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Abstract Lipid droplets (LDs) are ubiquitous organelles

that store and supply lipids to regulate cellular lipid

homeostasis. Fatty acids are packaged as triglyceride and

cholesterol ester into endoplasmic reticulum (ER) mem-

branes to synthesize LDs. Cytosolic LDs move dynami-

cally and interact with organelles, including other LDs. In

this process, functional proteins for metabolism are also

transferred to LDs. In this review, I focus on interactions

between the ER and LDs related to lipid metabolism.
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Introduction

Lipid droplets (LDs) are ubiquitous organelles that store

neutral lipids such as triglycerides and cholesterol esters in

mammals. The number, size, and neutral lipid composition

of LDs differs among cell types. Unlike other organelles,

LDs include a phospholipid monolayer (Tauchi-Sato et al.

2002). Therefore, proteins localize on LDs by directly

binding to the monolayer surface via amphipathic helices,

by embedding in short hydrophobic regions, through lipid

anchors, or by interacting with other proteins on LDs.

These proteins are directly transferred from the cytoplasm

to LDs or move to LDs from other organelles via mem-

brane connections (Kory et al. 2016).

Proteomics studies with isolated LDs have revealed the

presence of several proteins related to lipid metabolism,

membrane trafficking, signaling, protein degradation, and

so on. In mammals there are five PAT-family proteins that

function in lipid droplet biogenesis and metabolism:

PLIN1–5, which are also called perilipin, ADRP, TIP47,

S3-12, and MLDP, respectively. PLIN1 and PLIN4 are

expressed specifically in adipocytes and steroidogenic

cells, whereas PLIN2 and PLIN3 are ubiquitously expres-

sed (Bickel et al. 2009). In addition to the PAT protein

family, several other proteins regulate LD metabolism. In

this review, I will focus on the functions of LDs that are

correlated with their connectivity to the endoplasmic

reticulum (ER).

Biogenesis of LD in the ER

Formation of LDs is induced by several factors, such as

long-chain fatty acids, oxidized low-density lipoproteins,

oxidative stress, growth factors, inflammatory stimuli, and

bacterial infections.

LD biogenesis is supported by several enzymes local-

ized in the ER membrane. De novo triglyceride synthesis

from glycerol-3-phosphate occurs through the activities of

the following enzymes: glycerol-3-phosphate O-acyltrans-

ferase, 1-acylglycerol-3-phosphate O-acyltransferase, and

the phosphatidic acid phosphatase/lipin and diacylglycerol

acyltransferase (DGAT) families. Cholesterol ester is syn-

thesized from cholesterol by acyl-CoA:cholesterol O-

acyltransferase (ACAT). Acyl-CoAs made by acyl-CoA

synthetase (ACS) are required in these esterification pro-

cesses. Triacsin C is an inhibitor of ACSL1, ACSL3, and
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ACSL4, and inhibits LD biogenesis. In particular, ACSL3

is related to LD formation, and knockdown of ACSL3

alone significantly reduces the number of LDs (Kassan

et al. 2013). Synthesized neutral lipids are accumulated

between the leaflets of the ER bilayer, where they form a

lens-like structure (a nascent LD) that grows and eventu-

ally becomes independent from the ER (Choudhary et al

2015) (Fig. 1).

Other ER-localized proteins are also related to LD syn-

thesis. Fat-storage-including transmembrane proteins 1 and

2 (FIT1 and FIT2) directly bind to triglyceride in vitro

(Gross et al. 2011), and FIT1 and FIT2 overexpression in

cultured cells increases triglyceride storage (Kadereit et al.

2008). Conversely, FIT2 knockdown in cultured adipocytes

decreases triglyceride storage. Consistent with this, mice

with FIT2 deleted in adipocytes show lipodystrophy (Mi-

randa et al. 2014). Recently, it has been proposed that FIT2

is essential for the budding of LDs from the ER, because

LDs remain in the ER in FIT2-depleted culture cells

(Choudhary et al. 2015). Seipin is a transmembrane protein

of the ER that localizes at the ER–LD contact sites and may

be involved in LD size control (Wang et al. 2014). Lipin1,

which generally localizes in the cytoplasm, also functions as

a regulator of triglyceride synthesis via the generation of

diacylglycerol (Reue and Zhang 2008). Interestingly, it has

been observed that lipin-1 interacts with seipin (Sim et al.

2012). Despite these advances, details of the molecular

mechanisms involved in LD biogenesis remain unclear.

Lipolysis of LDs via the ER–LD juncture

PLIN1 (called perilipin) is a major LD protein in adi-

pocytes. Although perilipin normally binds to CGI-58, it

is phosphorylated upon lipolysis stimulation and binds to

the triglyceride lipase ATGL (called PNPLA2) instead

of CGI-58, while CGI-58 binds to HSL. The ATGL/

PLIN1 complex functions as a triglyceride lipase and the

HSL/CGI-58 complex functions as a diacylglycerol

lipase. These lipolysis processes in adipocytes occur on

LDs.

On the other hand, the targeting of ATGL to LDs

could be considered one of the most important processes

involved in lipolysis in nonadipocytes, because PLIN1 is

highly expressed in adipocytes while nonadipocytes

express little PLIN1. The targeting of ATGL to LDs by

COPI components and Arf1 regulates lipolysis (Guo

et al. 2008) (Soni et al. 2009) (Suzuki et al. 2015). Two

models have been proposed for this mechanism. One is a

simple model in which COPI-coated vesicles originating

in the Golgi and/or ER–Golgi intermediate compartment

transport ATGL to LDs (Soni et al. 2009). In this case,

LDs and vesicles should require a fusion system to

transport ATGL, but such structures have not been

reported. In the second model, the Arf1–COPI system

acts directly on the LDs themselves to induce budding of

small LDs called nanodroplets (Thiam et al. 2013)

(Wilfling et al. 2014). The budding of nanodroplets from

LDs should reduce the proportion of phospholipid in the

LDs and hence increase the surface tension on the LD

surfaces. This increased surface tension induces mem-

brane bridges between the LDs and ER and recruits

ATGL from the ER to the LDs (Wilfling et al. 2014)

(Fig. 2). Interestingly, the targeting of ATGL to LDs is

inhibited and the amount of triglycerides is increased in

the knockdown of ELMOD2, which has an Arf1–GAP

activity and is anchored on the LD by palmitoylation.

Palmitoylated ELMOD2 may directly regulate the

membrane-bridge-making activity of Arf1 on LDs

(Suzuki et al. 2015).
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Fig. 1 LD biogenesis. Neutral

lipids synthesized by ACATs

and DGATs are accumulated

into the phospholipid bilayer of

the ER. After the regulation of

the LD volume by lipin-1 and

seipin, the LD buds off into the

cytosol, as facilitated by FIT2
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Regulation of VLDL secretion in hepatocytes
by the ER–LD juncture

In hepatocytes and enterocytes, neutral lipids are secreted

as VLDL (very low density lipoprotein) and chylomicrons,

respectively. Apolipoprotein B (ApoB) is a key molecule in

the secretion of these lipoproteins by exocytosis. ApoB is

lipidated by MTP at the luminal side of the ER for

lipoprotein synthesis.

When the lipidation process is perturbed, nascent

ApoB in the ER is subjected to the ER-associated

degradation (ERAD) machinery; thus, nonlipidated

ApoB is ubiquitinated, extracted from the Sec61

translocon, and degraded by the proteasome. Lipidated

ApoB in the ER lumen is also degraded by the protea-

some (Ohsaki et al. 2006). In hepatoma cells treated with

proteasome inhibitor, lipidated ApoB is observed on the

luminal side of LDs attached to the ER (Ohsaki et al.

2008). In this structure, the ER is extensively attached to

LDs, forming the so-called ApoB-crescent structure

(Fig. 3). The putative LD–ER bridge, Derlin-1, which is

a component of the ERAD pathway, is located at the

ER–LD juncture, and is thought to transport ApoB after

lipidation from the ER lumen to the cytosol across the

phospholipid bilayer. Ubiquitinated ApoB on the

cytosolic side is captured by UBXD8 localized on the

cytosolic surfaces of LDs in ApoB crescents via the

ubiquitin-binding domain (UBA domain) at the

N-terminus. UBXD8 is involved in the degradation of

lipidated ApoB, and thereby plays a critical role in the

regulation of lipid metabolism in hepatocytes (Suzuki

et al. 2012; Imai et al. 2015). In UBXD8-knockdown

hepatoma cells, the ApoB-crescent structure was

increased and VLDL secretion was decreased (Suzuki
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Fig. 2 ATGL dynamics from

the ER to an LD via an ER–LD

bridge. Nanodroplet budding

prompted by activated Arf1 and

COPI components subsequently

leads to the generation of a

bridge between the LD and the

ER. The transfer of ATGL from

the ER to the surface of the LD

occurs via this bridge
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Fig. 3 Lipidated ApoB degradation via the ApoB-crescent structure.

Lipidated ApoB accumulates in LDs attached to the ER lumen,

forming the ApoB-crescent structure. The ApoB molecules are

transferred from the luminal side of the ER to the cytosolic side

through Derlin1. In the cytoplasm, the ApoB is ubiquitinated and

binds to UBXD8 for degradation in the proteasome
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et al. 2012). In accordance with these phenomena, a low

VLDL serum level and facilitation of liver steatosis were

observed in UBXD8-deficient mice on a high-fat diet

(Imai et al. 2015).

Concluding remarks

ER is the major organelle for lipid metabolism, including

neutral lipid synthesis and phospholipid synthesis. Phos-

phatidylcholine (PC) is a major phospholipid in the LD

membrane. PC biosynthesis occurs via two pathways: the

phosphatidylethanolamine N-methyltransferase (PEMT)

pathway and the Kennedy pathway. In the PEMT path-

way, the mitochondria associated membrane (MAM) is an

important platform that transfers phosphatidylserine (PS)

synthesized in the ER and phosphatidylethanolamine (PE)

synthesized in mitochondria to facilitate PC synthesis.

MAM was identified in electron microscopy studies over

50 years ago (Copeland and Dalton 1959). However, the

functions of the MAM have only become clear in the last

two decades due to technological advances in molecular

biology (López-Crisosto et al. 2015). Similarly, there is

increasing evidence that direct ER–LD interaction is

important in LD metabolism. Morphological observations

demonstrating physical organelle interactions may

become more and more important for understanding their

function.
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