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Abstract The primordia of valves and the atrioventricular

septum arise from endocardial cushion tissue that is formed in

the outflow tract (OFT) and in the atrioventricular (AV)

regions during cardiogenesis. Abnormal development of the

endocardial cushion results in various congenital heart dis-

eases. Endocardial epithelial–mesenchymal transformation

(EMT) is a critical process in cushion tissue formation and

is regulated by many factors, such as growth factors, inter-

cellular signaling molecules, transcription factors, and

extracellular matrices. A signal that is produced by the myo-

cardium of the AV and OFT regions and transferred to the

adjacent endocardium across the extracellular matrix medi-

ates EMT. Studies in vitro and genetic analyses have shown

that transforming growth factor b and bone morphogenetic

protein play central roles in the regulation of EMT during

cushion tissue formation.
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Abbreviations

AV Atrioventricular canal

BMP Bone morphogenetic protein

MCM Myocardial conditioned medium

ODN Oligodeoxynucleotide

OFT Outflow tract

TGFb Transforming growth factor b

Endocardial cushion tissue formation during heart

development

The prospective heart region in vertebrates is formed

bilaterally in the anterior lateral portion of the mesoderm at

the tri-laminar germinal disc stage. As the embryo folds

ventrally, the right and left splanchnic mesoderm contain-

ing future heart cells fuses in the ventral midline and forms

a primitive heart tube. Progenitors of the endocardial cells

arise from the splanchnic mesoderm during this process.

The primitive heart tube consists of myocardium (outer

layer) and endocardium (inner layer) that are separated by

an expanded extracellular matrix, namely cardiac jelly. As

development proceeds, the heart tube bends towards the

right, and cardiac segments begin to appear in an anterior–

posterior sequence: truncus arteriosus and conus cordis

(outflow tract; OFT), bulbus cordis (presumptive right

ventricle), primitive ventricle (left ventricle), atrioventric-

ular (AV) canal, primitive atrium, and sinus venosus (De

La Cruz et al. 1989). Endocardial cushion tissue is formed

in the OFT and AV regions of the embryo by endocardial

epithelial–mesenchymal transformation (EMT) of the

endocardium to mesenchyme (Markwald et al. 1975, 1977)

(Fig. 1). In addition to the endocardial-derived mesen-

chyme, mesenchymal cells from the cardiac neural crest

migrate into the OFT region via the pharyngeal arches and

contribute to the formation of the septum of the OFT region

(Waldo et al. 1998). The cushion tissue of the OFT region

subsequently gives rise to the aorticopulmonary septum

and semilunar valves and that of the AV region generates

AV valves and AV septum. As development proceeds, the
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aorticopulmonary, outflow, interventricular, AV, and pri-

mary atrial septa align and fuse, resulting in the formation

of a four-chambered heart. Consequently, thus, abnormal

development of endocardial cushion tissues causes various

heart malformations, such as transposition of the great

arteries and AV septum defect (Sakabe et al. 2005).

The myocardium of the OFT and AV regions is con-

sidered to be important in the formation of endocardial

cushion tissues. Bernanke and Markwald (1982) developed

an in vitro model of cushion tissue using a three-dimen-

sional collagen gel culture system (Fig. 2) in which the

EMT occurs similarly to that observed in vivo, thus

allowing the mechanism regulating this process to be

analyzed. The results from other studies using this system

suggest that only AV or OFT endothelial cells are able

to transform and invade the gel lattice when cultured

with associated myocardium—but not with ventricular

myocardium (Krug et al. 1987; Mjaatvedt et al. 1987).

Therefore, region-specific myocardial signals are important

in the regulation of EMT during cardiogenesis. This review

focuses on signaling regulated by transforming growth

factor b (TGFb) and bone morphogenetic protein (BMP)

and reviews the mechanisms regulating valvo-septal

endocardial EMT.

Role of TGFbs during cushion tissue formation

The TGFb superfamily comprises several subgroups, one

of which is a class of secreted dimeric proteins. Over 30

members of the TGFb superfamily have been identified

from invertebrates or vertebrates, and they can be struc-

turally categorized into various subgroups, such as activins/

inhibins, nodals, BMPs, growth and differentiation fac-

tors (GDFs), and Müllerian inhibiting substance (MIS)

(Miyazawa et al. 2002). Members of the TGFb superfamily

regulate numerous cellular functions, including growth,

adhesion, migration, differentiation, and apoptosis. TGFb1,

2, and 3 have been identified in mammals and birds,

whereas TGFb5 is found only in amphibians (Kingsley

1994). Several descriptions of TGFb expression during

embryogenesis suggest that this family plays important

roles in the regulation of cell growth, differentiation, and

cell–cell interaction during development (Heine et al.

1987; Lehnert and Akhurst 1988; Pelton et al. 1989, 1990,

1991; Akhurst et al. 1990; Flanders et al. 1991; Dickson

et al. 1993; Millan et al. 1991; Roelen et al. 1994). During

mouse heart development, TGFb1 is initially expressed in

the endocardium and then regionalizes to the endothelial

cells overlying the cardiac cushion tissue (Lehnert and

Akhurst 1988; Akhurst et al. 1990; Camenisch et al. 2002a,

b; Molin et al. 2003). The endocardium and myocardium of

the OFT and AV regions express TGFb2 during cushion

tissue formation (Millan et al. 1991; Dickson et al. 1993;

Camenisch et al. 2002a, b; Molin et al. 2003), but TGFb3 is

expressed in the endocardium and mesenchymal cells after

the onset of EMT (Millan et al. 1993; Pelton et al. 1990;

Camenisch et al. 2002a, b; Molin et al. 2003). During chick

endocardial cushion formation, both TGFb2 and TGFb3

are expressed in the endocardium, mesenchyme, and

myocardium during cushion tissue formation (Boyer et al.

Fig. 1 Endocardial cushion tissue development. The primitive heart

tube is formed through the fusion of the right and left precardiac

mesoderm migrating into the ventral midline. As such, it generates the

right-side bend (d-loop), and presumptive heart segments are

established segmentally: outflow tract (OFT or conus cordis), right

ventricle (RV or bulbus cordis), left ventricle (LV or primitive

ventricle), atrioventricular canal (AV), and atrium and sinus venosus

(AT). As development proceeds, valvoseptal endocardial cushion

tissue is developed in the OFT and AV regions, and cardiac neural

crest simultaneously migrates into the OFT region and contributes to

OFT septation. Trabeculation is generated in the primitive ventricle,

and right and left ventricular cavities are expanded progressively,

resulting in the formation of the muscular septum between the RV and

LV. OFT septa, including the aorticopulmonary and AV septa and the

base of the primary atrial septum, align and fuse, resulting in a

complete four-chambered heart. a Sagittal section of 3-day chick

embryonic heart. Endocardial cushion tissue (ct) is being formed.

b Frontal section of boxed area in a. Many mesenchymal cells are

formed by endocardial transformation in cardiac jelly between

endocardium and myocardium
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1999a, b; Nakajima et al. 1999; Yamagishi et al. 1999a, b).

Thereafter, the expression profiles of TGFbs differ between

mice and chicks, indicating that different TGFbs are

required during murine and avian cushion tissue formation

(Camenisch et al. 2002a, b).

The results of assays in vitro using a three-dimensional

collagen gel culture system indicate that TGFb plays an

important role in EMT of the endocardium during cushion

tissue formation (Potts and Runyan 1989; Potts et al. 1991;

Nakajima et al. 1994; 1997b, 1998; Brown et al. 1996,

1999; Boyer et al. 1999a) (Fig. 2). Potts et al. (1991)

demonstrated that the antisense oligodeoxynucleotide

(ODN) to TGFb3 can inhibit the EMT in AV endocardium

co-cultured with associated myocardium. Nakajima et al.

(1994) demonstrated that the expression of TGFb3 in AV

endocardium is induced by myocardially derived signals

other than TGFb3 and that TGFb3 functions in an auto-

crine manner to induce phenotypic changes in endothelial

cells.

The activation of the AV endocardium to form mesen-

chyme is a morphologically multistep process comprising

cellular hypertrophy, cell–cell separation, lateral cell

mobility, polarization of the Golgi apparatus, formation of

migratory appendages, and invasion of the cardiac jelly

(Markwald et al. 1975). The direct addition of TGFb3 to

pre-activated AV endothelial cells in a collagen culture

system causes initial phenotypic changes in EMT, such as

the loss of cell–cell contact, cellular hypertrophy, and

migration to the gel surface, and, at this time, also induces

the expression of a-smooth muscle actin (SMA), which is

essential for migratory appendage formation in the acti-

vated endothelial cells (Nakajima et al. 1997a, 1999).

However, TGFb3 itself does not stimulate the invasion of

endothelial cells into the gel lattice. Thus, based on the

finding that TGFb2 is expressed in the cushion tissue,

TGFb2 and TGFb3 together would seem to synergistically

act to induce EMT. However, the biological effect of

TGFb2 alone and in combination with TGFb3 on pre-

activated AV endocardium is similar to that of TGFb3

(Nakajima et al. 1998).

Although in vitro experiments using endocardial cush-

ion models support the notion that TGFb is essential for

epithelial–mesenchymal transformation during endocardial

cushion tissue formation, neither TGFb1- nor TGFb3-null

mice have any apparent cardiac malformation (Shull et al.

1992; Kulkarni et al. 1993, 1995; Proetzel et al. 1995). In

the absence of maternal TGFb1, cardiac abnormalities

develop in TGFb1-null mice, including poorly formed

ventricular lumina and disorganized ventricular muscle and

valves (Letterio et al. 1994). The development of the OFT

Fig. 2 Three-dimensional collagen gel bioassay. Explants of cardiac

tissues collected from atrioventricular (AV) canal or outflow tract

(OFT) regions of chick stage 14- (or ED 9–9.5 mouse) hearts were

placed on the surface of collagen gels for 24–48 h. Explants project

many mesenchymal cells (mes) into the collagen gel lattice. The

removal of explanted myocardium (myo) from the gel does not

change the endothelial monolayer (end) phenotype to mesenchyme.

Endothelial monolayers cultured with transforming promoters, such

as embryonic myocardial conditioned medium (MCM), transforming

growth factor b (TGFb), and bone morphogenetic protein (BMP),

develop mesenchymal cells in the collagen gel lattice
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region is abnormal in TGFb2-null mice (Sanford et al.

1997; Bartram et al. 2001). These results suggest that

TGFb isoforms are functionally redundant in the regulation

of EMT and that a specific TGFb isoform may act in a

spatiotemporal-specific manner during cardiogenesis.

The secretion and activation of TGFbs is regulated by

association with latent TGFb binding proteins (LTBPs;

LTBP1, LTBP 3, and LTBP 4) that belong to the LTBP/

fibrillin family of extracellular matrix proteins (Koli et al.

2001). During mouse endocardial cushion formation,

LTBP1 is expressed in transforming endothelial/mesen-

chymal and migrating mesenchymal cells and colocalizes

with the mature region of TGFb1 (Nakajima et al.

1997b). Congenital heart defects consisting of abnormal

septation of the cardiac OFT develop in LTBP1-null mice

(Todorovic et al. 2007). Therefore, it can be concluded

that extracellular regulation of TGFb activity is also

essential for EMT during endocardial cushion tissue

formation.

Role of BMPs during cushion tissue formation

Bone morphogenetic proteins are members of the TGFb
superfamily, and over 20 related proteins have been iden-

tified (Ducy and Karsenty 2000; Miyazono et al. 2005).

Recent studies have demonstrated that BMPs are essential

for embryogenesis and organogenesis. During murine

cardiogenesis, BMP2 and BMP4 are expressed in the

myocardium of the OFT and AV regions (Lyons et al. 1990;

Jones et al. 1991), and BMP6 (Vgr-1) transcripts are

localized in the myocardium of the OFT region and endo-

thelial/mesenchymal cells of the AV region (Jones et al.

1991; Kim et al. 2001). BMP7 is expressed in the OFT and

AV myocardium but not in the endocardium (Lyons et al.

1995; Dudley and Robertson 1997; Solloway and Robertson

1999). During chick heart development, BMP2 and BMP5

are expressed in the OFT and AV myocardium, and BMP7

is found throughout the myocardium (Wall and Hogan

1995; Yamagishi et al. 1999a, 2001; Yamada et al. 1999;

Somi et al. 2004).

The expression profiles of BMP2 and BMP4 suggest that

BMPs can be included in the group of myocardially

derived signals that are required to regulate EMT. To

understand the role of BMP, we isolated BMP2, BMP5,

BMP6, BMP7, dorsalin-1, and GDF6/7 from the chick

embryonic heart. Anti-BMP properties, such as an anti-

sense ODN, dominant negative BMP type I receptor and

noggin, have been found to inhibit EMT in AV explant

cultures in vitro (Yamagishi et al. 1999a; Okagawa et al.

2007). To understand the biological effects of BMP2 on the

AV endocardium, pre-activated AV endothelial monolay-

ers were cultured with recombinant BMP2 protein.

By itself, BMP2 does not induce phenotypic changes

associated with EMT in the pre-activated AV endocar-

dium; however, BMP2 does enhance TGFb-induced initial

phenotypic changes in EMT (Yamagishi et al. 1999a;

Nakajima et al. 2000) (Fig. 2). Therefore, BMP appears to

be one of the myocardially derived inductive molecules

that may regulate EMT. Recent studies have revealed that

the Rho–ROCK pathway plays a critical role in mesen-

chymal cell invasion/migration during EMT (Zhao and

Rivkees 2004; Sakabe et al. 2006) and that TGFb3, but not

BMP2, can induce ROCK1 in transforming cells (Sakabe

et al. 2008). These findings suggest that an additional

myocardially derived signal is required to complete EMT.

However, BMP2 could substitute for myocardium to

induce EMT, induce TGFb2 expression, and initiate EMT

in cultured mouse AV endothelial monolayers (Sugi et al.

2004). The regulation of EMT is probably species-specific

and thus different between mice and chicks.

Embryos deficient in BMP2 or BMP4 show embryonic

lethality before cushion tissue formation (Winnier et al.

1995; Zhang and Bradley 1996). Therefore, the conditional

knockout mouse generated using the Cre–loxP system has

recently been used in genetic approaches to BMPs and their

receptors. Cardiac-specific BMP2 deletion mice (Nkx2.5–

Cre) have less cardiac jelly and insufficient AV cushion

formation, but a normal OFT (Ma et al. 2005; Rivera-

Feliciano and Tabin 2006). Less BMP2 is expressed in the

OFT than in the AV region, thus other BMPs, such as

BMP4 and BMP7, may be involved in the formation of

OFT cushion tissue. Cardiac-specific BMP4 deletion

mice (Nkx2.5–Cre) show abnormal morphogenesis of the

pharyngeal arch arteries and defective OFT septation,

suggesting that BMP4 functions in the local proliferation

and migration of cardiac neural crest cells (Liu et al.

2004). Studies of mice with a myocardially specific BMP4

deletion (TnT–Cre) have shown that while BMP4 is dis-

pensable for the initiation of cushion formation, it is

specifically required for proper AV septation after cushion

formation (Jiao et al. 2003). Although the hearts of BMP5-,

BMP6- or BMP7-null mutant embryos develop normally,

overall cell density and trabeculation are reduced, and the

endocardial cushions are missing due to delayed heart

growth and differentiation in the BMP5/7 double mutant

(Solloway and Robertson 1999), and the formation of OFT

septation is delayed, and valve and chamber morphogen-

esis is defective in the BMP6/7 double mutant embryo

(Kim et al. 2001). Heterodimers composed of the DPP

subfamily (BMP2, BMP4) and 60A (BMP5, BMP6, BMP7,

BMP8 and PC-8), such as BMP2/7 and BMP4/7, exhibit a

significantly higher level of biological activity than an

equivalent amount of either of the relevant homodimers

(Hazama et al. 1995; Suzuki et al. 1997a, b; Nishimatsu

and Thomsen 1998). Consequently, a heterodimer of a
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different BMP subfamily might be required to control EMT

during cardiogenesis in vivo.

Signaling of TGFb and BMP

during cushion tissue formation

Members of the TGFb superfamily bind to two distinct

type II and type I serine/threonine kinase receptors, both of

which are required for signal transduction (Schmierer and

Hill 2007). TGFb binds to TGFBR2 (TGFbRII: type II

receptor) in combination with TGFBR1 (ALK5: type I

receptor) or ACVRL1 (ALK1: type I receptor). TGFBR2 is

expressed in the endocardium and myocardium during

chick or mouse embryonic heart development (Brown et al.

1996; Mariano et al. 1998; Jiao et al. 2006). Low levels of

TGFBR1 are expressed throughout the chick and mouse

embryo, including the endocardium (Mariano et al. 1998;

Desgrosellier et al. 2005), and ACVRL1 is expressed in the

mouse embryonic endocardium (Roelen et al. 1997).

Embryos deficient in TGFBR2, TGFBR1, and ACVRL1

develop embryonic lethality (Oshima et al. 1996; Oh et al.

2000; Larsson et al. 2001), whereas the myocardial-specific

deletion of TGFBR2 (TnT–Cre) results in a low incidence

of cardiac defects (Jiao et al. 2006). Myocardial TGFb
signaling may not be essential for normal heart develop-

ment. Endocardial-specific deletion of the TGFBR2 (Tie2–

Cre) results in normal AV cushion development (Jiao et al.

2006). However, assays using the embryonic heart of this

mutant mouse in vitro show that the endocardium does not

cause EMT activation and transformation. In collagen

culture assays using the chick embryonic heart, the addition

of anti-TGFBR2 antibody blocks endocardial cell activa-

tion and subsequent migration during EMT (Brown et al.

1996). These results indicate that complementary mecha-

nisms compensate for the loss of TGFBR2 in live embryos

in support of EMT. A recent study using the AV culture

system in vitro discovered that TGFBR1 mediates endo-

thelial cell proliferation and activation according to

developmental stage (Mercado-Pimentel et al. 2007).

Additionally, mice with a neural crest-specific TGFBR2

deletion (Wnt1–Cre) or a TGFBR1 deletion (Wnt1–Cre)

develop OFT defects (Choudhary et al. 2006; Wang et al.

2006). Reception of the TGFb signal by the neural crest

might be essential for cardiogenesis. Cushion tissue is not

formed in ACVRL1-null mice (Sorensen et al. 2003).

Complexes of type I and II receptors interact with co-

receptors on the cell surface, such as the TGFb type III

receptor (betaglican) or endoglin. The TGFb type III

receptor is localized in the endocardium and mesenchyme

of the AV cushion during chick heart development, and

anti-TGFb III antibody inhibits mesenchyme formation and

migration in AV explants (Brown et al. 1999). Endoglin is

expressed in the endocardium of chick and mouse embry-

onic heart, and the inhibition of its expression results in the

perturbation of EMT in vitro: endoglin-null mice display

embryonic lethal and cardiac malformation, including

cushion tissue defects (Bourdeau et al. 1999; Arthur et al.

2000; Mercado-Pimentel et al. 2007).

The target genes of TGFb during cushion tissue for-

mation remain uncertain. Romano and Runyan (1999,

2000) showed that one target of TGFb2 signaling is snail2

(slug) during chick endocardial cushion formation. Snail2,

a zinc finger transcription factor of the Snail superfamily, is

thought to be involved in epithelial–mesenchymal transi-

tions (Barrallo-Gimeno and Nieto 2005). During mouse

endocardial cushion tissue formation, Snail1, which is

expressed in AV endothelial and mesenchymal cells, sup-

presses the expression of VE-cadherin, suggesting that

TGFbs initiate EMT via snail gene induction (Timmerman

et al. 2004).

ACVR1 (ALK2), BMPR1A (ALK3), and BMPR1B

(ALK6) are type I receptors that transduce BMP signals

and locate in the endocardial and mesenchymal cells during

endocardial cushion tissue formation (Gu et al. 1999; Wang

et al. 2005). The BMPR1A gene is ubiquitously expressed

in the heart, whereas BMPR1B is not found in the devel-

oping heart (Dewulf et al. 1995). During chick cushion

tissue formation, ACVR1, BMPR1A, and BMPR1B are

expressed in the endocardium of the developing heart

(Desgrosellier et al. 2005; Okagawa et al. 2007).

Mouse embryos deficient in ACVR1, BMPR1A, and

BMPR2 (BMPRII: type II receptor) die before cardiac

development (Mishina et al. 1995, 1999; Gu et al. 1999;

Beppu et al. 2000). Endothelial-specific deletion of the

ACVR1 (Tie2–Cre) causes defects in the AV septa and

valves because of failure of the EMT (Wang et al. 2005).

This mouse also expresses lower levels of msx1 and snail1

as well as reduced phosphorylation of BMP and TGFb
Smads. Studies of AV explant cultures of the chick

embryonic heart in vitro have shown that anti-ACVR1

antibody inhibits EMT and that mis-expression of the

constitutive active ACVR1 in non-transforming ventricular

endocardial cells induces EMT (Lai et al. 2000; Desgro-

sellier et al. 2005). An ACVR1 deletion in the neural crest

(Wnt1–Cre) results in cardiovascular defects, including

persistent truncus arteriosus and abnormal maturation of

the aortic arch, as well as the inability to express msx1

(Kaartinen et al. 2004). A deletion of BMPR1A only in the

myocardium (aMHC–Cre) results in heart defects involv-

ing the interventricular septum, trabeculae, and AV

cushion and decreased TGFb2 expression specifically in

the myocardium adjacent to the AV canal but not in the

OFT (Gaussin et al. 2002). A deletion of BMPR1A in

endothelial cells (Tie1–Cre) results in severely impaired

EMT in the AV canal region (Song et al. 2007), whereas

TGFb and BMP in heart development 81
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that in the neural crest (Wnt1–Cre) causes a shortened

cardiac OFT with defective septation, and embryos die in

mid-gestation with reduced proliferation of the ventricular

myocardium (Stottmann et al. 2004). Knockout mice

expressing BMPR2 altered to reduce signaling capacity

have defective septation of the conotruncus, whereas the

atrioventricular valves are apparently unaffected (Délot

et al. 2003).

Smad proteins are major intracellular mediators of sig-

naling activated by TGFb superfamily ligands. The Smad1,

Smad2, Smad3, Smad5, and Smad8 proteins (receptor-

regulated Smad: R-Smad) are phosphorylated and activated

by type I receptors; they are also associated with the com-

mon partner, Smad4, to trigger transcriptional responses.

Inhibitory Smad6 and Smad7 (inhibitory Smad: I-Smad) are

associated with type I receptors and prevent R-smad acti-

vation (Miyazawa et al. 2002). The Smad6 mutant mouse

develops multiple cardiovascular abnormalities, such as

hyperplasia of the cardiac valves and OFT septation defects,

indicating that Smad6 is functionally important in the reg-

ulation of endocardial cushion formation (Galvin et al.

2000). Smad6 expression is induced by the BMP signal via

ACVR1 and preferentially inhibits BMP signaling (Yamada

et al. 1999; Desgrosellier et al. 2005). Therefore, Smad6

appears to act as a negative regulator of EMT during

endocardial cushion tissue formation.

Little is understood about the target genes of BMP

signals during cushion tissue formation. The homeodomain

transcription factors, msx1 and msx2, are BMP target genes

(Chen et al. 1996; Watanabe and Le Douarin 1996; Barlow

and Francis-west 1997; Suzuki et al. 1997b; Bei and Maas

1998), and msx1 is expressed in endocardial and mesen-

chymal cells during EMT (Chan-Thomas et al. 1993;

Yamagishi et al. 2005). Mice deficient in BMP2 (Nkx2.5–

Cre) or ACVR1 (Tie2–Cre; Wnt1–Cre) express lower

levels of msx1 (Kaartinen et al. 2004; Ma et al. 2005;

Wang et al. 2005), suggesting that BMP regulates msx1 via

ACVR1. Preactivated AV endothelial cells cultured with

BMP express msx1, but to a lesser extent than that induced

by associated myocardium (Yamagishi et al. 2005), sug-

gesting that in addition to BMP, other factors are required

for msx1 expression. Although antisense ODN to chick

Msx1 inhibited the invasion of mesenchymal cells in cul-

ture (Yamagishi et al. 2005), mouse embryos with a

deletion of msx1 develop a normal heart (Satokata and

Maas 1994). Double msx1/2 mutant mice have defective

OFT development (Ishii et al. 2005; Chen et al. 2007).

Thus, signal(s) via msx1/2 may regulate not only endo-

cardial EMT, but also survival and expansion during

cardiogenesis. To date, signal regulation of endocardial

EMT is largely unknown. Further studies are required to

fully elucidate the mechanisms regulating endocardial

EMT.

Other signaling pathways regulating

cushion tissue formation

The results from genetic analyses using gain- or loss-of-

function have revealed that there are several signaling

pathways regulating endocardial EMT. Vascular endothe-

lial growth factors (VEGFs) regulate the blood vessel

formation of angiogenesis as well as vasculogenesis during

development (Ferrara et al. 2003). During mouse cushion

tissue formation, VEGF-A mRNA is expressed in the

myocardium and endocardium (Dor et al. 2001). Overex-

pression of VEGF-A in mice induces malformation of heart

development caused by abnormal cushion tissue formation

(Miquerol et al. 2000; Dor et al. 2001). Expression of

myocardial VEGF-A mRNA is repressed by NFATs

(nuclear factor of activated T cells), and this event is

essential for the endocardium to transform into mesen-

chyme (Chang et al. 2004). The epidermal growth factor

(EGF)–ErbB signaling network contributes to cushion tis-

sue development (Iwamoto and Mekada 2006): null mice

of HB-EGF or EGFR display hyperplasia of mesenchyme

in cushion tissue (Chen et al. 2000; Iwamoto et al. 2003).

In addition, the deletion of ErbB3, neuregulin-1, or has-2

(hyaluronan synthase-2) results in hypoplasia of mesen-

chyme in cushion tissue (Meyer and Birchmeier 1995;

Erickson et al. 1997; Camenisch et al. 2000, 2002a, b). The

Notch signaling pathway controls cell fate and has been

demonstrated to be essential for cardiovascular develop-

ment, including cushion tissue formation (High and Epstein

2008; Niessen and Karsan 2008). Null mice of Notch1,

Rbpj, or Hey1/L (Notch target genes) fail to form cushion

tissue (Timmerman et al. 2004; Fischer et al. 2007). Wnt/

b–catenin signaling is known to control many develop-

mental processes, but its roles in cushion tissue formation

are still obscure. Wnt9a regulates mesenchymal cell pro-

liferation during avian cushion tissue development, and the

endothelial deficiency of b-catenin conditional knockout

mouse leads to a lack of heart cushion (Liebner et al. 2004;

Person et al. 2005). During zebrafish heart development,

overexpression of Apc (adenomatous polyposis coli) and

Dickkopf 1 (Wnt antagonist) blocks cushion tissue for-

mation (Hurlstone et al. 2003). Neurofibromatosis type 1

(NF1), which encodes neurofibromin and is the responsible

gene for the human genetic disorder neurofibromatosis

can downregulate ras-activity. Therefore, the NF1 that is

expressed in the endocardial cushions controls ras activity,

and mice null-mutant for Nf1 show an overabundance of

cushion tissue in the OFT and AV regions (Lakkis and

Epstein 1998). In addition to the above-mentioned signal-

ing pathways, several transcription factors, cell adhesion

molecules, and proteases have been reported to play a role

in the regulation of endocardial EMT during cushion tissue

formation.
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Conclusion

Figure 3 shows a schematic model of EMT during cushion

tissue formation. Both TGFb and BMP play critical roles in

the initial phenotypic change in the endocardium in EMT.

Despite considerable insight, many questions must be

answered to clarify the molecular mechanisms of cushion

tissue formation. A few reports have addressed the target

genes that are induced by BMP or TGFb. Numerous fac-

tors, such as VEGF, NFATc, ErbB, Notch, b-catenin, and

NF1, regulate endocardial EMT (Armstrong and Bischoff

2004). However, the signaling network among these factors

during cushion tissue formation remains unknown. Further

dissection of the mechanisms regulating valvo–septal

cushion formation may provide valuable data towards

furthering our understanding of the etiology of congenital

heart defects as well as contributing to the development of

therapeutic strategies aimed at combating heart diseases.
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