not need to linearize 
the constraints, the IDVD approach is expected to yield 
more propellant-efficient maneuvers.

Similar comparative studies have already been con-
ducted in the POSEIDYN test bed. In particular, it is worth 
mentioning the comparison of artificial potential functions 
(APF) and adaptive APF for docking maneuvers  [19]. In 
that case, the chaser spacecraft is required to avoid several 
obstacles before docking with the target. More recently, 
an LQ-MPC has been compared against a nonlinear 
MPC for a docking maneuver in the presence of multiple 

obstacles  [10], and a nonlinear MPC approach has been 
used to experimentally demonstrate docking with a rotat-
ing target  [20]. Moreover, a near-optimal real-time guid-
ance approach using harmonic potential functions and a 
modified rapid random tree (RRT) approach has also bee 
experimentally tested in the POSEIDYN test bed for multi-
constrained docking maneuvers [21].

Other optimization-based guidance approaches, based 
on convex optimization and potentially suitable for 
onboard implementation and real-time applications, have 
also been proposed  [22, 23], but, to the best knowledge 
of the authors, not tested in a hardware-in-the-loop setup. 
These proposed and experimentally tested optimization-
based guidance and control approaches contrast with the 
ones used on operational spacecraft. Historically, chaser 
spacecraft have conducted V-bar or R-bar approaches that 
are either manually piloted [24, 25] or controlled by a pro-
portional-integral-derivative or H-infinity controller track-
ing a pre-defined straight-line (or quasi-straight) trajectory 
[26, 27]. For a historical review on the guidance and con-
trol algorithms used in spacecraft rendezvous and proxim-
ity operations refer to [28, 29].

The main contribution of this paper is to experimen-
tally evaluate, for the first time, the performance of an 
LQ-MPC formulation for a multi-constrained spacecraft 
docking scenario using a hardware-in-the-loop setup in a 
dynamically representative test bed. The LQ-MPC formu-
lation is then compared to the previously studied IDVD 
approach. Another contribution of this paper is to experi-
mentally demonstrate the ability of the IDVD approach 
to handle keep-out zone constraints. By experimentally 
evaluating these guidance approaches in a dynamically 
representative test bed, their feasibility can be demon-
strated with realistic dynamics, realistic actuator and 
navigation noises, as well as with real-time computational 
constraints. These experimental tests help raise the tech-
nology readiness level of the MPC and IDVD approaches 
for spacecraft RPO.

In this paper, the docking problem that has been used 
to evaluate the LQ-MPC and IDVD approaches is out-
lined first. Then a brief overview of the experimental setup 
is provided. The problem formulation of the two different 
control approaches is then presented. The practical imple-
mentation details, as well as the simulation and experimen-
tal results, are then given. Finally, a discussion about the 
experimental results and the differences between the two 
control approaches is provided.

2 � Problem formulation

A multi-constrained docking scenario has been selected to 
experimentally compare the LQ-MPC and IDVD control 
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approaches in the POSEIDYN test bed. Figure 1 schemati-
cally shows the test setup with the problem’s constraints 
and the vehicle’s initial conditions in the POSEIDYN test 
bed. One FSS is used as the chaser, another is used as a 
non-moving target, and a third is used as a non-moving 
obstacle.

The specific parameters used for this test case are pro-
vided in Table  1. The selected test case is a straight-on 
docking with a non-moving obstacle and an entry cone 
constraint.

The keep-out zone constraint is only imposed on 
the chaser’s nominal position, which, for practical rea-
sons, is approximately set at its geometric center. This 
chaser’s reference point is indicated in Fig. 2 by a black 
cross. To ensure a collision-free maneuver, the keep-out 
zone has been sized so that no collision can occur if the 
chaser’s geometric center remains outside it, i.e., regard-
less of the chaser’s relative orientation with respect to the 

obstacle. It is also important to note that the chaser needs 
to actively avoid the keep-out zone, as this one is placed 
along what would be the optimal straight-line trajectory 
if no obstacle was included. This can be clearly seen in 
Fig. 1. In addition, the entry cone constraint is also only 
imposed on the chaser’s geometric center. The apex 
of the cone is located at the chaser’s desired end state, 
thus showing an offset with respect to the target’s FSS 
position.

The focus of this experimental campaign is to compare 
two control approaches and thus the navigation problem 
is considered solved. The obstacle and the target’s posi-
tions are made available to the chaser vehicle. Addition-
ally, the algorithms to be evaluated are only used to con-
trol the vehicle’s position, with its attitude being controlled 
by a combination of a propellant-optimal slew  [30] and a 
proportional-derivative (PD) controller. Therefore, only 
the translation forces are considered when computing the 
resultant control effort.

2.1 � Experimental setup

The experiments are conducted using three, approximately 
10 kg test vehicles. These vehicles float via three planar 
air bearings over a 4-by-4 m granite table. Due to the air 
bearings as well as the planarity and horizontallity of the 
granite surface, the FSS experiences a weightless and a 
quasi-frictionless motion in two translation and one rota-
tion degree-of-freedom, i.e., planar motion  [4]. Figure  2 
shows the target, chaser, and obstacle FSS over the POSEI-
DYN granite surface in the initial conditions used for this 
particular comparative study.

Eight cold-gas thrusters provide autonomous motion 
capability to the FSS [31]. An onboard tank of compressed 
air provides the propellant required to operate the thrust-
ers and the air bearings. An onboard power system and an 
onboard computer complete the FSS equipment. All the 
required processing (e.g., sensor readings, communica-
tions, navigation, guidance and control, and actuator com-
manding) is handled by the onboard computer.

Absolute navigation data is provided by an overhead 
motion capture system, VICON. The position and atti-
tude information provided by this system is augmented by 
an onboard one-axis fiber-optic gyroscope (FOG) using a 
discrete-time Kalman filter  [4]. Communications among 
multiple FSS, the VICON workstation, and other external 
PCs (used for telemetry monitoring) is achieved via UDP 
streams over an ad hoc Wi-Fi network [32].

Air-bearing tables provide an acceptable approximation 
of the dynamics experienced by spacecraft during close 
proximity operations. These types of test beds have been 
extensively used in the past to conduct hardware-in-the-
loop testing and research in spacecraft RPO [33, 34].
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Fig. 1   Experiment initial conditions in the POSEIDYN test bed

Table 1   Numeric values for the test case parameters

Parameter Value

Chaser initial location rc0 = [3.5 3.5] m

Target location rt = [0.5 0.5] m

Obstacle location robs = [2.5 2.5] m

Obstacle keep-out radius Robs = 0.4 m

Entry cone orientation θ = 45◦

Entry cone half-angle θhc = 10◦

Entry cone range Rcone = 0.5 m
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2.2 � FSS dynamic model

The motion of the FSS in the POSEIDYN test bed can be 
modeled as a double integrator with two translational and one 
rotational degree of freedom. The equations of motion of the 
FSS translation degrees of freedom can be written as follows: 

 where m denotes the mass of the FSS and Fx, Fy the control 
forces. These equations can be re-written in state-space form 
as:

The state vector is denoted by x = [x, y, ẋ, ẏ]T, the control 
vector by u = [Fx, Fy]

T, and A ∈ R
4×4, and B ∈ R

4×2 rep-
resent the corresponding state and control matrices, respec-
tively. With 02×2 denoting a 2× 2 zero matrix and I2×2 a 
2× 2 identity matrix, the A and B matrices can be defined as 
follows: 

(1a)ẍ =
Fx

m

(1b)ÿ =
Fy

m

(2)ẋ = Ax + Bu

(3a)A =

[

02×2 I2×2

02×2 02×2

]

 A control method can then be designed to control the linear-
time invariant system described by Eq. (2). In this case, the 
LQ-MPC and IDVD algorithms are used to control these 
translation states.

The attitude or orientation of the FSS is also modeled as 
a double integrator:

In this last equation, Izz denotes the FSS’ moment of 
inertia about the vertical axis and τ the control torque. 
The FSS’ attitude is controlled through a propellant-
optimal, bang-off-bang controller [30], and when the 
attitude is within ±10◦ of the desired target attitude (i.e., 
the docking attitude), it switches to a PD control law to 
maintain it.

3 � Controller design

The two different control approaches that have been experi-
mentally evaluated are briefly described in this section.

(3b)B =

[

02×2
1
m
I2×2

]

(4)θ̈ =
τ

Izz

Fig. 2   Floating spacecraft simulators on top of the 4-by-4 m granite surface in the initial conditions used for the experiment campaign
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3.1 � Linear–quadratic model predictive control 
(LQ‑MPC)

MPC is a receding horizon control approach that can be 
used to solve constrained trajectory optimization prob-
lems. The LQ-MPC is fundamentally based on the lin-
ear–quadratic optimal control problem. The constraint 
handling ability of the LQ-MPC distinguishes it from the 
standard linear–quadratic control  [5]. In the LQ-MPC 
approach, only linear inequality constraints are allowed, 
resulting in a QP problem. This type of optimization 
problems can be efficiently solved while enjoying deter-
ministic convergence properties [6].

Implementation of MPC for spacecraft RPO maneu-
vers has been studied in the past  [7]. A survey of guid-
ance algorithms that can be used for onboard RPO tra-
jectory planning is presented in  [35], including an MPC 
implementation in simulation. The experimental valida-
tion of an MPC algorithm presented in this paper pro-
vides further confidence in its ability to be implemented 
onboard real systems. Simulation results of applications 
of MPC to a constrained rendezvous problem have also 
been shown in [36, 37]. The type of constraints enforced 
in these simulations include thrust constraints, a line-of-
sight constraint linearized through polyhedral approxima-
tions [36], and an obstacle avoidance constraint linearized 
through a rotating hyperplane  [7, 37]. These references 
provide the basic framework for the LQ-MPC formula-
tion implemented for this experimental campaign.

As an LQ-based method, LQ-MPC can be used to 
solve a constrained optimization problem, where a quad-
ratic cost function is minimized subject to linear dynam-
ics and linear inequality constraints. This problem for-
mulation results in a convex QP problem that can be 
solved using readily available solvers  [38]. The obsta-
cle avoidance constraint is linearized through a rotating 
hyperplane method  [37]. The approach cone constraint 
is linearized by constructing two hyperplanes that define 
the edges of the cone, intersecting at the target docking 
point. When these constraints are activated, the FSS is 
forced to stay within the two hyperplanes until docking 
is achieved. The LQ-MPC problem, in discrete form, is 
formed as follows: 

(5a)

Minimize J = (x(N)− xt)
TP(x(N)− xt)

+

N−1
∑

i=0

(x(k + i)− xt)
TQ(x(k + i)− xt)

+

N−1
∑

i=0

u(k + i)TRu(k + i)

(5b)Subject to x(k + 1) = Adx(k)+ Bdu(k)

The length of the horizon is denoted by N, and Ad , Bd 
are the discrete state and control matrices, which can be 
derived from the continuous dynamics in Eq.  (2) when 
using a sampling time Ts. The term xt denotes the targeted 
final condition. As mentioned before, only the translational 
motion is included in the MPC formulation. The matrices 
P ∈ R

4×4, Q ∈ R
4×4, and R ∈ R

2×2 in Eq.  (5a) define 
the cost function weights on the final condition, state, and 
control variables, respectively. Equation  (5b) defines the 
equality constraint enforcing the dynamics of the system. 
Equations (5c) and (5d) enforce constraints on the control 
variables. Finally, Eqs.  (5e)–(5g) enforce the hyperplane 
constraints for the obstacle and cone, where r =

[

x, y
]T 

denotes the position of the chaser, n̂() defines the normal 
vector of the hyperplane, and p() defines a point on the 
hyperplane. The (·)dock, (·)obs, and (·)c1,c2 subscripts in 
Eq. (5) help differentiate the quantities related to the dock-
ing point, obstacle, and entry cone constraint, respectively.

The problem in Eq. (5) is transformed into a QP problem 
[38], and solved using a publicly available MATLAB-based 
solver. The QP solver outputs the required control inputs 
for the entire horizon. Once the QP problem is solved, the 
first control input of the obtained sequence is extracted 
from the solution and applied for the Ts sampling period. 
The QP problem is then resolved using the previous solu-
tion control sequence and the current FSS state to obtain 
the solution to be used in the next step. This feedback 
action introduces a degree of nominal (inherent) robustness 
to uncertainty.

The MPC (and also the IDVD) produces a control input 
that needs to be actuated by the FSS thrusters. This piece-
wise constant control input needs to be modulated to gener-
ate a pulse train to fire the different FSS thrusters to gen-
erate an equivalent effect than the requested control input. 
To achieve this binary thruster actuation, i.e., ON–OFF, 
the output of the MPC (and also of the IDVD) is passed 
through a delta–sigma modulator [4].

The LQ-MPC formulation is implemented in Simulink as 
an embedded MATLAB function, which is suitable for auto-
matic code generation. C code is then automatically generated 
from the Simulink model and compiled (targeting the embed-
ded hardware architecture). Finally, this compiled model is 
executed onboard the FSS’ real-time operating system [4].

(5c)|u1(k)| ≤umax

(5d)|u2(k)| ≤umax

(5e)n̂obs · r(k) ≥n̂obs · pobs

(5f)n̂c1 · r(k) ≥n̂c1 · pdock

(5g)n̂c2 · r(k) ≤n̂c2 · pdock
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3.2 � Inverse dynamics in the virtual domain (IDVD)

The IDVD method is a near-optimal guidance technique 
where the trajectory and time are parameterized using 
a family of functions that depend on a finite number of 
coefficients (e.g., polynomials or splines) [11, 12]. Some 
of these function parameters are determined to automati-
cally enforce the initial and final conditions. The remain-
ing parameters can be adjusted to minimize a cost func-
tion while meeting certain predefined constraints. In 
general, the parameter optimization problem results in 
a nonlinear programming problem. Once all the func-
tion parameters have been adjusted, the vehicle’s trajec-
tory is fully determined and the required control inputs 
can be easily derived. This optimization procedure can be 
repeated at regular intervals, employing IDVD as a near-
optimal feedback controller. The IDVD approach has 
been extensively studied for spacecraft docking problems 
both in simulation [14–16, 39] and experimentally in the 
POSEIDYN test bed [17, 18].

In this IDVD implementation, the trajectory is con-
structed as a polynomial of order nx and ny that is a func-
tion of the virtual time κ ∈ [0, κf ]: 

 The time t for each of the trajectory components is also 
modeled as a polynomial of the virtual time κ of order nt: 

 The time is also parameterized to provide additional 
optimization variables, reducing the final control effort 
and improving the constraint handling capabilities. To 
fully specify the trajectory and thus solving the problem, 
the ai, bi, dai, and dbi coefficients have to be determined.

It is worth noting that different polynomial orders can 
be used for each of the trajectory components nx �= ny.  
Additionally, different virtual time polynomials (see 
Eq.  (7)) can be used for each of the trajectory compo-
nents, imposing equal final times tx(κf ) = ty(κf ). It is 
also worth pointing out that the time t has to be mono-
tonically increasing and thus t′ = dt/dκ needs to be 

(6a)x(κ) =

nx
∑

i=0

aiκ
i

(6b)y(κ) =

ny
∑

i=0

biκ
i

(7a)tx(κ) =

nt
∑

i=1

daiκ
i

(7b)ty(κ) =

nt
∑

i=1

dbiκ
i

positive t′ > 0, making the time t univocally determined 
by κ.

The time derivatives of the trajectory can be computed 
as follows: 

The trajectory derivatives with respect to the virtual time 
are computed as follows: 

 From the accelerations (see Eq. (9e)) the forces required to 
follow the trajectory can be obtained using Eq. (1).

The trajectory must comply with the initial x(0) and 
desired final states x(tf ) as well as with a final acceleration 
ẍ(tf ), ÿ(tf ). These initial and final conditions are used to set 
the first five trajectory coefficients (ai and bi with i ≤ 4). 
The polynomial order needs to be larger than or equal to 
four nx,y ≥ 4 to have any remaining coefficients left for the 
optimization, or to ensure that the resultant trajectory meets 
the constraints. 

 In general, for a docking scenario, the final acceleration 
is set to zero: ẍ(tf ) = ÿ(tf ) = 0, and the final velocity may 
be also set to zero or to a certain small terminal value to 
ensure a successful latching.

The coefficients available to minimize the cost function 
while meeting constraints are the trajectory coefficients ai 
and bi with i ≥ 5, the virtual time coefficients di, with i ≥ 1, 

(8)t′ =
dt

dκ
=

nt
∑

i=1

idiκ
i−1 > 0

(9a)t′′(κ) =
d2t

dκ
=

nt
∑

i=2

i(i − 1)diκ
i−2

(9b)ẋ =
dx

dt

dκ

dκ
=

x′

t′

(9c)x′ = t′ẋ

(9d)ẍ =
dẋ

dt

dκ

dκ
=

d(x′/t′)

dκ

1

t′
=

x′′

t′2
−

x′

t′3
t′′ =

x′′

t′2
−

ẋ

t′2
t′′

(9e)x′′ = t′2ẍ + t′′ẋ

(10a)x′ =

nx
∑

i=1

iaiκ
i−1

(10b)x′′ =

nx
∑

i=2

i(i − 1)aiκ
i−2

(11a)x(0) = x0

(11b)x(tf ) = xf
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and the final virtual time κf . It has to be noted that if differ-
ent time polynomials are used for the different components 
then the db1 is set so that tx(κf ) = ty(κf ) is met.

With respect to the constraints, it is imposed that the 
final time t(κf ) shall be less than a maximum user defined 
time tmax.

Additionally, the time shall be monotonically increasing 
with κ (see Eq. (8)). This last constraint has been enforced 
by imposing a lower bound on the di coefficient as di > 0 . 
This stricter constraint simplifies the optimization but, as 
it is over-constraining, potentially reduces the solution’s 
optimality.

The cost function of the optimization problem is then 
selected as the L1-norm of the control input (see Eq. (13a)). 
The complete IDVD optimization problem is formulated as 
follows: 

 As in the LQ-MPC formulation, the force that the FSS can 
produce is limited, imposing the constraint in Eqs.  (13f), 
(13g). The entry cone constraint is included in Eqs. (13h), 
(13i) in an equivalent manner as the one introduced in the 
LQ-MPC formulation. Finally, the scenario’s keep-out zone 
is directly added as a nonlinear and nonconvex constraint in 
Eq. (13j).

The IDVD problem, as implemented here, is inherently 
nonlinear and nonconvex. The open-source nonlinear pro-
gramming Interior Point OPTimizer (IPOPT) [13] solver is 
used to find the solution to the IDVD problem at each time 
step. In this case the solution, if found, can only be guaran-
teed to be the locally optimal.

(12)t(κf ) < tmax

(13a)Minimize J =

∫ tf

t0

||u||1dt

(13b)Subject to Px = Ax + Bu

(13c)di > 0 for i = 1, . . . , nt

(13d)t(κf ) < tmax

(13e)tx(κf ) = ty(κf )

(13f)|u1(t)| ≤ umax

(13g)|u2(t)| ≤ umax

(13h)n̂c1 · r(t) ≥ n̂c1 · pdock

(13i)n̂c2 · r(t) ≤ n̂c2 · pdock

(13j)||r(t)− robs| |2 ≥ Robs

It is also worth noting that the constraints are only 
imposed on a finite number of points S along the trajec-
tory. These points are equally spaced along the virtual 
time κ.

In an equivalent manner as in the LQ-MPC approach, 
the IDVD approach is implemented as a feedback con-
troller, thus obtaining an inherent degree of robustness 
to uncertainty. The IDVD problem is resolved at regu-
lar intervals Ts, with the current solution being used to 
extract the current control input.

The IPOPT optimization routine is wrapped as a Sim-
ulink S-function suitable for automatic code generation. 
The resulting C code is compiled for the target hardware 
and executed in the real-time operating system on board 
the FSS.

4 � Simulation and experimental results

A numerical simulator that recreates the FSS dynamics 
and simulates the different onboard sensors and actuators 
is first used to design, validate, and tune the controllers. 
The two different controllers were initially independently 
and manually tuned to achieve acceptable results. This 
independent tuning resulted in different maneuver dura-
tions for the two controllers. To obtain a fairer control 
effort comparison, the controllers were then re-tuned to 
achieve a similar maneuver duration than the other con-
troller with their respective initial tuning.

Table 2 shows the initial parameters used for the LQ-
MPC algorithm to run both the simulated and experimen-
tal cases, where P̄ ∈ R

4×4 is the solution to the Algebraic 
Riccati equation for the discrete LQR problem. Table  3 
shows the parameters used after re-tuning the control-
ler to achieve a similar docking time as the initial IDVD 
case. Figure 3 shows the simulated and experimental tra-
jectories, with the initial tuning. In the trajectory figures, 
the solid black circles located along the trajectory repre-
sent the control effort expended during the last 5 s, thus 
visually indicating the distribution of the control effort 
along the trajectory. As these black circles are evenly 

Table 2   LQ-MPC parameters (initial tuning)

Parameter Value

Q diag(102 102 105 105)

R diag(103 103)

P 100P̄

Maximum force Fmax = 0.15 N

Sample time Ts = 5 s

Horizon length N = 20

Maximum number of iterations n = 100
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spaced in time, they also visually indicate the velocity at 
which the FSS traversed the trajectory.

Table  4 shows the initial parameters used for the 
IDVD controller. Table 5 shows the parameters after re-
tuning the controller to achieve similar docking time as 
the initial LQ-MPC case. Figure  4 shows the simulated 
and experimental trajectories, with the initial tuning. As 
the polynomials orders have been set to nx = ny = 5 and 
nt = 2, the total number of coefficients that remain avail-
able for the maneuver optimization is 6 (a5, b5, da1, da2 , 
db2 and κf )—as 8 of them (ai and bi with i ≤ 4) are used 
to set the initial and final conditions, and db1 is used to 
impose tx(κf ) = ty(κf ).

As the IDVD approach has a tendency to hug the con-
straints, it was observed that small cone constraint violations 
could occur on the external edge of the cone. These viola-
tions, only occurring during the experiments and not in the 
simulations, are attributed to noise on the actuated control, 
which briefly displaces the FSS into a region where the cone 

constraints are violated. To alleviate the concern of not meeting 
the problem’s cone constraint as defined in Table 1, the cone 
range is extended in the IDVD formulation so that the original 
constraint is always met. Moreover, since the cone constraints 
are enforced on states, this issue could also be addressed by 
adding auxiliary slack variables in the cone constraints [7].

Figure  5 shows the simulated and experimental trajec-
tories obtained with the re-tuned LQ-MPC controller. Fig-
ure  6 shows the simulated and experimental trajectories 
obtained with the re-tuned IDVD controller.

Finally, Table 6 provides the performance metrics for 
the LQ-MPC and IDVD controllers when executed on the 
simulator. Table  7 provides the performance metrics for 
the experiment campaign. The control effort, uT, measur-
ing the efficiency of the guidance and control approach, 
is defined as follows:

An L1-norm has been selected for the control effort uT as 
its output is given in N s, providing results that are intui-
tive and that can be easily converted into other meaning-
ful quantities (e.g., quantity of expelled propellant or 
thrusters on-time).

5 � Discussion

The results presented in the previous section clearly show 
that both algorithms successfully reach the final docking 

(14)uT =

∫ tf

t0

||u||1dt

Table 3   LQ-MPC parameters (re-tuned)

Parameter Value

Q diag(102 102 105 105)

R diag(103 103)

P P̄

Maximum force Fmax = 0.075 N

Sample time Ts = 5 s

Horizon length N = 20

Maximum number of iterations n = 100
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condition while meeting the imposed constraints. It is 
also worth mentioning that the numerical simulation and 
the experimental results are quite similar (thus validating 
the simulator).

The slight differences between the numerical simula-
tions and the experiments are to be expected, given that 

the physical attributes of the test bed cannot be fully rec-
reated in the numerical simulation environment. Thruster 
misalignment and thruster level uncertainties account for 
most of the differences [4]. An additional source of varia-
bility is the navigation. Although the navigation problem 
has been considered solved, the VICON motion capture 
system only provides position and attitude information. 
A discrete-time Kalman filter is used to obtain the veloc-
ity estimates, which, in the case of the angular rate, are 
augmented by an onboard FOG [4]. Therefore, in the 
experimental cases, the position and the velocities suf-
fer from a certain amount of noise which does inevitably 
affect the controller’s behavior. Both controllers are able 
to successfully dock despite these navigation noise and 
actuation uncertainties, indicating that both controllers 
are somewhat capable of rejecting the navigation noise 
and are robust with respect to actuation uncertainty.

It is also worth pointing out that the simulation results 
for the IDVD algorithm are smoother, in terms of thrust, 
when compared to their experiment counterparts. In the 
IDVD approach, the resulting trajectory tends to get close 
to the constraint boundaries. Small uncertainties in the state 
estimation and thruster uncertainties can place the FSS in 
a trajectory that may violate these constraints in the imme-
diate future. The IDVD controller attempts to immediately 
correct this situation, resulting in short-lived aggressive 
thrusting. This phenomena accounts for the unexpected 
peaks of thruster actuation levels during the experimental 
trajectories (specially clear in Fig. 4b).

When the IDVD polynomial order increases, the IDVD 
tends to converge to the true optimal solution, which, given 

Table 4   IDVD parameters (initial tuning)

Parameter Value

Maximum time tmax = 150 s

Polynomial orders nx = ny = 5, nt = 2

Entry cone range RIDVDcone = 0.75 m

Maximum force Fmax = 0.075 N

Sample time Ts = 0.2 s

Maximum IPOPT iterations n = 15

Constraints discrete points S = 100

Table 5   IDVD parameters (re-tuned)

Parameter Value

Maximum time tmax = 100 s

Polynomial orders nx = ny = 5, nt = 2

Entry cone range RIDVDcone = 0.75 m

Maximum force Fmax = 0.15 N

Sample time Ts = 0.2 s

Maximum IPOPT iterations n = 15

Constraints discrete points S = 100
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Table 6   Comparison of simulation performance metrics for LQ-
MPC and IDVD

Metric (simulation) Initial tuning Re-tuned

LQ-MPC IDVD LQ-MPC IDVD

Control effort (N s) 5.3 2.4 5.0 6.0

Time (s) 102.8 148.0 142.8 90.2

Constraint violation No No No No

Table 7   Comparison of experiment performance metrics for LQ-
MPC and IDVD

Metric (experiment) Initial tuning Re-tuned

LQ-MPC IDVD LQ-MPC IDVD

Control effort (N s) 4.5 2.7 4.1 4.3

Time (s) 98.8 146.1 134.0 88.0

Constraint violation No No No No
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its cost function, resembles a propellant-optimal bang-off-
bang type solution. Although the polynomial order does not 
change during the experiments, the IDVD enjoys increasing 
optimization freedom as the trajectory gets traversed. Less 
distance remaining with respect to the target state allows a 
more flexibile trajectory generation. Therefore, the IDVD 
solution progressively evolves and converges to a bang-
off-bang type solution. On the last part of the maneuver, 
this results in a tendency to only decelerate when the FSS 
gets close to its target end state, i.e., eventually becoming 
an impulsive deceleration. This can be clearly seen on the 
simulation results (see Fig. 4) where the solid black circles 
are larger toward the end of the trajectory, signaling this 
aggressive deceleration.

This late aggressive deceleration, although efficient in 
terms of propellant usage, may actually be an undesirable 
effect, as safety and operational constraints may limit the 
velocity at which the chaser approaches the target, or limit 
the amount of thrusting allowed in the immediate vicin-
ity of the target. To limit this aggressive deceleration, the 
force constraint on the IDVD controller has been artifi-
cially reduced, thus forcing a longer and milder decelera-
tion period. For the initial tuning, the maximum available 
force has been lowered to a quarter of the actual achievable 
level by the FSS. This artificial limitation may reduce the 
ability of the FSS to overcome disturbances and reduce the 
set of feasible solutions. On the re-tuned case, the maxi-
mum force is lowered to only a half of its maximum value, 
as a shorter maneuver duration trajectory demands higher 
actuation levels. By adding an upper velocity constraint, 
a similar result could also be obtained (at the expense of 
increasing the number of constraints and the computational 
burden). This effect can be traced back to the IDVD cost 
function in Eq. (13a). By changing the cost function, a dif-
ferent type of behavior could be obtained [11]. To obtain a 
more equitable comparison, the LQ-MPC maximum force 
is also reduced, matching the values used in the IDVD 
approach.

In contrast, the LQ-MPC controller is more aggressive 
at the beginning of the maneuver, as can be seen in Figs. 3 
and 5. This behavior is consistent with the notion that the 
LQ-MPC exhibits a “regulator type” of behavior. Under an 
LQ-MPC, the FSS strongly accelerates at the beginning of 
the maneuver, slowly reducing its velocity as it approaches 
the target, and exhibiting a reduced thruster activity toward 
the end of the docking maneuver.

When comparing the two algorithms from the results in 
Table 7, a few conclusions can be drawn. The IDVD algo-
rithm provides a more propellant-efficient maneuver, with a 
lower control effort. This result is expected since the IDVD 
approach solves the full nonlinear optimization problem 
without approximating the obstacle keep-out zone. The 
LQ-MPC only considers a part of the trajectory (receding 

horizon) and approximates the nonlinear constraint through 
the rotating hyperplane method  [7, 37]. The linearization 
of the keep-out zone tends to overconstrain the problem, 
leading to a less optimal solution. Additionally, the LQ-
MPC cost function includes both state and control terms, 
whereas IDVD minimizes the control effort directly. This is 
illustrated by the fact that the LQ-MPC method minimizes 
both state error and control effort via the Q and R matrices, 
respectively.

An interesting difference between the LQ-MPC and the 
IDVD approach is that the IDVD approach includes an 
explicit maximum docking time constraint, with the opti-
mal solution usually taking all the allowed time. In dock-
ing maneuvers it may be desired to explicitly bound the 
maneuver duration, as communication with ground assets 
and/or favorable illumination conditions may be time criti-
cal. The duration of the LQ-MPC maneuver is governed 
by the selection of the weight matrices and thus the final 
time is a matter of tuning. For example, by increasing the R 
weighting values, the resulting LQ-MPC trajectory would 
take longer, and also potentially use less control effort.

The IDVD and LQ-MPC controllers were initially tuned 
independently, resulting in two different maneuver dura-
tions. To allow a fairer comparison of control effort, the 
controllers were re-tuned to achieve a similar maneuver 
time. When the LQ-MPC controller was re-tuned to achieve 
a longer docking time, the hyperplane rotation rate was not 
adjusted. Therefore, the resulting trajectory did not get as 
close to the keep-out zone as the initial trajectory. If the 
rotation rate of the hyperplane was tuned for this case, the 
performance of the LQ-MPC could be further improved.

The computational cost of the MPC and IDVD 
approaches has not been directly measured and a direct 
quantitative comparison on this quantity cannot be made 
at this time. Despite this limitation, the results of a similar 
experimental campaign  [10] offer some rough-order-of-
magnitude data for the LQ-MPC approach. In that study, 
the authors used an LQ-MPC approach to perform docking 
maneuvers in the presence of two obstacles on the POSEI-
DYN test bed. In that case, the average computation time 
to solve the QP problem arising from the LQ-MPC formu-
lation is around 0.3  s, and a maximum computation time 
of 2.85  s is observed, when the maximum 170 iterations 
on the QP solver are reached. In the case presented in this 
paper, the iteration limit is set to 100. This limit is only 
reached when the FSS finds itself within a region of local 
infeasibility. However, in these cases, the resulting LQ-
MPC control input directs the FSS toward the feasibility 
region and thus the penalty of reaching this condition is 
rather mild.

The NLP problem resulting from the IDVD approach 
has no guaranteed convergence and thus more precautions 
are required. Due to the highly nonlinear behavior of the 
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polynomials on the IDVD approach, a failure to converge 
to a feasible solution can produce a completely erroneous 
control input. To help the FSS to recover from these condi-
tions, the IDVD algorithm is executed at a fast 5 Hz rate, 
setting a 15 iteration limit on the IPOPT solver. This low 
iteration limit can cause some cases to not reach conver-
gence, while still providing a feasible solution. During the 
experiments, this iteration limit was frequently reached 
when the FSS found itself close to an infeasible region 
(e.g., close to a constraint boundary). The fast 5 Hz solu-
tion rate guarantees that the actuation of non-converged 
but feasible solutions or the gaps due to non-converged and 
infeasible solutions are brief (i.e., max. 0.2  s). Using the 
IPOPT warm start capabilities, convergence was usually 
achieved under ten iterations. It is also worth mentioning 
that executing the IDVD at a fast rate also helps the algo-
rithm to consistently provide converged solutions. This 
behavior may be counterintuitive, but the IPOPT solver can 
greatly benefit from an initial guess that is very close to the 
actual solution. If that is the case, the optimization problem 
can be solved in a few iterations (thus in a short amount of 
time) and the risk of not finding a feasible solutions dimin-
ishes. If the IDVD is resolved at a fast rate, subsequent 
IDVD solutions are close to each other and thus the previ-
ous solution can be effectively used as the initial guess.

Although the IDVD approach results in an NLP prob-
lem, this one can be solved relatively fast. This is due to 
the relatively small dimension of the problem, which, in 
this case, only includes six optimization parameters (a5, b5, 
da1 , da2, db2 and κf ). The fast 5 Hz re-solving rate of IDVD 
contrasts with the Ts = 5 s re-solving period of the LQ-
MPC approach. Due to this difference, and given that the 
LQ-MPC approach is, on average, solved in approximately 
0.3 s, with the prediction horizon length set as 20 [10], the 
computational load of the IDVD approach is significantly 
larger than the computational load of the LQ-MPC.

6 � Conclusions

A linear–quadratic model predictive control (LQ-MPC) and 
an inverse dynamics in the virtual domain (IDVD) guid-
ance approach have been experimentally evaluated on a 
planar air-bearing test bed for a multi-constrained docking 
maneuver. Both approaches achieved a successful docking 
with no constraint violation. The IDVD approach exhib-
ited a smaller control effort as it considers the full-length 
maneuver and does not linearize the constraints. The draw-
back associated with IDVD approach is the resulting non-
linear programming problem, which is highly nonlinear, 
without any guarantee of convergence, and computationally 
expensive to solve. The LQ-MPC approach seems to gener-
ate more expensive maneuvers, but its resulting quadratic 

programming problem has deterministic convergence prop-
erties. The research presented in this paper illustrates the 
trade-offs that must be considered between optimality and 
computational complexity.
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