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Abstract The objective of this work is to develop a new

structural health monitoring system for composite aerospace

structures based on dynamic response strain measurements

and experimental modal analysis techniques. Fiber Bragg

grating (FBG) optical sensors were used for monitoring the

dynamic response of the composite structure. The structural

dynamic behavior has been numerically simulated and

experimentally verified by means of vibration testing. The

hypothesis of all vibration tests was that actual damage in

composites reduces their stiffness and produces an eigen-

frequency shifting to lower values in the same sense as mass

increase produces. Thus, damage was simulated by slightly

varying locally the mass of the structure at different zones.

The correlation between the simulated damage and the loss

of stiffness was analytically defined. Experimental modal

analysis based on the strain responses was conducted and the

extracted strain mode shapes were the input for the damage

detection expert system. A feed-forward back propagation

neural network was the core of the damage detection system.

The features-input to the neural network consisted of the

strain mode shapes, extracted from the experimental modal

analysis. Dedicated training and validation activities were

carried out based on the experimental results. The system

showed high reliability, confirmed by the ability of the

neural network to recognize the size and the position of

damage on the structure. The experiments were performed

on a real structure i.e. a lightweight antenna sub-reflector,

manufactured and tested at EADS CASA ESPACIO. An

integrated FBG sensor network, based on the advantage of

multiplexing, was mounted on the structure with optimum

topology. Numerical simulation was used as a support tool at

all the steps of the work. Potential applications for the pro-

posed system are during ground qualification extensive tests

of space structures and during the mission as modal analysis

tool on board, being able via the FBG responses to identify a

potential failure.

Keywords Fiber Bragg gratings � Experimental

modal analysis � Composite aerospace structure �
Damage detection

1 Introduction

Needs for structural health monitoring (SHM) in the

aerospace industry are rapidly increasing due to demands

to improve safety, reduce cost and inspection time while

maintaining structural integrity and reliability. The per-

formance of a spacecraft can be degraded by various fac-

tors. It is essential to have direct measurements (i.e. strain

mapping, shape determination etc.), which will enable
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during tests and on orbit the health monitoring of the

structure [1]. Fiber optic sensors are considered for

potential space applications due to many advantages, i.e.

lightweight, immune to electromagnetic interference, effi-

cient multiplexing for high sensor capacity, can be

embedded into structures etc. [2]. In recent works, fiber

Bragg gratings (FBGs) have been utilized for modal anal-

ysis and damage detection. Paolozzi and Gasbarri [3] used

fiber optic sensors for the dynamic analysis of a composite

wing beam. In [4] Wu et al. demonstrated the feasibility of

detecting simulated damage on an aluminium plate and

debond damage on composite plates using FBGs. Huang

et.al. [5] presented a damage detection system of a carbon

fiber composite ð-joint structure under bending loads using

FBGs. Recently, a flight test plan on a transport military

aircraft was the verification of the applicability of the fiber

optic Bragg grating system for airworthiness purpose [6].

The verification method was based on the comparison with

the responses of conventional strain gauges technology,

already used and qualified. Finally, EADS Airbus used

FBGs mounted on the surface of a composite wing struc-

ture to monitor strain during loading and with change of

temperature [7]. In [8] Sekine et al. studied the identifica-

tion of the locations and shapes of fatigue crack in aircraft

panels repaired with bonded patches using FBG sensors.

The identification has been implemented by minimizing the

difference between the detected and the calculated reflec-

tion spectrum of the optical sensors.

The data obtained from dynamic testing and frequency

response of structures need further processing and are not

always easy to interpret and handle. The issue of structural

damage detection and evaluation has very recently begun to

be regarded also as a pattern recognition problem. The

separation and clustering of the data corresponding to their

damage state and/or location has utilized artificial neural

network (ANN) techniques with relative success in the

majority of the works [9, 10]. Alternative pattern recogni-

tion technique is support vector machines (SVMs), intro-

duced by Vapnik [11]. This method is utilized to organize a

number of observations with respect to their corresponding

labels. In general, ANNs offer solutions to three different

problems: auto-association (reconstruction of a signal from

noisy or incomplete data), regression/hetero-association

(input–output mapping, i.e. for a given input produce an

output characteristic) and classification (assign input data to

given classes). Auto-association and regression are often

associated with modeling application. The high levels of

damage identification are based on the classification func-

tion of the ANN [12]. In future study, the comparative

results between SVMs and ANN will be presented.

The basic idea is to train a neural network to recognize

the behavior of the undamaged structure as well as its

behavior under various damage states. When the trained

network receives any data from the dynamic response of

the structure it should be able to associate it to a specific

damage (or non-damage) state.

In previous study, the damage detection system was

developed based on statistical features in the time domain,

frequency domain and in the combined time–frequency

domain via the wavelet transform [13, 14]. In this study,

experimental modal analysis based on the strain responses is

conducted and the strain mode shapes are extracted. Strain

frequency response function data were acquired from the

FBGs, which were used for the experimental modal analysis.

The strain mode shapes comprise the new features-input to the

neural network scheme. Comparison between the efficiency

of the two methods is implemented at the end of the paper.

The analysis was conducted for an antenna sub-reflector,

manufactured and tested in EADS CASA ESPACIO.

Damage was simulated by slightly varying locally the mass

of the structure at different zones. The sub-reflector is

equipped with forty strain FBG sensors for the strain

mapping and one accelerometer as reference sensor. Com-

parison between the strain mode shapes based on analytical

and experimental results is also implemented via modal

assurance criterion (MAC) calculation [15]. The MAC is

also calculated for the comparison of the strain mode shapes

between the undamaged state and several damage states.

Finally, the correlation between the simulated damage and

the loss of stiffness was analytically defined. To this

direction, an inverse approach was followed, i.e. instead of

adding a known mass and calculate the shift of natural

frequencies, the element properties (of the same area on the

structure) were degraded to define at the end the reduced

stiffness matrix, which causes the same frequency shift.

Potential applications for the proposed system based on

experimental strain modal analysis are initially during

ground qualification extensive tests of space structures and

later during the mission as modal analysis tool on board.

This approach will allow the correlation between the

measured ground tests results of aerospace structural

components and their actual performance, durability and

health in space. The final objective is to use this experi-

mental modal analysis tool on board, being able via the

FBG responses to detect and localize a potential failure.

2 Methodology for experimental modal analysis

The frequency response function (FRF) is defined as the

ratio of the response of a system x (X) (displacement,

velocity or acceleration) to its excitation force F (X) [16].

The FRF is given by:

HðxÞ ¼ xðxÞ
FðxÞ ¼

XN

i¼1

wi

1

x2
i � X2 þ i2fixi

wT
i

mi

ð1Þ
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Thus, the FRF for the kth node (degree of freedom) with a

single excitation force at jth DOF can be computed by

Eq. 2. Frequency Response analysis computes structural

response to steady-state oscillatory excitation.

HkðXÞ ¼
XN

i¼1

wikwij

miðx2
i � X2 þ i2fixiÞ

ð2Þ

where

xi ¼
ffiffiffiffiffi
ki

mi

r
ð3Þ

W modal matrix, mi modal mass, xi eigenfrequencies, X
driving frequency, fi modal damping ratio, ki modal stiffness.

Analytical calculation of the frequency response func-

tion was implemented. Excitation in this analysis is

explicitly defined in the frequency domain and the results

include grid point displacements, grid point accelerations

and element strains, which can be directly plotted as a

function of frequency. In that way, the strain frequency

response functions (SFRF) are calculated [17]. The signal

applied to the exciter is a sinusoid sweep with fixed

amplitude. Nodes of the three interface points were con-

nected to a point below the plate using rigid body elements,

where the force and constraints are applied (Fig. 1). A

large concentrated mass of 108 times the sub-reflector mass

was attached to the node, constrained in all rotational

degrees of freedom and in two translation directions (only

translation in Z direction is not fixed, since refers to the

direction of force generated by the shaker).

Experimentally, all strain responses, obtained from fiber

Bragg grating measurements, were imported to structural

dynamics toolbox (SDT, [18]) for experimental modal

analysis. A wire frame model of the test structure is gen-

erated to visualize (view and animate) the test shapes. The

wire frame model maps the geometry of the test structure

and encompasses all test node locations. Sensor positions

are defined at node locations as well as boundary condi-

tions. The nodes correspond to all the locations where the

strain optical sensor is positioned along with a number of

additional nodes which aid visualization. The wireframe

lines are not required but improve greatly the visualization

and interpretation of the animated modes. All nodes are

declared and a DOF vector is defined, which allows the

description of translation DOFs in global directions.

After all measurements were imported to SDT, the

SFRFs of the sensors are generated. Next step is the

experimental modal identification, which is the process of

estimating a parametric model (poles and mode-shapes)

that accurately represents measured data. There are several

methods to extract this data. In SDT, the preferred method,

is the gradual building of the model using sequential peak

pickings, followed by refinement (other methods include

the stochastic subspace identification and the polyreference

LSCE [19]). The peak picking method is widely used and

the main advantage is the fast computational time. The

main algorithm proposed in SDT is a frequency domain

output error method that builds a model in the pole-residue

form through a tuning strategy [18]. Poles are identified

and consequently the strain mode shapes.

The main steps pursued were the following: finding ini-

tial pole estimates, estimating residues and residual terms

for a given set of poles and optimizing poles (and residues)

of the current model. After identification procedure, the

visualization of the mode shapes has been implemented.

The deformations were linked with the wire frame model to

produce the animated plots for all damage states.

2.1 Test article, sensor location and experimental

procedure

The item under test is a composite honeycomb antenna

sub-reflector. The diameter equals to 0.9 m, the thickness is

16.62 mm and the total mass is equal to 1.5 kg. The

thickness of the CFRP top and bottom face is 0.31 mm.

The sub-reflector is equipped with three blades that sup-

ports the dish (two fasteners per blade). Figure 2a presents

a schematic overview of the test article. Figure 2b shows

the antenna sub-reflector with the FBGs mounted on it.

As mentioned above, a FE model of the structure has

been developed to simulate the dynamic behaviur of the

structure (Fig. 1). The honeycomb plate has been modelled

in MSC/Patran and the analysis was performed with MSC/

NASTRAN finite element analysis software.

To find the optimized sensor placement, since FBGs

measure strain components, the strains of various elements

Rigid Body Element (RBE2) between 
excitation node and the interface nodes 

Sine sweep of constant amplitude,   
1g acceleration input 

Fig. 1 Application of sine

sweep at the excitation node of

the antenna sub-reflector
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were calculated. A cylindrical coordinate system was cre-

ated at the central node of the sub-reflector to extract the

strain in tangential and circumferential direction. In addi-

tion, at each of the interface points a local coordinate system

is defined with the Z-axis (out of plane) parallel to the

reference Z-axis and with the X-axis in the radial (tangen-

tial) direction. The strain of Ply 1 (where the sensors were

mounted) was extracted in both directions in the selected

nodes for the first four modes (modes in FEM selected

based on effective mass calculations). Based on the finite

element analysis results, in the majority of the eigenmodes,

the strain has higher values in the tangential/radial direc-

tion. For that reason, more strain sensors have to be

mounted in this direction and less in the circumferential.

Based on the maximum strain field for the first four

modes in selected elements, the sensor topology, orienta-

tion and number were defined. The optimum sensor

topology, which includes 40 FBGs, is presented in Fig. 3.

In total, 32 FBGs are placed in the tangential direction and

8 FBGs in the circumferential (Fig. 3).

The sub-reflector was mounted on a 489 N electrody-

namic shaker (Ling V450) via the three blades (Fig. 3).

The vibrator has been employed to excite the structure

(Z-axis—out of plane—Fig. 4) with sine sweep excitation

in the frequency range of interest (20–500 Hz) at 1 g level

(2 octaves/min). Tests at 0.5 g, were also conducted often

to verify the experimental setup. Initially, series of tests on

the undamaged structure took place and the agreement

between the fiber Bragg gratings results and those of the

accelerometer was verified. The same results were obtained

with the same test configuration at 1 g level with 1 octave/

min. As a second step, the sub-reflector was ‘divided’ into

four equal areas, on which minimum detectable lumped

masses were attached to simulate damage. Initially a

Fig. 2 a Schematic overview of the test article. b Antenna sub-reflector with FBGs surface mounted

Fig. 3 Sensor topology on the

antenna sub-reflector
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mass-1 = 27 g, (after calculations in FEM) was added

(Fig. 4). Series of experiments with the minimum mass

(mass-1) were conducted. Experiments with a second

lumped mass equal to 49 g (mass-2) also took place. For

each ‘damage state’, 30 repetitions were made at 1 g

vibration amplitude level. A large data set of recorded

strain responses from the FBG sensors was obtained for

each damage state and damage location. As a next step,

real damage was introduced to the structure by removing

one fastener at the interface between the antenna sub-

reflector and the shaker at two different locations (Fig. 4a,

b). All damage cases are summarized in Table 1.

Taking into account the Nyquist–Shannon sampling

theorem, it was concluded that the scanning rate of 1 kHz

of the interrogation unit was suitable for conducting the

experiments and measuring the dynamic response with

FBGs for the first 4 modes. The 1 kHz high speed optical

sensing interrogation unit (SM 130 Micron Optics�, 2

channels) was used during these experiments to provide the

sensors with optical power as well as to receive the FBG

responses [20]. The FBGs were able to measure the

dynamic response up to approximately 400 Hz.

For the calculation of the SFRFs of the system, the input

is obtained from the pilot accelerometer (mounted on the

shaker interface plate). The output is based on the FBGs,

which were located closer to the interface (high strain

values). In total, the responses from 26 FBGs were taken

into account for the experimental modal analysis.

3 Methodology for test/analysis correlation: MAC

calculation

Correlation criteria are used to analyse the similarity and

differences between two sets of results, which are test and

analysis results in the current case. Ideally these criteria

should quantify the ability of the two models to make the

same predictions. The correlation between the experimen-

tal and analytical results is evaluated via MAC calculation,

by comparing the mode shapes (strain mode shapes) of the

two models. The MAC works independently from the

individual scaling of measured and analytical mode shape

vectors. Nevertheless, care should be taken such that the

number of sensors allows to adequately represent the mode

shapes in the entire frequency range of interest [21].

Based on the experimental strain modal analysis, which

is described in the previous paragraph the SFRFs are cal-

culated for a certain number of nodes/sensor locations. The

experimental FRFs are formed based on the optical sensor

responses as output and on the pilot accelerometer as input.

Next step is the topology correlation, where test and

model geometrical and sensor configurations are correlated

(also the coordinate system update for the test nodes if there

is a coordinate system mismatch is also included). In the

finite element analysis, initially the ply strain is calculated

for all nodes. The strain is calculated always in the direction

of the optical fiber sensor to have comparable results. To

implement the sensor/node matching, the ply strains of the

nodes where the sensors are located are selected and the

SFRFs are extracted based on these selected locations.

The FEM results are then imported automatically in

structural dynamics toolbox and the modal assurance cri-

terion is calculated evaluating the quantitative similarity

between the two models.

The methodology described above is summarized in

Fig. 5. Modal assurance criterion is also calculated

between the strain mode shapes of the undamaged structure

and the strain mode shapes of the structure with the dif-

ferent states of damage.

Fig. 4 Antenna sub-reflector—damage areas (1–4) and shaker

interface points (A-B-C)

Table 1 Damage cases

Damage case Size (g) Location

1 Pristine state – –

2 Added mass 27 1

3 Added mass 27 2

4 Added mass 27 3

5 Added mass 27 4

6 Added mass 49 1

7 Added mass 49 2

8 Added mass 49 3

9 Added mass 49 4

10 Remove bolt – A

11 Remove bolt – B

Experimental modal analysis 61
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4 Modal analysis for antenna sub-reflector

4.1 Experimental strain mode shapes extraction

Experimental modal analysis is performed for the antenna

sub-reflector. Main target is to extract the strain mode

shapes and to create strain mapping of the structure by

overcoming the problem of spatial aliasing. The responses

from the FBGs were taken into account for the experi-

mental modal analysis.

A wire frame model of the test structure was generated to

visualize the test shapes (Fig. 6). For the calculation of the

SFRFs of the system the input was obtained from the pilot

accelerometer, which was mounted on the interface plate

between the antenna and the shaker (Fig. 7). After all

measurements were imported, the SFRFs of the sensors were

generated (Fig. 8). The modal model was constructed using

these SFRFs. Next step was the experimental modal iden-

tification that accurately represents measured data. Poles

were identified and consequently the strain mode shapes.

After identification procedure, the visualization of the

mode shapes has been implemented. The deformations

were linked with the wire frame model to produce the

animated plots [22]. The experimental strain mode shapes

as well as the analytical strain mode shapes for the first four

modes are illustrated in Fig. 9.

4.2 Modal assurance criterion/FEM–Test: experiments

Table 2 reports a comparison between the target modes

(calculated in FEM) and the modes derived experimentally.

In FEM calculations, the modes were selected based on

their effective mass. The table illustrates that all the cor-

related modes in the finite element model (fq) have natural

frequencies whose values do not diverge by more than

1.5 % from the corresponding experimentally derived

values (fr). The modal frequency discrepancy ef is calcu-

lated by Eq. 4 [23] (Fig. 10). The mass of the sub-reflector

calculated in FEM differs by less than 5 % from the actual

mass (mFEM = 1.57 kg)

ef ¼
fr

fq
� 100 %: ð4Þ

The first step for the comparison of the two models was

to compare the geometry and to reduce the number of

nodes of the finite element model to match the experi-

mental model. The FEM has many more degrees of

Fig. 5 Methodology followed

for MAC calculation based on

experimental modal analysis

using FBGs
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freedom than the nodes of the test structure. To compare

the two models, a reduction in the FEM is necessary, where

all the nodes have to correspond with the measurement

points. This reduced representation or this test-analysis

model (TAM) enables a quantitative comparison of the

analytical model’s accuracy during post-test correlation.

Fig. 6 Wireframe model

combined with FEM

Fig. 7 Input (pilot)

accelerometer of the sub-

reflector

Fig. 8 Pole estimation and

optimization of the sub-reflector

in SDTools
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The location of the sensor points was chosen to be coin-

cident with the finite element grid points and the coordinate

system was the same as the finite element model to simplify

the modal correlation step. To calculate the strain tensor in

the FEM model, the strain of Ply 1 (where the sensors were

mounted) was extracted in the tangential/radial direction

(which is the direction of the optical fiber) in the selected

nodes. As mentioned in the methodology description, a

Fig. 9 Experimental and

analytical strain mode shapes

for the first four modes (no

damage)

Table 2 Experimental and analytical natural frequencies of the sub-

reflector

Fexperimental FFEM Df (Hz) ef (%)

Mode 1 96.78 98.2 1.42 1.4

Mode 2 141.3 140.65 0.65 0.3

Mode 3 179.5 178.18 1.32 0.7

Mode 4 300.1 298.83 1.27 0.4
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cylindrical coordinate system was created at the central node

of the sub-reflector to extract the strain in tangential/radial

direction. Table 3 reports the diagonal and off-diagonal term

values of the MAC calculation between the correlated

modes derived from FEM and the modes obtained experi-

mentally. The results, as shown, are in good agreement with

the analytical mode shapes (Figs. 11, 12, 13). In Table 3, it

is noticed that the MAC values between experimental mode

1 and analytical mode 3, as well as between experimental

mode 3 and analytical mode 1, are relatively high (MAC

*0.5). In Fig. 11, these modes are compared between the

experimental nodes and the selected nodes of the finite

element model, which correspond to the experimental

nodes. Based on these nodes, there is a similarity between

the strain behavior of the two models, in terms of strain

concentration at the interface points, which explains the

higher off-diagonal values for these two modes.

4.3 Modal assurance criterion/experimental damage

cases

The MAC is calculated for all damage states based on the

experimental results only to have a first indication of the

effect of the damage size for each experimental mode at the

various positions. The MAC is calculated between the

experimental ‘no damage’ state and the various damage

states. Part of the results is presented in Table 4.

As the lumped mass is attached to the structure, the

strain distribution of the mode is affected. The MAC

decreases gradually as the lumped mass increases since the

mode shapes are affected directly. In the majority of the

modes, the mode shapes are affected also according to

the mass location, and the change is more significant when

the lumped mass is positioned close to the areas where the

strain is maximum (at modes 1, 2, 4). It is also noticeable

that the third mode remains the same with the addition of

the various masses at the four positions (MAC = 0.99).

The third mode is the first bending mode along the Z-axis

(drum mode) and even though the natural frequency

decreases with the additional mass, the mode shape is not

affected (first mode with a circular nodal line). Figure 12

illustrates the second mode shape without damage and with

added mass-2 at position 4 (Fig. 3; Table 1 describe the

damage areas). The MAC is very low (MAC = 0.41) since

the strain mode shape has been affected importantly with

the mass addition. The strain nodal lines have been rotated

to almost 90�.

As mentioned above, Table 4 shows the MAC calcu-

lated based on the experimental model only between the

undamaged strain mode shape for each mode and the strain

mode shape after the mass addition. Based on the diagonal

terms, the MAC based on strain mode shapes can identify

the existence of the damage. It is expected that the MAC

decreases gradually with the increase of the added mass in

all modes, as described above for the second mode. Nev-

ertheless, Table 4 shows that in some modes, the MAC is

higher (between strain mode shapes without damage and

strain mode shapes with damage) when the bigger mass is

attached to the structure when compared to the smaller

mass. For example, the MAC value for the fourth mode

increases with the increase of mass.

The low sensor density on the structure in combination

with the symmetry of the fourth mode in the strain mode

shapes between the pristine model and the one with mass

two attached to it, is a potential reason why the MAC in the

experimental model between the undamaged state and the

damage state with the bigger lumped mass at position 2 is

higher (MAC = 0.45) when compared to the MAC

between undamaged state and the smaller lumped mass at

the same position. The strain mode shape is being triggered

by the mass addition resulting in the rotation of this mode

(as in mode 2, Fig. 12) and in low MAC result. By

increasing the number of strain sensors on the antenna sub-

reflector the problem of spatial aliasing could be overcome.

Nevertheless, the intent of this study is to build a damage

detection technique based on strain mode shapes as input

parameter for the ANN and not on the calculated MAC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4

e f
(%

)

Mode

Fig. 10 Lodal frequency discrepancy (%) between the measured

and analytical natural frequencies of the sub-reflector

Table 3 MAC between experimental and FEM strain modes of the

antenna sub-reflector

MAC FEM mode

1

FEM mode

2

FEM mode

3

FEM mode

4

EXP mode

1

0.82 0.007 0.54 0.14

EXP mode

2

0.01 0.70 0.19 0.13

EXP mode

3

0.47 0.05 0.90 0.11

EXP mode

4

0.04 0.11 0.16 0.75
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values. From the changes in MAC values, it was able to

detect the presence of damage, but not the location and

extent of damage (global indicator).

The MAC was also calculated based only on the finite

element model for the forth mode for both damage cases

based only on the nodes that correspond to the sensor

location. It was found that the MAC values between the

undamaged state and the damage state with the smaller

lumped mass at position 2 is equal to 0.33, while for the

bigger mass is equal to 0.44. Hence, this difference of the

MAC in this case can be validated also in FEM. At the end

of Table 4, the MAC between the undamaged state and the

states without bolts in the interfaces is calculated. Since the

boundary conditions have an important role in the dynamic

behavior of the structure, the important decrease of the

MAC values in all modes is an expected result.

5 ANN based on experimental modal analysis

Experimental modal analysis was conducted to generate the

ANN data. All the analyses are based on the FBG responses

on the antenna sub-reflector. Only the sensors with the

higher strain values (hence the higher signal-to-noise ratio)

were input for the ANN. More specifically the strain mode

shapes of the group of sensors close to the interface, where

the strain is higher, were finally kept as features. Data from

the same sensors were also the input for the training of the

neural network based on statistical features [24].

Hence, as a first step, the strain mode shapes derived

from 26 FBGs comprise the features extracted for the ANN

scheme. For each FBG, the first 4 modes were taken into

account for the calculations. Thirty repetitions were con-

ducted for each damage state. In total, for each damage

state, 104 variables (4 modes 9 26 FBGs) were calculated.

In total, nine damage scenarios (eight damage cases plus

the undamaged case) are generated to evaluate the ANN

performance (Table 5). As part of the pre-processing, the

strain values are normalized so that the maximum positive

amplitude is equal to one.

To compare the validity of the results, the normalized

strain for each experimental damage state is compared with

the analytical one. Figure 14 illustrates the normalized

strain value for the first mode of the same node/sensor for

nine damage states. The analytical model results match

well with the experimental results for the maximum and

minimum normalized strain values between the various

damage states. In both models, the maximum strain appears

Fig. 11 Experimental and analytical strain mode shapes (selected nodes) for the first and third mode (no damage)
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at damage state no. 8 (Table 1, mass-2 at position 3), while

the minimum strain is observed at the damage state no. 9

(Table 1, mass-2 at position 4). In addition, the strain has

the second higher value in the damage state no. 3 (Table 1,

mass-1 at position 2) in both models. In the other damage

states, the results, between FEM and FBG output in terms

of absolute normalized strain value are not in good

agreement, but this difference can be, in part, attributed to

small errors in the exact positioning of the FBGs and the

added mass when compared to the FEM nodes for the

strain extraction. Moreover, due to the concentration at the

interfaces in terms of strain at the first mode, it is difficult

to obtain very accurate results of strain distribution. Other

factor attributed to this difference is the quality of the

complete representation of the real mechanical testing

conditions in the FEM model. Nevertheless, by comparing

the natural frequencies of the two models, the difference is

less than 1.5 %.

After obtaining the strain mode shapes, the absolute

difference between the undamaged and damaged state is

determined

DðeiÞ ei;no damage

�� ��� ei;with damage

�� ��
i¼1:26

: ð5Þ

The absolute difference of the strain mode curves was

calculated for all modes and damage states. This feature

was also normalized by setting the largest value equal to

one. The maximum difference occurs at the nodes close to

the damage location for the majority of the nodes. This

difference also indicates that the normalized strain mode

shapes can be used as features for the ANN for the damage

localization.

A multi layer perceptron with Levenberg–Marquardt

(LM) back propagation algorithm is utilized to train the

ANN for the detection of the simulated damage [25]. The

back propagation neural network has got ten layers (i.e.

input layer, output layer and ten hidden layers). The input

layer neurons represent the first four relative strain mode

shapes between the damage states for all sensors. Each of

the nine simulated damage cases/positions corresponds to

30 observations. That is 270 observation vectors in total.

For each damage state 104 variables were calculated. The

number of features was reduced based on the sensor

responses that show significant difference between the

several damage states. Tables 5 and 6 summarize the input

for the ANN scheme.

The output layer neurons represent the damage size and

location. Each observation vector is assigned to a label.

The label should be of an appropriate form so that the ANN

will be capable of rendering some meaningful decision

boundaries. Table 7 summarizes the labels assigned to each

Fig. 12 Comparison between

the second strain mode at the

undamaged and damage state

with lumped mass no. 2 at

position 4, for the experimental

model (left) and FEM (right) of

the antenna sub-reflector
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damage scenario. Tangent sigmoid transfer function is

utilized for all layers [25]. All the steps for the damage

detection using ANN techniques based on experimental

modal analysis inputs are illustrated in Fig. 15.

As mentioned above, the optimization of ANN param-

eters took place through the LM algorithm. The drawback

of the algorithm is that it is prone to local minima. A

solution to this problem is the insertion of stochasticity to

the optimization procedure. Stochasticity is inserted at the

beginning of the algorithm, in the initialization of ANN

parameters. The initialization algorithm (Nguyen–Widrow)

chooses values to distribute the active region of each

Fig. 13 Experimental and

analytical strain mode shapes

(no damage, mass 1 at position

2, and mass 2 at position 2)
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neuron in the layer evenly across the layer’s input space

[26]. Due to this stochasticity, multiple training efforts of

the ANN model were necessary to obtain a trustworthy

efficiency measure. For the current work, the cross-vali-

dation testing method was implemented. Cross validation is

a simple method for testing classification or regression

models. It is especially handy when there are relatively few

observations corresponding to a particular decision class.

Cross validation involves a number of tests for a particular

model. This asset eliminates to a large extent the

stochasticity inserted by the initialization algorithm. Cross

validation was implemented as follows:

Data base comprises 9 simulated damage cases/posi-

tions, each corresponding to 30 observations. That is 270

observation vectors in total. Each group is split into three

smaller sets of ten observations. For each latter set, nine

observations are kept for training and one for testing

(leave-one-out test) the particular ANN scheme. Therefore,

for each damage case, 3 9 9 = 27 observations are kept

for training and 3 for testing the ANN scheme. In total, out

of 270 data vectors, 243 were kept for training of the ANN

and 27 were used for testing of the resulting network. More

than ten training–testing cycles take place, each with a

different training–testing group. The average ANN classi-

fication efficiency is 90 % (Table 8).

So far only the strain mode shapes were utilized as

inputs for the expert system. To test whether the classifi-

cation efficiency can be improved with the addition of

more features extracted from the experimental modal

analysis, also the normalized natural frequencies (fi,

i = 1:4) were used as features. The classification efficiency

improves to 91 % (Table 8).

6 Lumped mass: loss of stiffness correlation

The hypothesis of all vibration tests was that actual damage

in composites reduces their stiffness and produces the same

result as mass increase produces. In the experimental

approach followed, instead of inducing real damage,

damage was simulated with lumped masses, located at

specific regions of the structure.

This results in a shift in eigen-frequencies and the

corresponding amplitudes. In the finite element model,

the damage case of added mass is simulated as lumped

mass (CONM2), which is applied on the nodes of the

structure, where the real mass was located [27]. Based on

the lumped mass size, the frequency shift of each damage

case was calculated. As described above, the frequency

shift between the experimental natural frequencies with

the added mass and the analytical ones with lumped mass

at the same location is in very good agreement for all

modes. The correlation between the added mass and

stiffness has to be defined. An inverse approach is fol-

lowed: instead of adding a known mass and calculate the

shift of natural frequencies, the element properties (of the

same area on the structure) are degraded in to define at

the end the reduced stiffness matrix which causes the

same frequency shift. A mass increase leads to a reduc-

tion of frequency. Hence, it should be equivalent to a

difference in stiffness.

For the elements in the damaged zone, which are

located around the node where the lumped mass was

Table 4 MAC calculation between several damage states and

undamaged state (based only on experimental strain mode shapes)

Mass 1 Position 2

MAC EXP

mode 1

EXP

mode 2

EXP

mode 3

EXP

mode 4

No damage

EXP mode 1 0.94 0.02 0.41 0.36

EXP mode 2 0.02 0.99 0.02 0.01

EXP mode 3 0.57 0.03 0.99 0.82

EXP mode 4 0.10 0.03 0.20 0.13

Mass 2 position 2

No damage

EXP mode 1 0.91 0.03 0.40 0.05

EXP mode 2 0.04 0.84 0.03 0.05

EXP mode 3 0.51 0.20 0.99 0.08

EXP mode 4 0.06 0.09 0.19 0.45

Mass 1 position 4

No damage

EXP mode 1 0.95 0.05 0.41 0.16

EXP mode 2 0.02 0.91 0.01 0.02

EXP mode 3 0.38 0.06 0.99 0.53

EXP mode 4 0.05 0.01 0.21 0.22

Mass 2 position 4

No damage

EXP mode 1 0.91 0.01 0.42 0.18

EXP mode 2 0.08 0.41 0.02 0.01

EXP mode 3 0.61 0.07 0.99 0.52

EXP mode 4 0.09 0.02 0.20 0.26

No bolt Position A

No damage

EXP mode 1 0.48 0.04 0.41 0.03

EXP mode 2 0.03 0.87 0.01 0.04

EXP mode 3 0.40 0.03 0.91 0.04

EXP mode 4 0.06 0.02 0.19 0.62

No bolt position B

No damage

EXP mode 1 0.38 0.04 0.42 0.15

EXP mode 2 0.03 0.98 0.01 0.01

EXP mode 3 0.34 0.02 0.99 0.51

EXP mode 4 0.06 0.02 0.21 0.76
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added, the properties have to be reduced to simulate the

damage case. The stiffness reduction coefficient is

defined as (Eq. 6):

a ¼ Gij damaged

Gij undamaged

: ð6Þ

Where Gij_(damaged) is the material equivalent property

matrix for the elements in the damaged zone, Gij_(undamaged)

is the one for the elements without damage and a the

stiffness reduction coefficient.

Table 5 Input table for ANN

scheme
EGAMAD STATE 

 No damage 
Mass 1 Mass 2 

 Pos. 1 Pos. 2 Pos.3 Pos. 4 Pos.1 Pos.2 Pos.3 Pos.4 
Mode 1           
FBG 1 

. 

. 
FBG 26 

    270  observations   

Mode 2           
FBG 1 

. 

. 
FBG 26 
Mode 3   104 vectors       
FBG 1 

. 

. 
FBG 26 

Mode 4 
FBG 1 

. 

. 
FBG 26 

Fig. 14 Comparison of normalized strain ei between FEM and

experimental model of the antenna sub-reflector

Table 6 ANN Input data

Observations per simulated

damage scenario

30

Number of damage scenarios 1 (no damage) ? 4 (mass 1, 4

positions) ? 4 (mass 2, 4

positions) = 9

Total observations 270

Table 7 Representation of simulated damage scenario for ANN

training The latter representation will be applied to formulate the output

vector for the training of the ANN
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The approach that is followed is based on the conversion

of PCOMP into its homogeneous equivalent shell. The

transformation is performed by converting the PCOMP and

MAT8 cards to PSHELL and MAT2 cards [27]. Each

MAT2 card represents one of the four behaviors of the

PSHELL properties (membrane property, bending, trans-

verse shear, membrane-bending coupling). In that way the

equivalent material properties that define more directly the

stiffness of the shell elements can be modified. The

material properties of the elements where the lumped mass

was added are reduced gradually to a level that the cal-

culated eigen-frequencies reach the values of the frequency

shift that the added masses cause. The diagram of Fig. 16

summarized the modeling procedure:

The degraded material properties are obtained by mul-

tiplying the properties of MAT2 with the stiffness

Fig. 15 Damage detection

system based on ANN and

experimental modal analysis

results
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reduction coefficient. After several runs, it was concluded

that the material properties related to the bending stiffness

are the ones who affect more the shift in the eigen-fre-

quencies. This was also expected since all modes are

bending modes. These terms directly relate bending

moment of the structure to curvature. For the case of the

minimum mass (m1 = 27 g) the stiffness reduction coef-

ficient for the selected elements that define the damage

zone is equal to 0.65 and for the bigger mass (m2 = 49 g)

is equal to 0.02.

7 Discussion: summary

This paper presented an alternative approach for damage

identification based on experimental modal analysis and

ANN techniques. Strain frequency response data were

acquired from the optical sensors, which were used as input

for the ANN. Experimental strain modal analysis was

conducted for the antenna sub-reflector using structural

dynamics toolbox. The analysis is implemented based on

the responses of the optical sensors. As input for the

SFRFs, the response from the pilot accelerometer was used

and as output the FBG responses.

Modal assurance criterion was calculated between the

analytical and the experimental strain mode shapes. In

general, there is very good agreement between the two

models (analytical and experimental) for both structures.

Due to the dense topology of the sensors, a full strain

mapping was done and the strain mode shapes were

extracted by overcoming the obstacle of spatial aliasing.

Modal assurance criterion was also calculated between

the different damage states experimentally. In the majority

of the modes and damage cases, the change (decrease) of

MAC was proportional to the damage size.

The ANN classification efficiency is compared between

two different approaches of features extraction. In total,

nine damage cases are considered as output for the ANN,

which correspond to the undamaged case plus eight damage

cases (two different damage sizes, four different locations).

In previous study, statistical features were extracted

from the strain waveforms [24]. Statistical indices in the

time domain (such as skewness, kurtosis), in the frequency

domain (skewness of PSD, kurtosis of PSD) and in the

combined time–frequency domain via the discrete wavelet

transform (DWT), were used for feature extraction. The

extracted features were indices of damage location and its

extension and the classification efficiency for damage

identification reached 89 % [24].

In this work, the ANN scheme is based on the experi-

mental strain modal analysis and the extracted strain mode

shapes. The strain mode shapes in combination with the

calculated eigen-frequencies of the structure are the input

to the neural network scheme for damage detection and

classification. It was found that the neural network, with

input vector based on strain mode shapes and natural fre-

quencies reached classification efficiency equal to 91 %.

Table 8 ANN scheme and Classification Efficiency based on

experimental modal analysis

Antenna sub-reflector ANN scheme based on experimental modal

analysis

Number of hidden neurons 10

ANN optimization algorithm Levenberg–

Marquadt

Training examples 243

Testing examples 27

Maximum training epochs 500

Number of trainings 10

Classification efficiency (experimental strain mode

shapes)

90 %

Classification efficiency (experimental strain mode

shapes ? natural frequencies)

91 %

Classification efficiency (statistical features) [24] 89 %

Fig. 16 Modeling procedure
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Each mode shape—feature generates decision rules for

separating the various classes of test data. However, the

features that play a better role in recognizing different class

of damage are selected. The best features in this case are

dictated by the factor of lower signal-to-noise ratio in the

strain response function. More specifically, the features are

extracted from sensors that are positioned close to high

strain locations on the structure. The selected features can

perform correct separation of the different waveforms that

contribute much to the recognition of damage due to high

signal-to-noise ratio. In this way, the features for the ANN

are the calculated strain mode shapes and are provided a

slightly simpler alternative approach for indices selection

without the need of calculating and selecting features of

statistical nature.

In general, the classification efficiency of the two ANN

schemes based on different feature extraction procedures,

i.e. on statistical features and on strain FRFs is comparable.

The same sensor responses were utilized for both schemes.

There is a very little difference in the classification per-

formance of the two methods, reaching only 2 %. This

proves that both methods can be potentially used for

damage identification based on artificial neural network

techniques. In future study, the two methods could be

combined, obtaining possibly better results for damage

identification.
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