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Abstract This study evaluated the morphology and ele-

mental composition of Asian elephant (Elephas maximus)

bones (humerus, radius, ulna, femur, tibia, fibula and rib).

Computerized tomography was used to image the

intraosseous structure, compact bones were processed

using histological techniques, and elemental profiling of

compact bone was conducted using X-ray fluorescence.

There was no clear evidence of an open marrow cavity in

any of the bones; rather, dense trabecular bone was found

in the bone interior. Compact bone contained double

osteons in the radius, tibia and fibula. The osteon structure

was comparatively large and similar in all bones, although

the lacuna area was greater (P\ 0.05) in the femur and

ulna. Another finding was that nutrient foramina were

clearly present in the humerus, ulna, femur, tibia and rib.

Twenty elements were identified in elephant compact bone.

Of these, ten differed significantly across the seven bones:

Ca, Ti, V, Mn, Fe, Zr, Ag, Cd, Sn and Sb. Of particular

interest was the finding of a significantly larger proportion

of Fe in the humerus, radius, fibula and ribs, all bones

without an open medullary cavity, which is traditionally

associated with bone marrow for blood cell production. In

conclusion, elephant bones present special characteristics,

some of which may be important to hematopoiesis and

bone strength for supporting a heavy body weight.
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Si Silicon (14)

P Phosphorus (15)
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V Vanadium (23)
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Mn Manganese (25)
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Zr Zirconium (30)

Ag Silver (47)

Cd Cadmium (48)

Sn Tin (50)

Sb Antimony (51)

pb Lead (82)

LE Light element from H = hydrogen (1) to

Na = sodium (11)
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Introduction

Elephants are the largest land mammals and can weigh

5000 kg or more, raising interesting questions about how

they functionally can support such weight. This is espe-

cially relevant in light of evidence that foot and joint

problems occur in captive elephants (Lewis et al. 2010),

particularly those that spend time on hard surfaces (Miller

et al. 2016). Studies of the anatomy and physiology of

elephant bone, and their load bearing characteristics, are of

interest from a comparative standpoint and also could

improve our understanding of how flooring substrate and

exercise factors affect the health and welfare of ex situ

populations.

Bone strength is reliant on a dense network of organized

collagen and mineralization and is determined by the tra-

becular microstructure and density of compact bone, both

of which are affected by the elemental constituents therein

(Seeman 2006) and forces that act on the bone (Hammer

2015). Studies on bone structure of elephants are limited

and have focused primarily on the macroanatomy, for

example, that of the forelimb (Smuts and Bezuidenhout

1993), hindlimb (Smuts and Bezuidenhout 1994; Shil et al.

2013), skull (van der Merwe et al. 1995; Todd 2010) and

foot (Weissengruber et al. 2006; Hutchinson et al. 2011).

Curtin used synchrotron X-ray microtomography (SR-

lCT) to study the histology of femoral and tibial diaphyses

in extinct and extant elephantids (Curtin et al. 2012),

finding that patterns of early bone growth were similar to

those of other tetrapods that grow into large adults. But, in

general, micro- and macroanatomical studies of elephant

bone are few.

Several techniques have been used to study elements in

biological samples, such as inductively coupled plasma

mass spectrometry (IC-PMS) (Amr 2011), atomic absorp-

tion spectroscopy (ASS) (Fischer et al. 2013) and X-ray

fluorescence (XRF) (Nganvongpanit et al. 2015a; Bud-

dhachat et al. 2016a, b). We chose to use handheld XRF to

analyze the elemental composition of elephant bones

because this technique is noninvasive and nondestructive to

samples. XRF has been used to provide information on the

elemental components of various organic sample types,

such as bone, teeth, horn and antlers (Christensen et al.

2012; Kierdorf et al. 2014; Nganvongpanit et al.

2015a, 2016a; Buddhachat et al. 2016a, b), including teeth

and bone in elephants (Christensen et al. 2012; Kierdorf

et al. 2014; Nganvongpanit et al. 2015a, 2016a; Bud-

dhachat et al. 2016a, b).

The aim of this study was to characterize the histology

and elemental composition of Asian elephant (Elephas

maximus) long bones (humerus, radius, ulna, femur, tibia,

fibula and 5th rib) using XRF, computerized tomography

and histology to better understand the distinctive physiol-

ogy of elephants and perhaps gain insight into how their

bones are capable of supporting a high body weight.

Materials and methods

Bone samples

Long bones (humerus, radius, ulna, femur, tibia and fibula)

and 5th ribs of five Asian elephant skeletons from two

facilities were used in this study. Two elephants from the

Animal Anatomy Museum, Department of Veterinary

Biosciences and Public Health, Faculty of Veterinary

Medicine, Chiang Mai University, Thailand, were used to

study the intraosseous anatomy and elemental composition.

Three elephant skeletons from the National Elephant

Institute, Forest Industry Organization, Hangchat, Lam-

pang, Thailand, were used for the histological study, in

which small pieces of bone were removed by permission.

Although exact ages of the skeletons were not known, all

specimens were considered adult.

Intraosseous anatomy study

In this study, the humerus (n = 2), radius (n = 2), ulna

(n = 2), femur (n = 2), tibia (n = 2), fibula (n = 2) and

5th rib (n = 2) of two female Asian elephants were used.

To examine the intraosseous anatomy, computerized

tomography scans (CT scans) were performed using a

16-slice scanner (Brilliance CT-16 slice, Philips) under the

following conditions: 0.4 s tube rotation time, 120 kVp,

200 mA, 3 s/slice and 0.5 mm slice thickness. Data were

analyzed using an image analyzing system (Software

Version 2.2.1/22.5 BrillianceTM, Philips).

Bones were weighed, and the thickness of compact and

cancellous bones and diameter of each bone were measured

by CT scans and averaged across bone types. A cancellous

index (CI) was calculated using the diameter of each bone

divided by the cancellous bone diameter; thus, a lower CI

indicated increased cancellous bone thickness.

Histological study

In this study, the humerus (n = 3), radius (n = 3), ulna

(n = 3), femur (n = 3), tibia (n = 3), fibula (n = 3) and

5th rib (n = 3) from three Asian elephants (sex unknown)

were used. Samples were processed using conventional

histological techniques as previously described (Ngan-

vongpanit et al. 2015c). Bones (1.0–2.0 cm thickness) were

cross-sectioned at the mid shaft point. Tissues were fixed in

10 % formalin for 24 h and then decalcified by 10 % nitric

acid for 8 h. The specimens were cut into 1-mm pieces and
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placed in plastic cassettes and then processed in 10 %

formalin for 1 h (two changes), 95 % ethanol for 1 h (three

changes), absolute isopropyl alcohol for 1 h (two changes),

xylene for 1 h (two changes) and paraplast for 1 h (three

changes). The tissues were then embedded in paraffin and

cut into 5-lm sections.

Sections were deparaffinized in xylene and rehydrated

through an ascending series of 95 % alcohols to water.

Tissue sections were stained with Harris’s hematoxylin for

5 min and washed under running tap water for 5 min;

differentiated in 1 % acid alcohol (1 % hydrochloric acid

in 70 % ethanol) for 5 s and washed under tap water for

5 min; dipped in saturated lithium carbonate solution for

5 s and washed under tap water for 5 min; stained with

1 % eosin Y for 3 min and washed under running tap water

for 5 min. The sections were then dehydrated through

95 % alcohol and absolute alcohol, cleared in xylene and

mounted in Permount.

Individual sections were observed using a compound light

microscope (AxioCam; Carl Zeiss, Oberkochen, Germany)

and measured using AxioVision 4.8.2 software. For each

bone sample, at least 50 secondary osteons were measured

from a series of six slides. Only mature osteons were mea-

sured. The diameter and area of Haversian canals and osteons

and area of lacuna were determined. Because some of the

Haversian canals and osteons were oval-shaped rather than

circular, Haversian canal and osteon diameters were calcu-

lated by: [maximum diameter ? minimum diameter]/2.

Other characteristics of osteons, such as presence of a double

cement line or plexiform bone, also were recorded. Data for

all bone parameters were averaged across bone type.

Elemental measurements

In this study, the humerus (n = 4), radius (n = 4), ulna

(n = 4), femur (n = 4), tibia (n = 4), fibula (n = 4) and

5th rib (n = 4) from two female Asian elephants were

used. Evaluation of the elemental composition of bone

samples was conducted using a Handheld XRF analyzer

(DELTA Premium, Olympus, USA) with a silicon drift

detector that detected elements from magnesium (Mg)

through bismuth (Bi) on the periodic table. Light elements

(LE) were those with an atomic number lower than Mg (H-

Na) and could not be differentiated as separate elements.

The collimator size was set at 0.3 mm for analysis-area

diameter, and operating voltages of 10 and 40 kV, 2 min,

were used as the source of incident radiation. Twenty

separate sites on each bone were measured for elemental

composition. Elemental values are presented as percent-

ages of the total. A Ca/P ratio, the components of calcium

hydroxyapatite, was calculated for each bone type (Chris-

tensen et al. 2012; Kierdorf et al. 2014; Zougrou et al.

2014).

Statistical analyses

Differences in measured bone parameters in the intraoss-

eous anatomy and histology studies were determined by

one-way ANOVA and Tukey’s post hoc tests. Differences

in elemental concentrations and elemental ratios between

samples were determined by one-way ANOVA followed

by post hoc multiple comparisons using LSD tests. Data are

presented as mean ± SD, and P values \0.05 were con-

sidered statistically significant.

Results

Intraosseous anatomy study

Images are representative computerized topographic scans

of the seven bones of Asian elephants using two- (Fig. 1)

and three-dimensional (Fig. 2) imaging. A typical open

medullary cavity was not found in any of the bones; rather

the shaft was filled with cancellous bone. Moreover, using

three-dimensional modeling, the cancellous bone appeared

to be particularly compact (Fig. 3). Nutrient foramina were

clearly observed in the humerus, ulna, femur, tibia and rib

as shown in Fig. 4, which averaged 0.5 ± 0.1 mm in

diameter.

The thickness of compact bone, cancellous bone and

overall bone diameter is shown in Table 1. In general,

the humerus had the greatest bone diameter and compact

bone thickness, whereas ribs had the lowest (P\ 0.05).

Ribs also had the lowest cancellous bone thickness,

similar to the fibula and radius. Femur had the thickest

cancellous bone, which was similar to that of humerus

and tibia. The relationship between bone diameter and

cancellous bone thickness remained constant, as reflec-

ted by similar TI index values across bone types

(Table 1).

Average weights of the femur, humerus, ulna, tibia,

radius, rib and fibula were 6.20 ± 0.29, 4.99 ± 0.22,

2.71 ± 0.21, 2.20 ± 0.16, 0.74 ± 0.09, 0.47 ± 0.09 and

0.33 ± 0.09 kg, respectively. All differed (P\ 0.01),

except for the rib and fibula, which were similar

(P = 0.07).

Histology

Representative histological sections from Asian elephant

bones are shown in Fig. 5, with associated measurements

of the Haversian canals, osteons and lacunae presented in

Table 2. The lacuna area was greatest in the femur fol-

lowed by the ulna when compared to the other five bones.

In ribs, 20 % of the osteons were over 100,000 lm2 in

area, which we refer to as super osteons as compared to
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Fig. 1 Sagittal and frontal of topogram from computerized tomo-

graphic scan images of the humerus (a), ulna (b), radius (c), femur

(d), tibia and fibula (e) and rib (f) of Asian elephants. The cortical

bones are the most dense structures and are radiopaque. The

cancellous bones are less dense structures and are slightly radiopaque.

The physeal scar of the bone is a thin radiopaque line perpendicular to

the long axis of bone. Not presenting a larger radiolucent area inside

the bone along the axis of the bone means the medullary cavity is

absent
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Fig. 2 Sagittal and frontal

computed tomographic scan

image using three-dimensional

imaging of the femur, humerus,

ulna, radius, tibia, fibula and rib

(H head/proximal, F foot/distal,

A anterior/cranial,

P posterior/caudal, R right/

lateral, L left/median). White

color represents a cortical bone

while orange color represents a

cancellous bone
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average osteon size. Compact bone in elephants contained

secondary osteon structures and double cement lines in

the radius, tibia and fibula bone. These double cement

lines are hypercalcified rings within the lamellae in a

mature osteon (Fig. 6). The ratios between osteons with

single and double cement lines were 6:1, 12:1 and 24:1 in

the radius, tibia and fibula bone, respectively. Plexiform

bone was not found in any of the bone types.

Elemental profile and ratios

Distribution of the 20 elements plus LE detected in the

seven bones (Al, Si, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni,

Cu, Zn, Zr, Ag, Cd, Sn, Sb and Pb) for all data combined

is shown in Fig. 7. Only four of these elements (Ca, P, Si

and LE) were above 1 %, with LE being the highest,

followed by Ca, P and Si (Fig. 7a). All others were at a

concentration less than 1 % (Fig. 7b). Of those, Fe was

present in the highest proportion, followed by Al, K and

S, with all others constituting very small percentages.

Three elements were not found in every bone: K was only

found in the radius; Ni was not found in femur, tibia or

fibula; Cu was not found in humerus or fibula (Fig. 8).

LEs also were not found in the ulna. Of the 20

detectable elements, nine (Al, Si, P, S, Cr, Ni, Cu, Zn,

Pb) were present in similar concentrations (P[ 0.05)

among the seven bones (Fig. 8).

Ten elements differed significantly across the bone types

(Fig. 9). For example, Ca was highest in the femur and

lowest in the radius bone (P\ 0.05). Titanium differed

(P\ 0.05) among four bones: it was highest in the fibula

and lowest in the tibia. V was highest in the rib and lowest in

the femur and tibia (P\ 0.05). Mn was significantly

(P\ 0.05) higher in the fibula and lower in the femur. Fe

was present in significantly higher amounts in the humerus,

radius, fibula and rib compared with the femur, ulna and

tibia. Zr was higher (P\ 0.05) in the fibula and lower in the

femur and tibia. Ag, Cd, Sn and Sb were lower (P\ 0.05)

Fig. 3 Sagittal and frontal computed tomographic scan images using

three-dimensional modeling of femur (top panels) and tibia (bottom

panels) bones of the Asian elephant. Arrowheads indicate area of

compact bone fill in intraosseous cancellous bone (H head/proximal,

F foot/distal, A anterior/cranial, P posterior/caudal, R right/lateral,

L left/median)
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Fig. 4 Sagittal and frontal topogram from computed tomographic scan images of the humerus, ulna, femur, tibia and rib showing the radiolucent

line as the nutrient foramen (arrowhead)

Table 1 Mean (± SD) and mean range (min, max) measurements of the bone diameter, cancellous bone thickness, compact bone thickness and

cancellous bone index at the diaphysis of long bones and ribs from three Asian elephants

Bone diameter (cm) Cancellous bone thickness (cm) Compact bone thickness (cm) Cancellous bone index

Humerus 10.13 ± 1.18d (8.67, 12.31) 5.15 ± 1.11b,c (3.39, 7.28) 2.49 ± 0.51c (1.94, 3.39) 2.0 ± 0.4c

Radius 3.34 ± 0.51b (2.40, 4.27) 1.80 ± 0.39a (1.19, 2.31) 0.77 ± 0.19b (0.54, 1.14) 1.9 ± 0.3b,c

Ulna 6.76 ± 0.63c (5.88, 8.14) 4.11 ± 0.48b (3.64, 4.82) 1.32 ± 0.21c (1.12, 1.74) 1.7 ± 0.1a,b

Femur 8.70 ± 3.09c,d (4.77, 15.17) 6.07 ± 2.50c (2.92, 11.47) 1.32 ± 0.53c (0.64, 2.31) 1.5 ± 0.3a

Tibia 7.43 ± 1.25c (5.55, 9.89) 4.36 ± 1.37b,c (2.41, 6.55) 1.53 ± 0.34c (0.99, 2.07) 1.8 ± 0.4a,b,c

Fibula 2.72 ± 0.37b (2.15, 3.32) 1.40 ± 0.41a (0.88, 2.25) 0.66 ± 0.09b (0.49, 0.74) 2.0 ± 0.4b,c

Rib 0.26 ± 0.02a (0.22, 0.27) 0.16 ± 0.03a (0.12, 0.19) 0.05 ± 0.01a (0.04, 0.07) 1.6 ± 0.2a,b

a,b,c,d Mean values within columns are significantly different (P\ 0.05)
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in the femur than in the humerus and fibula. Potassium was

not included in Figs. 8 or 9 because this element was found

only in the radius (0.390 ± 0.218 ppm). The Ca/P ratio

across all bones ranged from 2.59 to 2.82 with no significant

differences (Fig. 10).

Discussion

In this study, we characterized the intraosseous anatomy of

long bones and ribs in the adult Asian elephant and the

associated histology and elemental profiles. Based on CT

Fig. 5 Representative photomicrographs of hematoxylin and eosin-stained transverse sections of compact bone from the humerus, radius, ulna,

femur, tibia, fibula and rib of the Asian elephant (magnification 950). CL cement line, HC Haversian canal, L lacuna, V Volkman’s canal
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scans, the humerus, radius, ulna, femur, tibia, fibula and rib

in Asian elephants did not appear to have a marrow cavity

such as that found in other species (Frandson et al. 2009;

Houssaye et al. 2015), including humans (Netter 2014).

Rather, elephant bone consisted of outer compact bone

filled with trabecular bone, which in the femur and tibia

was particularly dense. In most mammalian species, the

femur is the longest and heaviest bone, whereas the tibia is

the principal weight bearer of the hindlimbs, a relationship

found in African elephants (Smuts and Bezuidenhout

1994). In our study, we also found the femur was the

heaviest bone, followed by the humerus. However, the ulna

was larger than the radius, which differs from other spe-

cies, such as dog, cat, horse and pig, where the radius is

more weight bearing (Frandson et al. 2009). Typically, the

majority of weight in a quadruped is borne by the front

legs, while the rear legs provide propulsion. Elephants bear

about 55 % of the weight on the forelimbs (Pana-

giotopoulou et al. 2012), with a more vertical orientation in

the hindlimb. Thus, the weight on the hindlimb is more

direct, while forelimb weight is distributed because of the

angle of the shoulder and elbow (Smuts and Bezuidenhout

1993, Smuts and Bezuidenhout 1994; Shil et al. 2013). We

suggest that the presence of dense trabecular bone in the

intraosseous region of the femur and tibia is important for

bone strength.

Another finding from the histology study was the pres-

ence of double cement lines, or double-zoned, secondary

osteons, which exhibited a hypercalcified ring within the

lamellae of the osteon. This ring is thought to reflect a

slowing or temporary cessation of infilling during osteon

formation. Double-zoned osteons were first described in

human bone in 1974 (Pankovich et al. 1974) and were

suggested to be the result of an abrupt change in mineral

density or one or more growth arrest lines, or as a result of

intraosteonal remodeling of an existing secondary osteon

and aging (Pankovich et al. 1974; Skedros et al. 2007).

Interestingly, double cement lines have not been reported

in animals, including dog, cat, rat, horse, pig, buffalo, cow,

goat, sheep, deer and monkey (Mori et al. 2003; Martini-

aková et al. 2006; Hillier and Bell 2007; Skedros et al.

2007; Nganvongpanit et al. 2015b). However, we found

double cement lines in the radius, tibia and fibula bones of

Asian elephant, with the radius having the highest ratio

(6:1) compared with the tibia (12:1) and then fibula (24:1).

The purpose of double-zoned osteons in elephant bone is

unclear, but it might be significant in that elephants, like

humans, are a long-lived species. Interestingly, although all

skeletons were from mature animals, in some images, a

metaphyseal line was evident, suggestive of incomplete

epiphyseal fusion normally found in young animals.

However, a previous report did find metaphyseal lines in

adult elephant limb bones of living and fossil specimens,T
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with complete epiphyseal fusion later in ontogeny (Roth

1984).

Plexiform bone is characteristic of cortical bone in large

and/or fast-growing animals, such as horses, pigs, buffalo,

cows, goats and dogs, and it occurs with less frequency in

primates, including humans and monkeys (Mori et al. 2003;

Martiniaková et al. 2006; Hillier and Bell 2007; Ngan-

vongpanit et al. 2015b). In some species, such as dog, sheep

and deer, plexiform bone is found only in immature animals

(Hillier and Bell 2007; Nganvongpanit et al. 2016b). None

of the bones of Asian elephants in our study contained

plexiform bone, which may be because they were all from

adult elephants. A previous study in juvenile African and

Asian elephants reported the presence of plexiform bone in

femur and tibia (Curtin et al. 2012); thus, additional studies

are needed to determine whether or how age affects bone

Fig. 6 Representative photomicrographs of hematoxylin and eosin-stained transverse sections of compact bone from the radius, tibia and fibula

of Asian elephants with secondary osteons that exhibited a hypercalcified ring (a) within the lamellae of the osteon (b) (magnification 9100)

Fig. 7 Composition of

elements found in long bones

and ribs of the Asian elephant,

data combined. Elements in

concentration over 1 % are

presented in a, whereas

elements with concentration

lower than 1 % are presented in

b. Element abbreviations:

aluminum (Al), silicon (Si),

phosphorus (P), sulfur (S),

potassium (K), calcium (Ca),

titanium (Ti), vanadium (V),

chromium (Cr), manganese

(Mn), iron (Fe), nickel (Ni),

copper (Cu), zinc (Zn),

zirconium (Zr), silver (Ag),

cadmium (Cd), tin (Sn),

antimony (Sb) and lead (Pb)
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Fig. 8 Night elements including aluminum (Al), silicon (Si), phos-

phorus (P), sulfur (S), chromium (Cr), nickel (Ni), copper (Cu), zinc

(Zn) and lead (Pb) and a light element (LE), which did not differ

significantly in concentration across the long bones and ribs of Asian

elephants. N/A Element was not detected

Fig. 9 Ten elements including; calcium (Ca), titanium (Ti), vanadium (V), manganese (Mn), iron (Fe), zirconium (Zr), silver (Ag), cadmium

(Cd), tin (Sn) and antimony (Sb), which differed significantly in concentration across the long bones and ribs of Asian elephants (*P\ 0.05)
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structure in elephants and whether the physiological

mechanisms are similar to those of other species.

In accordance with its size, the osteon structure in ele-

phant compact bone was larger than that of other species.

In comparing the osteon and Haversian canal diameter of

tibia bone to that of other species (human, monkey, dog,

cat, swine, cattle, chicken), the largest were found in the

elephant and the smallest in the chicken (Table 3). More-

over, the number of osteocytes in elephant was low com-

pared with other species, as shown in Table 4.

With respect to the elemental profiles, ten differed sig-

nificantly among the seven bones. Calcium levels were the

highest in the femur and lowest in the radius bone,

although the Ca/P ratio was not different between these and

the other bones examined. In all bones, the Ca/P ratios

(Fig. 10) averaged 2.72, which was higher than the ratio of

cabrbonate (CO3
2-) to phosphate (PO4

3-) in hydroxyap-

atite (2.15) (Wopenka and Pasteris 2005; Rey et al. 2009)

and the bones of other mammals, such as human (2.21)

(Tzaphidou and Zaichick 2004), pig (2.17) (Dickerson

1962), bovines (1.69) (Legros et al. 1987) and rat

(1.65–2.18) (Dickerson 1962; Legros et al. 1987). It is

possible a higher Ca/P ratio is needed to provide strength to

elephant bones in light of the proportionally high weight

they carry, although not all of these bones are weight

bearing (e.g., ribs, fibula). Three other elements essential to

bone metabolism, V, Mn and Fe, were higher in the

humerus, radius, fibula and rib and lower in the femur, ulna

and tibia bones, as were Zn, Ti, V, Mn, Fe and Zr. Iron

plays an essential role in hematopoiesis; in long bones, it is

principally stored in the bone marrow, but is also found in

the liver and spleen bound to ferritin protein (Bessis and

Breton-Gorius 1962). Of particular interest was the finding

of a significantly larger proportion of Fe in the humerus,

radius, fibula and ribs, all bones without an open marrow

cavity, which is traditionally associated with blood cell

production. Comparing Fe in the humerus bone across

several bovid and cervid species, higher amounts were

found in Asian elephants (Buddhachat et al. 2016a). This,

in addition to our finding that major large nutrient foramens

(one per bone) were present in the humerus, ulna, femur,

tibia and rib of Asian elephant bone, suggests these bones

may play a role in the production of hematopoietic cells,

although the source of the cells in elephant is unclear

(Mikota 2006). Thus, it could represent a species difference

in bone function and hematopoiesis and warrants further

study.

Fig. 10 Differences in the calcium (Ca)/phosphorus (P) ratio of

Asian elephant long bones and ribs. All ratios did not significantly

differ (P[ 0.05) between bone types

Table 3 Comparison of

Harversian canal and osteon

diameters (mean ± SD) of tibia

bones from eight species

Species Osteon diameter (lm) Haversian canal diameter (lm)

Asian elephant 234.50 ± 58.94a 73.58 ± 21.48a

Human 111.07 ± 2.25b

184.66 ± 28.63c

35.92 ± 2.12b

39.71 ± 7.95c

Monkey 143.46 ± 26.80c 33.74 ± 6.53c

Dog 59.39 ± 3.63b

157.01 ± 32.87d

12.37 ± 1.91b

34.93 ± 9.06d

Cat 49.93 ± 3.29b 10.60 ± 1.01

Swine 114.76 ± 8.19b 40.09 ± 14.82b

Cattle 118.34 ± 16.40b 26.24 ± 3.75b

Chicken 45.73 ± 4.66b 29.49 ± 2.18b

a Data from current study
b Data from Morales et al. (2012)
c Data from Nganvongpanit et al. (2015b)
d Data from Nganvongpanit et al. (2016b)
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Copper is an essential trace element, involved in bone

growth and strength, and deficiencies can result in

deformed bones and increased bone fractures (Dollwet

and Sorenson 1988). Copper was found in femur, radius,

ulna, tibia and rib bones, but not humerus or fibula. Little

is known about differential Cu distribution among dif-

ferent bone types, nor have specific Cu pathways been

identified in elephants, so it is unclear whether Cu is an

essential trace element in elephant bone. Metals such as

Ti and Zr were present in all bones, but accumulation

differed across types. However this element is not con-

sidered a non-essential element in bone, although its

function is unclear (Dermience et al. 2015). Four heavy

metals (Ag, Cd, Sn and Sb) were unevenly distributed,

being highest in the humerus and fibula and lowest in the

femur, which may be related to a higher blood supply for

humerus bone. Previous studies showed heavy metals

accumulated more in cancellous bone than compact bone

because of a higher blood supply (Brodziak-Dopierała

et al. 2015; Nganvongpanit et al. 2016a). We found Sn

was low while Ca was high in femur and might be

related. In rats (Yamaguchi et al. 1982), oral administra-

tion of Sn decreased Ca content in bone. Nickel is an

essential nutrient with a role in membrane metabolism

(Nielsen et al. 1989; Nielsen 1991; Poonkothai and

Vijayavathai 2012) and was found in humerus, radius,

ulna and rib bones. In 2011, Chovancová reported an

effect of Ni on the macroscopic and microscopic structure

of femoral bone tissue in rats, with intraperitoneal

administration of NiCl2 inducing changes in cortical bone

thickness and compact bone microstructure (Chovancová

et al. 2011). The finding of heavy metals, such as Cd and

Pb, in elephant bones suggests the animals were exposed

to environmental contamination during their lifetime,

which has been found in other mineralized tissues in

elephants (Christensen et al. 2012; Kierdorf et al. 2014;

Nganvongpanit et al. 2015a, 2016a; Buddhachat et al.

2016a, b). Main sources of Pb contamination in Thailand

are lead-based fuels, spent ammunition and wastewater

(Chongsuvivatwong et al. 2011; Chanpiwat and Sthi-

annopkao 2014; Parkpian et al. 2003).

In conclusion, elephant long bones differ from those of

other species in that there is no clear open marrow cavity as

observed in other species. Elephant bone also was char-

acterized by a large osteon structure and few osteocytes per

osteon as compared to other species, which could mean

most of the elephant bone is extracellular matrix. Finally,

the Ca/P ratio was high compared to other species, which

could be important for bone strength.
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