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Abstract
The randomized control trial (RCT) is the primary experimental design in education research due to its strong internal 
validity for causal inference. However, in situations where RCTs are not feasible or ethical, quasi-experiments are alterna-
tives to establish causal inference. This paper serves as an introduction to several quasi-experimental designs: regression 
discontinuity design, difference-in-differences analysis, interrupted time series design, instrumental variable analysis, and 
propensity score analysis with examples in education research.
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A typical question in education research is about the effec-
tiveness of a treatment, of which the treatment can be an 
education program, a curriculum, or a policy of interest, 
is that whether the treatment have a causal impact on the 
outcome of interest. For example, Jennings et al. (2017) 
developed a mindfulness-based professional development 
program to promote teachers’ social and emotional compe-
tence and improve the quality of classroom interactions. To 
investigate the effectiveness of the program, eligible teachers 
were randomly assigned to receive this program (treatment) 
or to receive standard professional development activities by 
their schools (control). Randomized control trials (RCTs), 
where treatment conditions are randomly assigned, are the 
most popular research designs because they can establish 
strong internal validity, the extent to which the research 
results support the causal effect. The What Works Clear-
inghouse (WWC) Procedures and Standards Handbook 
(Version 5) by the U.S. Department of Education’s Insti-
tute of Education (2022) provides standards and guidelines 
to review and summarize the quality of existing research 
in educational programs, products, practices, and policies. 
According to its report, the highest possible research rating 
on RCTs is “meeting WWC standards without reservations” 
when the assumptions of RCTs are satisfied. The strong 

internal validity of RCTs is supported by different logical 
frameworks for causal inference such as potential outcomes 
framework and directed acyclic graph framework (see the 
specific articles contained in this special issue).

However, there are situations where RCTs are not feasible 
or ethical, therefore, the methodology cannot be applied. 
Quasi-experimental designs aim to establish the causal effect 
of a treatment on an outcome in the absence of RCTs. The 
regression discontinuity design (RDD) is a quasi-experiment 
that can achieve high internal validity. As an example of 
the RDD, Wong et al. (2008) conducted a study in the U.S. 
They compared a group of children who were 4 years of 
age and completed state pre-kindergarten programs with 
another group of children who were the same age but did 
not participate in the programs. The aim was to investigate 
the effects of state pre-kindergarten programs on children’s 
receptive vocabulary, math, and print awareness skills. The 
pre-kindergarten program enrollment was not randomized, 
and it was determined by a continuous assignment variable: 
children’s date of birth.

Besides the RDD, there are other quasi-experimental 
designs such as difference-in-differences analysis (DiD), 
interrupted time series design (ITS), instrumental variable 
(IV) analysis, as well as propensity score analysis (PSA). 
First, we present a survey about the usage of quasi-experi-
mental designs in education research. In each design, we use 
the potential outcomes framework to define the causal effects 
and overview the causal assumptions and statistical analyses 
with examples in education research.
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Use of quasi‑experimental designs 
in education research

We used the search engine hosted by EBSCO, to sum up the 
number of publications on different designs between 2016 
and 2022 in the ERIC database using the following phrases: 
randomized (control) trial (or randomization), regression 
discontinuity, difference-in-differences (or gain score analy-
sis), interrupted time series (or comparative interrupted time 
series), instrumental variable, and propensity score (or group 
equating, nonequivalent groups design).1 Figure 1 shows the 
results. As expected, the usage of RCTs far exceeded all 
other designs. Among the quasi-experimental designs, PSAs 
were the most utilized, followed by DiDs, RDDs, IVs, and 
ITSs. There was a steady increase in the usage of DiDs. The 
frequencies of the usage of RDDs, ITSs, and IVs were stable 
yet infrequent over time.

Causal estimands and causal assumptions

We utilize the potential outcomes framework (Neyman 
et al., 1990; Rubin, 2006) to identify the causal estimands. 
Throughout the paper, we focus on a two-group design 
(treatment and control). For simplicity, we assume that the 
data have no missing values in every design and refer readers 
to textbooks on missing data analysis (Enders, 2022; Little 
& Rubin, 2019). Cham and West (2016) reviewed strategies 
to handle missing values in PSAs.

Let Ti denote participant i’s treatment assignment 
(1 = treatment, 0 = control). Then, according to the poten-
tial outcomes framework, participant i has two potential 
(hypothetical) outcomes: the potential treatment outcome 
if participant i is assigned to the treatment group, Yi(T = 1) 
or Yi(1) , and the potential control outcome if participant i is 
assigned to the control group, Yi(T = 0) or Yi(0) . Participant 
i’s individual causal effect (ICE) is defined as Yi(1) − Yi(0) . 
Based on the ICE, there can be three causal estimands: the 
average treatment effect (ATE) is the average ICE across 
all participants (Eq. 1); the average treatment effect on the 
treated (ATT​) is the average ICE among participants who are 
actually assigned to the treatment group (Eq. 2); the average 
treatment effect on the untreated (ATU​) is the average ICE 
among participants who are actually assigned to the control 
group (Eq. 3).

where E(⋅) is the expected value and | is the condition 
function.

The ICE suffers from the “fundamental problem of causal 
inference” (Holland, 1986), that is, it is impossible to meas-
ure the potential treatment and control outcomes, Yi(1) and 
Yi(0) , at the same time. In different designs, the ATE, ATT​
, or ATU​ may be identified under different causal assump-
tions. For instance, in RCTs where participants are randomly 
assigned to either a treatment or a control group, the inde-
pendence assumption is met (by design). This assumption 
means that Yi(1) and Yi(0) are independent of the treatment 
assignment Ti . This assumption implies that there is no con-
founding. Confounders are covariates that causally affect the 
treatment assignment and potential outcomes. The independ-
ence assumption guarantees internal validity for successfully 
implemented RCTs.

Given the independence assumption, the ATE, ATT​, and 
ATU​ are identical in RCTs and are estimated as:

(1)ATE = E
(
Yi(1) − Yi(0)

)

(2)ATT = E
(
Yi(1) − Yi(0)|Ti = 1

)

(3)ATU = E
(
Yi(1) − Yi(0)|Ti = 0

)
,

Fig. 1   Number of publications in ERIC between 2016 and 2022. 
This figure is based on the search in EBSCO using the following key-
words. Randomized Control Trial: randomization, randomized trial, 
randomized control trial. Regression Discontinuity: regression dis-
continuity. Difference-in-Differences: difference-in-differences, gain 
score analysis. Interrupted Time Series: interrupted time series, com-
parative interrupted time series. Instrumental variable: instrumental 
variable. Propensity Score: propensity score, group equating, non-
equivalent groups design

1  The search engine by EBSCO does not offer searches within the 
publications’ keywords. We replicated the same search in PsycINFO, 
and its search engine allows searches within the publications’ key-
words. The results from PsycINFO were, in general, consistent with 
the results from ERIC and are available upon request.
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where Yi is participant i’s measured outcome. Simply speak-
ing, the ATE, ATT​, and ATU​ are sample mean differences of 
the outcome between the treatment and control groups. In 
quasi-experimental designs where participants are not ran-
domly assigned, the independence assumption is not met 
without conditioning on or adjusting for a set of covariates 
so that the confounding bias is removed. Other assumptions 
are required to identify the causal estimands in quasi-exper-
imental designs, which are presented later.

Stable unit treatment value assumption

To identify the causal estimands, all the research designs 
introduced in this paper need to fulfill the stable unit treat-
ment value assumption (SUTVA) (Rubin, 2006). For sim-
plicity, we will not mention the SUTVA when introducing 
each design thereafter. This assumption has two aspects. The 
first aspect is that all participant’s potential treatment and 
control outcomes are unaffected by the treatment assignment 
of other participants. This is also known as the no spillover 
effect. The second aspect is that the treatment and control 
conditions are homogenously implemented to all partici-
pants. This is also known as the perfect fidelity of treatment 
(Feely et al., 2018).

One example that violates the first aspect of the SUTVA 
(no spillover effect) is that a control group participant inter-
acts with a treatment group participant. In the example of 
Jennings et al. (2017), imagine that a teacher in school A 
was randomly assigned to the treatment group, and another 
teacher in the same school was randomly assigned to the 
control group. It is possible and likely that teachers would 
exchange information about the treatment program, and thus, 
this part of the SUTVA would be violated. One solution is to 
isolate or separate the treatment and control groups. Another 
solution is a clustered design, which puts participants who 
are likely to interact with each other into the same cluster, 
and treatment assignment is conducted at the cluster level. 
In Jennings et al. (2017), a clustered RCT design was con-
ducted at the school level; that is, teachers at the same school 
were all assigned to the treatment or control group.

One violation of the second aspect of the SUTVA (per-
fect fidelity of treatment) is that there are variations when 
implementing the treatment or control groups. In the exam-
ple of Jennings et al. (2017), imagine that a facilitator of 
the treatment program intentionally dropped one program 
component because the facilitator thought that this compo-
nent would not be effective. In practice, researchers shall 
assess the fidelity of treatment. In Jennings et al. (2017), 
two trained researchers assessed the completion of treatment 
program components. On average, 88% (range = 86–91%) of 
the facilitation activity components listed in the treatment 

(4)ATE = ATT = ATU = E
(
Yi|Ti = 1

)
− E

(
Yi|Ti = 0

)
, program manual were completed. Feely et al. (2018) pro-

vided guidelines for assessing the fidelity of treatment.
While this section described the causal estimands and 

causal assumptions needed for all quasi-experimental 
designs, we now discuss different quasi-experimental 
designs, their rationales, and the specific causal assumptions 
needed to identify and estimate causal estimands.

Regression discontinuity design (RDD)

The regression discontinuity design (RDD), proposed by 
Donald Campbell (Cook, 2008), assigns participants to the 
treatment group or to the control group based on a cutoff 
value of a continuous variable. This design is also known 
as a sharp RDD. Equation 5 mathematically presents the 
treatment assignment in a sharp RDD (Bloom, 2012; Cun-
ningham, 2021; Imbens & Lemieux, 2008):

where Xi is participant i’s continuous assignment variable 
and c is the cutoff value of X.

In the example of Wong et al. (2008), they solicited offi-
cials from 38 states in the U.S. that had state pre-kindergar-
ten (pre-K) programs. Five states (Michigan, New Jersey, 
Oklahoma, South Carolina, and West Virginia) agreed to 
join and offered support and cooperation for the study. The 
treatment group was composed of children who completed 
pre-K in the spring of 2004 and started kindergarten in the 
fall of 2004. The control group was composed of children 
who just started pre-K in the fall of 2004. A child’s age (in 
days) was used as the continuous assignment variable, and 
the cutoff value was the age of 4 years. The eligibility to 
enroll in a pre-K program required that the child reach the 
age of four by a clearly defined date in the fall. That is, if 
the child’s birth date was after the eligibility date (i.e., is not 
yet 4 years old), the child was not eligible for enrollment. 
We simulated a dataset based on the results of the pre-K 
effect on mathematical skills in Michigan. Figure 2A shows 
the scatterplot of the mathematical skills scores (y-axis) 
against the continuous assignment variable, the age of the 
child (x-axis).

Causal estimand

In a sharp RDD, the causal estimand is the average treat-
ment effect at the cutoff value (ATEC) (Bloom, 2012; Cun-
ningham, 2021; Imbens & Lemieux, 2008; Lee & Lemieux, 
2010):

(5)Ti = 1 if (Xi ≥ c)

(6)Ti = 0 if
(
Xi < c

)
,
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In Wong et al. (2008), the ATEC is the average effect 
of state pre-K programs on the mathematical skills of the 
4-year-old children at the cutoff (eligibility date).

(7)ATEC = E
(
Yi(1) − Yi(0)|Xi = c

) Causal assumption

The sharp RDD requires the continuity assumption, mean-
ing that the conditional regression functions of the potential 
treatment and potential control outcomes are continuous 
(smooth) functions of the assignment variable X across x 
(Bloom, 2012; Cunningham, 2021; Imbens & Lemieux, 
2008; Lee & Lemieux, 2010):

(A) Scatterplot (B) With Lowess Lines Imposed

(C) With Linear Regression Lines Imposed

Fig. 2   Scatterplots of sharp regression discontinuity design. The grey areas in panels B and C are the 95% confidence bands
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The continuity assumption implies that Yi(1) and Yi(0) are 
conditionally independent of the treatment assignment Ti at 
cutoff c (Cunningham, 2021; Rosenbaum & Rubin, 1983). In 
other words, there is no confounding at the cutoff c.

The continuity assumption requires that the assignment 
variable X is numeric and continuous. In practice, the assign-
ment variable may not fulfill this requirement perfectly. 
Shadish et al. (2002) suggested that the statistical power 
of sharp RDDs increases when the assignment variable has 
a greater number of response categories. Suk et al. (2022) 
presented the identification and estimation of the causal esti-
mand when the assignment variable is ordinal.

Another assumption researchers should check in sharp 
RDDs is whether all participants are assigned to the treat-
ment or control groups according to the cutoff (Eq. 5). This 
is also known as compliance. Visualization can aid in exam-
ining this assumption. To illustrate, we use the same simu-
lated data based on Wong et al. (2008) in Fig. 2, which has 
the assumption of compliance fulfilled. Figure 3 shows a line 
graph of the treatment receipt (y-axis) against the assign-
ment variable (x-axis; Bloom, 2012; Wong et al., 2008). If 
compliance is fulfilled, there is a horizontal line lies on the 
y-axis = 0 when the x-axis < cutoff c. There is a sharp vertical 
increase from 0 to 1 on the y-axis at the cutoff on the x-axis, 
and then there is a horizontal line that lies on the y-axis = 1 
when the x-axis > cutoff c (Fig. 3A). If compliance is not 
fulfilled, there are vertical bumps between 0 and 1 on the 
y-axis along the x-axis, usually around the cutoff c (Fig. 3B). 
In case of noncompliance, researchers can consider a fuzzy 
RDD (Imbens & Lemieux, 2008; Lee & Lemieux, 2010; see 
the specific articles contained in this special issue).

Statistical analysis

Given the continuity assumption in sharp RDDs, the ATEC 
can be estimated as (Bloom, 2012; Imbens & Lemieux, 
2008; Lee & Lemieux, 2010):

where lim
x↓c

 and lim
x↑c

 mean the limit of the function (here, 
E
(
Yi|Xi = x

)
 ) as x approaches the cutoff c. Figure 2A illus-

trates that there are no-treatment group participants when 
X < c, and no control group participants at when X ≥ c. Based 
on the treatment assignment rule in Eq. 5, positivity is vio-
lated, which is defined as (Imbens & Lemieux, 2008; Lee & 
Lemieux, 2010):

(8)
E
(
Yi(1)|Xi = x

)
andE

(
Yi(0)|Xi = x

)
are continuous in x

(9)ATEC = ���
x↓c

E
(
Yi|Xi = x

)
− ���

x↑c
E
(
Yi|Xi = x

)
,

(10)0 < P
(
Ti = 1|Xi = x

)
< 1,

where x is any value of X across its range (including cutoff 
c), and P(⋅) is the probability function.

Regression analysis can be used to estimate the ATEC. 
The dependent variable is the measured outcome Y, and the 
independent variables are the continuous assignment varia-
ble X and the treatment assignment T (1 = treatment, 0 = con-
trol). Before running the regression analysis, it is suggested 
to fit the lowess (locally weighted scatterplot smoothing) 
curves of the outcome (y-axis) against the assignment varia-
ble (x-axis) of the treatment and control groups, respectively 
(Fig. 2B; Wong et al., 2008). The lowess curves, which are 
smooth curves created by fitting localized subsets of the data 
in scatterplots, help to determine the functional forms in 
regression. If the lowess curves (or regression lines) show 
a discontinuity at the cutoff value, then the estimated ATEC 
will be different from zero. In the simulated example based 

(A) Compliance Fulfilled

(B) Compliance Not Fulfilled

Fig. 3   Line plots of actual treatment assignment against continuous 
assignment variable when compliance is fulfilled and is not fulfilled
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on Wong et al. (2008), the lowess curves of the treatment 
and control groups were linear and parallel (i.e., no interac-
tion between the treatment assignment and the assignment 
variable). Equation 10 and Fig. 2C present the linear regres-
sion model for this example:

where ei is participant i’s residual, assignment variable X is 
centered at the cutoff c.

When using regression analysis to estimate the ATEC, all 
assumptions in regression analysis apply, such as the correct 
model specification assumption. For instance, if the low-
ess curves in Fig. 2B are nonlinear, other functional forms, 
including polynomial regression, spline regression, and ker-
nel regression, can be utilized. If the lowess curves of the 
treatment and control groups are not parallel, the interac-
tion between the assignment variable and treatment indicator 
(X × T) should be considered for inclusion.

Remarks: statistical power and generalizability

The statistical power of sharp RDDs is often lower than that 
of RCTs (Jacob et al., 2012; Reichardt, 2019) because of 
the collinearity between the treatment assignment and the 
assignment variables. The assignment variable’s cutoff value 
also determines statistical power, which is at its maximum 
when the cutoff is equal to the median of the assignment 
variable (Reichardt, 2019; Shadish et al., 2002). Shadish 
et al. (2002) suggested minimizing model overfit in regres-
sion analysis, which can reduce statistical power.

RDDs are inferior to RCTs in terms of generalizability. 
The ATEC is the ATE of the subpopulation of participants 
who score at the cutoff. Caution must be exercised when 
generalizing ATEC to participants who do not score at this 
cutoff.

Summary

While RDDs were underutilized (Fig. 1), they are an excel-
lent alternative to RCTs, which can achieve high internal 
validity. Given the continuity assumption, there is no con-
founding at the limits approaching the cutoff. The violation 
of the assumption means that a confounder would have to (a) 
occur at the cutoff of the assignment variable and (b) cause 
the discontinuity in regression lines. In RDDs, Shadish et al. 
(2002) suggested considering if there is an event that could 
affect the outcome happening only to one group but not the 
other group. This is also known as a “history” confounder.

(11)Yi = b0 + b1
(
Xi − c

)
+ b2Ti + ei,

Difference‑in‑differences analysis (DiD)

As shown in Fig. 1, DiDs have been gaining popularity in 
education research. The DiD is a longitudinal design that 
requires a pre-treatment measurement and a post-treatment 
measurement of the outcome. DiDs do not require randomi-
zation nor any specific treatment assignment rule for the 
treatment and control groups. The simplicity of DiDs may 
be one reason for their increasing popularity. For instance, 
a DiD was utilized to investigate the effect of homework 
assignments on a college course midterm exam performance 
(Latif & Miles, 2020). In an introductory statistics course 
in a Canadian business school, students of all class sec-
tions were administered the same midterm exam #1 (pre-
treatment measurement of the outcome). After midterm #1, 
students in the treatment class section received homework 
assignments, and students in the control class section had 
no homework assignments. Both class sections administered 
the same midterm exam #2 (post-treatment measurement of 
the outcome).2

Causal estimand

In DiDs, participant i has two potential outcomes: the poten-
tial treatment outcome at post-treatment (subscript post) if 
participant i is assigned to the treatment group, Yi,post(1) , and 
the potential control outcome at post-treatment if participant 
i is assigned to the control group, Yi,post(0) . In DiDs, the ATT​ 
is the same as that in Eq. 2, except that it is the average ICE 
at post-treatment among the treatment group.

In the example, the ATT​ means the average of the mid-
term #2 scores of the students who were given homework 
assignments after midterm #1, compared to their midterm 
#2 scores if they were not given homework assignments.

Causal assumption

Because DiDs do not require randomization or any spe-
cific treatment assignment rules, neither the independ-
ence assumption in RCTs nor the continuity assumption 
in RDDs applies. Another causal assumption, termed the 
parallel trends assumption, is required in DiDs (Roth et al., 
2023; Stuart et al., 2014). The parallel trends assumption 
means that the average difference between the post-treatment 
potential outcome ( Yi,post(0) ) and the measured pre-treatment 

(12)ATT = E
(
Yi,post(1) − Yi,post(0)|Ti = 1

)

2  Latif and Miles (2020) had another group of students who were 
given in-class quizzes after midterm #1. For simplicity, we did not 
include this group in this paper.



617Quasi‑experimental designs for causal inference: an overview﻿	

outcome ( Yi,pre ) is the same between the treatment and con-
trol groups:

To illustrate the parallel trends assumption (Fig. 4), we 
simulated a data example based on Latif and Miles (2020). 
Note that Yi,post(0) cannot be measured among the treatment 
group participants. Therefore, the line for the treatment 
group is dashed after the treatment. The two quantities in 
Eq. 12 are parallel in Fig. 4, meaning that if the participants 
of the two groups would all receive the control condition, the 
two groups would have the same average level of change in 
the outcome. In the example of Latif and Miles (2020), the 
parallel trends assumption means that if both class sections 
were given no homework assignments, the average change 
between midterm #2 and midterm #1 scores would be equal 
between the two class sections.

Statistical analysis

Given the parallel trends assumption, the ATT​ is identified 
as (Roth et al., 2023):

where Yi,post is participant i’s measured post-treatment out-
come. Simply speaking, the ATT​ is the average outcome’s 

(13)
E
(
Yi,post(0) − Yi,pre|Ti = 1

)
= E

(
Yi,post(0) − Yi,pre|Ti = 0

)

(14)
ATT = E

(
Yi,post − Yi,pre|Ti = 1

)
− E

(
Yi,post − Yi,pre|Ti = 0

)
,

difference between post-treatment and pre-treatment of the 
treatment group minus that of the control group. Thus, the 
design is named “difference-in-differences”.

Multilevel regression analysis can be used to estimate 
the ATT​ in a DiD (Eq. 14). In this analysis, the dataset has 
a clustered structure in which each participant has two rows 
of data, one row for the pre-treatment measurements and one 
row for the post-treatment measurements.

where the subscript i denotes the participant and the sub-
script t denotes the time point (pre-treatment or post-treat-
ment, Y is the measured outcome, time is a dummy vari-
able of time (0 = pre-treatment, 1 = post-treatment), u0i is 
the level-2 residual, and eti is the level-1 residual. The b0 
coefficient is the average pre-treatment outcome of the con-
trol group; the b1 coefficient is the post-minus pre-treatment 
outcome difference of the control group; the b2 coefficient is 
the pre-treatment outcome difference between the treatment 
and control group; the b3 coefficient is the ATT​ estimate, 
which is the post- minus pre-treatment difference between 
the treatment and control groups. Figure 5A presents the 
results from Eq. 14 of simulated data based on the findings 
of Latif and Miles (2020).

Remarks: potential confounders

The success of DiDs relies heavily on the parallel trends 
assumption, yet it is untestable. Equivalence in the aver-
age measured pre-treatment outcome between the treat-
ment and control groups can help to make the parallel 
trends assumption more credible (Shadish et al., 2002). 
DiDs can deal with time-invariant confounding. How-
ever, DiDs fail if confounding varies over time, that is, 
the confounders’ impact on the post-treatment outcome 
is not the same as their impact on the pre-treatment out-
come. Researchers may include time-varying covari-
ates to make the parallel trends assumption more likely. 
Shadish et al. (2002) suggested that researchers carefully 
consider the patterns of results to identify potential con-
founders. In the previous example, the homework assign-
ments (treatment) group had lower pre-treatment midterm 
scores than the control group, and the treatment group 
had higher increases in post-treatment midterm scores 
than the control group. It could be argued that the treat-
ment group students had a faster learning rate than the 
control group students, but not the treatment itself that 
caused the improvement (termed selection × maturation 
confounder; Shadish et al., 2002). In such a situation, the 
parallel trends assumption would be violated (Fig. 5B). 
Shadish et al. (2002) extensively discussed various design 
elements that can be added to detect or rule out the 

(15)Yti = b0 + b1timeti + b2Ti + b3
(
timeti × Ti

)
+ u0i + eti,

Fig. 4   Illustration of the parallel trends assumption in difference-in-
differences design. The dashed line of the treatment group indicates 
that the potential outcome cannot be actually measured at post-meas-
urement
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confounders or enhance and strengthen the research con-
clusions in DiDs. One design element is adding another 
time point for the pre-treatment measurement. This allows 
the examination of the parallel trends assumption by visu-
alizing or testing whether the trends of the pre-treatment 
outcomes are parallel between the treatment and control 
groups. If design elements are not plausible, researchers 
shall measure the confounder and include it in the regres-
sion analysis.

Summary

The DiD has been gaining popularity in education research 
(Fig. 1). It can produce the ATT​ given that the parallel 
trends assumption is fulfilled. However, the parallel trends 

assumption is untestable. We recommend readers study the 
results and consider whether the parallel trends assumption 
is plausible.

Interrupted time series design (ITS)

The ITS is a within-subject longitudinal design where the 
unit of observation is time. Each participant is exposed to 
or receives both the treatment and control conditions. For 
simplicity, let’s consider there is one participant first. In 
ITSs, the control condition is no treatment. The participant 
receives multiple (> 1) pre-treatment outcome measurements 
over time. At a certain time point, the participant is exposed 
to or receives the treatment condition. Upon completion of 
the treatment, the participant receives multiple (> 1) post-
treatment outcome measurements over time. Maynard and 
Young (2022) conducted an ITS to study the effect of a trait-
based instructional approach (treatment) on third-grade stu-
dents’ writing achievement. Before treatment, students were 
asked to complete one essay in response to a writing prompt 
each day for 5 days. Six weeks after the treatment, students 
were asked to complete one essay in response to a writing 
prompt each day for 5 days. In their study, 20 students joined 
the treatment. This study had a clustered data structure with 
repeated measures nested within students.

Causal assumptions and estimand

If time can be quantified as a continuous variable (e.g., second 
or day), the ITS is similar to the sharp RDD in which time 
is the continuous assignment variable (Kim & Steiner, 2016; 
Reichardt, 2019; West et al., 2014). In ITSs, researchers often 
are not only interested in the average treatment effect at the 
treatment time point (i.e., when the treatment occurs) but are 
also interested in the delayed treatment effect that occurs later 
than the treatment time point. ITSs assume that the potential 
control outcomes for the post-treatment period can be reliably 
predicted from the pre-treatment time series. Thus, it is neces-
sary to assume the stability of the functional form learned from 
the pre-treatment time series across the post-treatment time 
points. In other words, the control time series is stable across 
the pre- and post-treatment time points. In addition, ITSs 
assume that no other alternative treatments that may impact the 
outcome can take place during the post-treatment time periods 
(termed history confounder; Reichardt, 2019; Shadish et al., 
2002). Given these assumptions, the ATT​ is identified at the 
post-treatment time point.

Reichardt (2019) and Shadish et al. (2002) suggested con-
sidering the existence of a history confounder in an ITS. In 
the example of Maynard and Young (2022), imagine that the 

(A) Regression results (Equation 14)

(B) Illustration of maturation confounding that violates the parallel trends assumption

Fig. 5   Results of difference-in-differences design
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school library initiated an after-school writing tutoring pro-
gram and welcomed any students joining the program. Some 
students in the study had joined the tutoring program, and 
the tutoring program is argued to improve students’ writing 
achievement. To examine the existence of this history con-
founder, we can add a comparison group of the third-grade stu-
dents who were not in the study and joined the writing tutoring 
program. This design is known as a comparative interrupted 
time series design and will be discussed later.

Statistical analysis

Regression analysis can be used to estimate the ATT​ at any 
post-treatment time point in an ITS. In the regression model, 
the dependent variable is the outcome, and the independent 
variables are the continuous time variable and the treatment 
status T (1 = treatment, 0 = control). To illustrate the regression 
analysis, we simulated a dataset based on the results of May-
nard and Young (2022). The dataset had a clustered structure 
with repeated measures (level-1) nested within participants 
(level-2). Each row in the dataset reflected one time point of 
a participant. In the analysis, the time variable was the day 
(centered at day 1 after treatment).

First, we visualized the relationships of the outcome (y-axis) 
against the time variable (x-axis) across the pre-treatment and 
post-treatment periods, respectively. This helps to determine 
the functional form of the times series. Figure 6A shows the 
line graphs of each student, together with the line graph of the 
sample mean. Results showed a flat linear change in writing 
achievement before treatment, an immediate increase in writ-
ing achievement right after treatment (suggesting a positive 
ATT​ at this post-treatment time point), and then a steady linear 
increase in writing achievement over time after treatment. The 
figure also shows that the trends are about parallel across stu-
dents, suggesting that random slopes are not necessary in the 
multilevel regression model. Equation 15 shows the multilevel 
regression model with a linear trend of time as well as the 
interaction effect between time and treatment status included 
(Fig. 6B):

where the subscript t is time and the subscript i represents 
the student, Y is the measured outcome (writing achieve-
ment), time = (− 5, − 4, …4) for the 1st to the 10th day 
(i.e., centered at day 1 after treatment, which is the treat-
ment time point), T is treatment status (0 = control, 1 = treat-
ment), eti is level-1 residual and u0i is level-2 residual. The 
b0 coefficient is the average outcome before treatment at the 
treatment time point; the b1 coefficient is the linear slope of 
time before treatment; the b2 coefficient is the ATT​ estimate 
on day 1 after treatment; the b3 coefficient is the difference 
of average linear slope of time between post-treatment and 

(16)Yti = b0 + b1timeti + b2Ti + b3
(
timeti × Ti

)
+ u0i + eti,

pre-treatment. Researchers can re-center the time variable 
at a different post-treatment time point to estimate the ATT​ 
at that time (West et al., 2014).

Assumptions in multilevel regression apply to calculate 
an unbiased ATT​ estimate and correct statistical inferences. 
In particular, the regression model needs to be correctly 
specified (Kim & Steiner, 2016; West et al., 2014). Inter-
ested readers are referred to tutorials about other functional 
forms, including nonlinear growth patterns (e.g., quadratic, 
exponential) and cyclic patterns (e.g., sinusoidal) (Grimm & 
McArdle, 2023). If the time assignment variable is equally 

(A) Line graphs of each student across time, and of sample mean across time

(B) Regression results (Equation 15)

Fig. 6   Results of interrupted time series design
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spaced, as in our example, some multilevel regression soft-
ware allows different covariance structure of the level-1 
residual eti , including autoregressive lag-1, autoregression 
moving average, and compound symmetry. Correct speci-
fication of the level-1 residual covariance structure can 
increase statistical power (Kwok et al., 2007; Reichardt, 
2019).

Comparative interrupted time series (CITS)

As mentioned previously, CITSs extend from ITSs by adding 
another comparison group of participants who do not receive 
the treatment over the same time period. To avoid confusion, 
we used the term comparison group to distinguish it from 
the control status (pre-treatment). CITSs also extend from 
DiDs by adding multiple pre-treatment and post-treatment 
measurements of the outcome. Like DiDs, the assignment of 
participants to the treatment and comparison groups does not 
require randomization or specific assignment rules in CITSs.

Kim and Steiner (2016) and Wong et al. (2013) pre-
sented the causal estimands and assumptions of CITSs. The 
assumptions in ITSs and the parallel trends assumption in 
DiDs are applicable to both the treatment and comparison 
groups in CITSs. Similar to ITSs, we can visualize the rela-
tionships between the outcome (y-axis) and time (x-axis) of 
the treatment and comparison groups across the time period, 
respectively. This helps to determine the functional forms of 
the time series in the statistical model, as well as to check if 
the pre-treatment trends of the outcome are parallel between 
the treatment and comparison groups. Multilevel regression 
can be used. Consider that the comparison group that we 
discussed previously was added to Maynard and Young’s 
(2022) example. The multilevel regression model is:

where G is the dummy coded group assignment (0 = com-
parison, 1 = treatment). The b0 coefficient is the average pre-
treatment outcome of the comparison group at the treatment 
time; the b1 coefficient is the pre-treatment linear slope of 
time for the comparison group; the b2 coefficient is the (post- 
minus pre-treatment) difference of the comparison group at 
the treatment time; the b3 coefficient is the difference of aver-
age linear slope of time between post- and pre-treatment of 
the comparison group; the b4 coefficient is the pre-treatment 
difference between the comparison and treatment groups 
on day 1 after treatment; the b5 coefficient is the difference 
of the pre-treatment slope of time between the comparison 
and treatment groups. If the two groups have parallel trends 
before treatment, the b5 coefficient equals 0.

(17)

Yti = b0 + b1timeti + b2Ti + b3
(

timeti × Ti
)

+ b4Gi

+ b5
(

timeti × Gi
)

+ b6
(

Ti × Gi
)

+ b7
(

timeti × Ti × Gi
)

+ u0i + eti,

The b6 and b7 coefficients are the ATT​ estimates of inter-
ests (Kim & Steiner, 2016; Wong et al., 2013). The b6 coef-
ficient is the (post- minus pre-treatment) difference between 
the comparison and treatment groups on day 1 after treat-
ment. The WWC (U.S. Department of Education, 2022) 
requires reporting this b6 coefficient when using CITSs. The 
b7 coefficient is the (post- minus pre-treatment) difference 
of the slope of time between the comparison and treatment 
groups. Figure 7 visualizes this model. In the example, the 
comparison group had a flat linear trend throughout the time 
series, meaning the after-school tutoring program (compari-
son group) had no effect on students’ writing achievement. 
The research conclusions about the treatment group (trait-
based instructional approach) were strengthened.

Summary

The ITS is similar to the sharp RDD in that time is the 
continuous assignment variable. ITSs were not frequently 
utilized in education research (Fig. 1). The ATT​ at the post-
treatment time point is identified given the causal assump-
tions. The CITS, which extends from the ITS and the DiD, 
adds a no-treatment comparison group that can detect or rule 
out a history confounder.

Fig. 7   Comparative interrupted time series design



621Quasi‑experimental designs for causal inference: an overview﻿	

Instrumental variable (IV) analysis

We now come back to between-subject designs where a 
participant receives the treatment condition or the control 
condition. What if we are conducting a secondary data anal-
ysis, where the data were collected, and it is not possible to 
add a design element or to measure additional covariates to 
remove the confounding bias? The IV analysis, originated 
by Philip G. Wright, is an analytic technique to identify a 
causal estimand in the presence of unmeasured or omitted 
variables (Baiocchi et al., 2014; Cunningham, 2021; Huang 
et al., 2019). However, the IV analysis was not popular in 
education research (Fig. 1).

Causal assumptions

The IV analysis can identify the ATE for the entire popula-
tion. It can also identify the local average treatment effect, 
which is the ATE among the participants who complete the 
assigned group and will be discussed later. An IV requires 
three assumptions: relevance, exclusion restriction, and 
exchangeability (Labrecque & Swanson, 2018; Lousdal, 
2018).

(a)	 Relevance: The IV is associated with treatment assign-
ment (predictor). The IV does not need to cause the 
treatment assignment. If the association is high, the 
IV is also known as a strong IV. A low (weak) asso-
ciation is undesirable because it produces biased ATE 
estimates (for larger samples, it is less of an issue). In 
addition, a weak IV always results in inefficient effect 
estimates.

(b)	 Exclusion restriction: The IV does not directly cause 
the outcome. It does not mean that the IV does not 
cause the outcome; it means that the IV causes the out-
come only through the treatment (i.e., full mediation). 
This assumption is generally untestable.

(c)	 Exchangeability: This assumption is sometimes known 
as the independence assumption. To avoid confu-
sion with the independence assumption in RCTs, we 
used the term exchangeability instead in this paper. 
Exchangeability means that there is no confounding 
between the IV and the outcome. This assumption is 
generally untestable. Because exclusion restriction and 
exchangeability assumptions are untestable, it is rec-
ommended to select the IV based on the knowledge of 
research questions and contexts.

To identify the ATE in an IV analysis, another assumption 
is needed: Effect homogeneity. This assumption means that 
all participants have the same ICE. Later, we will introduce 
the monotonicity assumption which is less restrictive than 

the homogeneity assumption, yet the monotonicity assump-
tion will produce a less generalizable causal estimand.

Statistical analysis

Given the assumptions above, two-stage least squares 
(TSLS) regression can be used to estimate the ATE. Nguyen 
et al. (2016) investigated the causal effect of educational 
attainment on dementia risk using the national Health and 
Retirement Study data between 1998 and 2010. Educational 
attainment was measured by self-reported years of school-
ing. The IV analysis can handle treatment with two or more 
(even continuous) groups. Nguyen et al. (2016) had two 
IVs that repeated the same statistical analysis using each IV 
separately. The first IV was years of compulsory schooling, 
and the second IV was a compositive score of three genome 
variables that were related to school attainment. The second 
IV could be viewed as a sensitivity analysis.

TSLS regression has two models that are estimated simul-
taneously. In the first stage model, the treatment is regressed 
on the IV:

where Di is participant i’s treatment (years of schooling), IV 
is an instrumental variable, r is the residual. The a0 and a1 
coefficients are the regression intercept and slope, respec-
tively. If the relevance assumption is fulfilled, the a1 coef-
ficient shall be high in level. To fulfill the exchangeability 
assumption and increase the estimator’s efficiency, measured 
covariates are often included in Eq. 17.

In the second stage model, the outcome is regressed on 
the predicted treatment values D̂i of the first stage model:

where Y is the measured outcome, and e is the residual. The 
b0 coefficient is the regression intercept and the b1 coefficient 
is the ATE estimate.

Noncompliance in RCTs

The IV analysis can identify a causal estimand when there 
is noncompliance (nonadherence) in an RCT. Noncompli-
ance means that actual treatment receipt does not equal the 
planned treatment assignment. It can occur when partici-
pants fail to complete, comply with, or attend the assigned 
treatment or control condition.

When using IV analysis to account for noncompliance, 
the IV is treatment assignment (0 = control, 1 = treatment), 
and the predictor is treatment receipt (0 = control, 1 = treat-
ment). Sagarin et al. (2014) reviewed several ways to meas-
ure compliance. In the RCT example of Jennings et  al. 

(18)Di = a0 + a1IVi + ri,

(19)Yi = b0 + b1D̂i + ei,
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(2017), the treatment involves 5 days of in-person sessions, 
and the participant’s attendance was assessed. They found 
that over 90% of the participants attended at least four of the 
5 days (mean = 4.5) of the treatment program and concluded 
that no outstanding noncompliance needed to be corrected. 
Nevertheless, attendance rate can be used to determine or 
define treatment receipt.

The causal estimand can be expressed using the potential 
outcomes framework (Angrist et al., 1996). Denote D be 
the treatment receipt (0 = control, 1 = treatment). Given the 
exclusion restriction assumption, a participant i’s potential 
outcome according to the treatment receipt is Yi(D = d) . The 
local average treatment effect (LATE), or complier average 
causal effect (CACE), is identified as the average potential 
outcome differences between the treatment receipts across 
compliers (Angrist et al., 1996; Sagarin et al., 2014):

To identify the LATE, the relevance assumption, the 
exclusion restriction assumption, the exchangeability 
assumption and the monotonicity assumption are needed 
(Sagarin et al., 2014). The relevance assumption means that 
the planned treatment assignment (IV) is associated with 
the treatment receipt (predictor). The exclusion restriction 
assumption means that the treatment assignment has no 
causal effect on the outcome other than via the treatment 
receipt (full mediation). As discussed previously, the mono-
tonicity assumption is a less restrictive assumption than the 
homogeneity assumption. The monotonicity assumption 
means that there are no defiers. Defiers are the participants 
who do not comply with the assigned treatment group (also 
known as never-takers), and the participants who do not 
comply with the assigned control group (also known as 
always-takers; Angrist et al., 1996; Lousdal, 2018; Sagarin 
et al., 2014). TSLS regression in Eqs. 17 and 18 can be 
used to estimate the LATE. In the model, IV is the treatment 
assignment T (0 = control, 1 = treatment), D is the treatment 
receipt (0 = control, 1 = treatment), and Y is the measured 
outcome.

Summary

The IV analysis can be used to estimate the ATE in the pres-
ence of unmeasured confounders. Its assumptions require 
careful consideration according to the research contexts and 
questions to select an appropriate IV. The IV analysis can also 
be used to identify the LATE when noncompliance occurs in 
RCTs or RDDs. The LATE has lower generalizability than the 
ATE when compliance is fulfilled.

(20)LATE = E
(
Yi(D = 1) − Yi(D = 0)|compliers

)

Propensity score analysis (PSA)

Based on our survey (Fig. 1), PSAs were the most popular 
quasi-experimental design in education research. We believe 
one reason is the availability of textbooks, tutorials, and sta-
tistical software for education and behavioral researchers 
since the late 2000s (e.g., Ho et al., 2007; Schafer & Kang, 
2008). PSAs do not require randomization or a specific treat-
ment assignment rule. PSAs also do not require a pre-treat-
ment measurement of the outcome like DiDs. The PSA is an 
analytic technique used to adjust for the measured covariates 
between the treatment and control groups to estimate the ATE, 
ATT​, and ATU​ (Rosenbaum & Rubin, 1983). For example, 
Hughes et al. (2018) compared students who were retained 
(hold back) in grades 1 to 5 (treatment group) and students 
who were continuously promoted (control group) on their high 
school completion (diploma, GED, or dropout). Grade reten-
tion can be caused by numerous factors, including cognitive 
and academic functioning, social-behavioral adjustment, self-
regulatory skills, motivation, and personality. These factors 
can also impact the chance of high school completion, which 
can confound the hypothesized causal effect. They utilized 
a PSA to adjust for the measured covariates to estimate the 
causal estimand.

Causal estimands and causal assumptions

PSAs can identify the ATE, ATT​, or ATU​ in Eqs. (2–4). PSAs 
require two assumptions: conditional independence and posi-
tivity. These two assumptions are also known as the strong 
ignorability assumption (Rosenbaum & Rubin, 1983). The 
conditional independence assumption is:

where ⟂ means independence; Z
i
 is a vector of measured 

covariates of participant i. This assumption means that that 
there is no confounding between the treatment assignment/
selection Ti and Yi(1) and Yi(0) , after adjusting for the meas-
ured covariates Z.

The positivity assumption is the same as in Eq. 9, except 
that the probability is now conditional on Z

i
 (Eq. 21). This 

assumption means that every participant i has some chance to 
be assigned to or select the treatment condition or the control 
condition, given the measured covariates.

Why not regression or analysis of covariance?

Regression or analysis of covariance, where measured covar-
iates Z are included as independent variables to the model, 
is seemingly the most straightforward analytic technique 

(21)Yi(1), Yi(0) ⟂ Ti|Zi
,

(22)0 < P
(
Ti = 1|Z

i

)
< 1
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to adjust for the measured covariates. Regression specifies 
the relationships of covariates Z and treatment assignment/
selection T to the outcome simultaneously. In other words, 
covariate adjustment and causal effect estimation are done 
together. This facilitates p-hacking (or fishing for signifi-
cant results), in that researchers can peek at the estimated 
causal effect. As introduced in the next section, PSA sepa-
rates covariates adjustment and causal effect estimation 
into different steps, which reduces the chance of p-hacking. 
Another major reason for not using regression is its linearity 
assumption. In terms of causal assumptions, both the PSA 
and regression assume conditional independence. The PSA 
assumes positivity, while regression does not. In regression 
analysis, if the covariates space of Z of the treatment group 
does not fully overlap with that of the control group, the 
estimation of ATE requires extrapolation (Schafer & Kang, 
2008). In the following, we introduce each step in PSA.

Step 1: selecting covariates

The conditional independence assumption is fulfilled when 
the measured covariates that affect the treatment assignment/
selection and the outcome are balanced between groups. 
Steiner et al. (2010) conducted an experiment to show that 
a “convenient” set of covariates, which includes only the 
participants’ demographic information (e.g., age and gen-
der), may not be sufficient to fulfill this assumption. Two 
theory-driven approaches for covariate selection have been 
proposed (Steiner et al., 2010). The first approach involves 
identifying the covariates based on background knowledge 
before data collection. This approach requires a solid theo-
retical knowledge of the research question and hypothesis. 
The second approach is more beneficial when the researcher 
has limited knowledge to identify covariates. This approach 
involves first identifying a large set of theoretical domains 
that possibly influence the treatment assignment/selection 
process or the outcome. Then, a large sample of covariates 
is selected from those domains. For example, Hughes et al. 
(2018) identified covariates that had been shown in prior 
research to be associated with grade retention and school 
dropout at the levels of the individual child, the family, the 
school, and the home-school relationship. Readers can also 
refer to the directed acyclic graph causal framework, which 
provides rules for selecting covariates (Pearl, 2009; Steiner 
et al., 2023; see the specific article contained in this special 
issue).

Step 2: estimating propensity scores

The propensity score (PS) is the conditional probability of 
treatment assignment/selection predicted by the measured 
covariates, which is P

(
Ti = 1|Z

i

)
 in Eq. 21. A balanced PS 

distribution between the treatment group and control group 

implies the distribution of the measured covariates are bal-
anced between the two groups (Rosenbaum & Rubin, 1983). 
The PS estimation model needs to be correctly specified 
(Cham, 2022). Considering that the PS model is rarely of 
research interest, methods that automate model specification 
have been developed and tested. Simulation studies showed 
the utilities of typical machine learning techniques in PS 
estimation, including classification trees (Lee et al., 2010), 
random forests (Cannas & Arpino, 2019; Lee et al., 2010), 
generalized boosted models (Lee et al., 2010; McCaffrey 
et al., 2004), support vector machines (Tarr & Imai, 2021), 
and neural networks (Cannas & Arpino, 2019). Imai and 
Ratkovic (2014) developed an iterative algorithm that uses 
the generalized method of moments to maximize the balance 
of the measured covariates. After PS estimation, it is helpful 
to visualize the PS distributions of the treatment and control 
groups (e.g., histogram, kernel density plot). The positivity 
assumption requires an overlap of the PSs between groups. 
Lack of overlap limits the choice of equating methods and 
results in a larger standard error of the causal estimand. The 
positivity assumption is violated if a large proportion of 
control group participants have PSs close to 0 and a large 
proportion of treatment group participants have PSs close to 
1. Kang et al. (2016) proposed a method using classification 
and regression tree for this situation.

Step 3: balancing groups on propensity scores

There are three classes of typical methods to balance the 
treatment and control groups on the estimated PSs: match-
ing, stratification, and inverse probability weighting. Match-
ing pairs the treatment group participants with the control 
group participants based on the similarity of their PSs. The 
simplest matching algorithm, exact matching, pairs a treat-
ment group participant with a control group participant who 
has an identical PS. Besides exact matching, there are many 
matching algorithms (Austin, 2014). Stratification (or sub-
classification) groups the treatment and control group par-
ticipants based on the similarity of their PSs (e.g., 0 to 20th 
percentile, 21 to 40th percentile, and so on). Inverse prob-
ability weighting converts PSs into sampling weights. There 
are several methods to calculate PS weights (Cham, 2022). 
For example, the PS weights of the Horvitz-Thompson esti-
mator for ATE is. 1∕P

(
Ti = 1|Z

i

)
 for the treatment group and 

1∕(1 − P
(
Ti = 1|Z

i

)
) for the control group.

Step 4: examining covariate balance

As mentioned, the distribution of the measured covariates 
is balanced between groups in expectation if PSs are bal-
anced. We can test if the distributions of measured covari-
ates between the treatment and control groups are equal 
via graphical methods (e.g., histograms, kernel density 
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plots) and analytical methods (e.g., standardized mean 
difference, variance ratio; Austin, 2009). Null hypothesis 
testing is not recommended because it favors PS distribu-
tions with smaller overlapping regions (Austin, 2009).

If PSs do not produce satisfactory balance on the meas-
ured covariates (e.g., WWC requires standardized mean 
difference ≤ 0.05 to achieve balance), researchers can 
respecifyspecify the PS estimation model (e.g., adding 
interaction terms, modifying model tuning parameters), 
use a different PS estimation method (e.g., changing from 
logistic regression to a machine learning technique), or 
balance the treatment and control groups using a different 
method (e.g., changing from exact matching to a different 
matching algorithm or inverse probability weighting).

Step 5: estimating causal estimand and sensitivity 
analysis

Different balancing methods have different formulas to 
estimate the ATE, ATT​, or ATU​. In exact matching, where 
one treatment group participant is paired with one control 
group participant with identical PS, the causal estimand 
can be estimated as the simple mean difference of the out-
come between the paired treatment and control groups 
(i.e., E

(
Yi|Ti = 1

)
− E(Yi|Ti = 0) ). If all the treatment and 

control group participants are paired, the mean difference 
estimates the ATE; if only all the treatment group partici-
pants are paired, the mean difference estimates the ATT​; if 
only all the control group participants are paired, the mean 
difference estimates the ATU.

In stratification, if every treatment and control partici-
pant is grouped, ATE is estimated as:

where Ds is the outcome mean difference between the treat-
ment and control of stratum s, N is the total sample size, Ns 
is the sample size of stratum s.

In weighting, the ATE (ATT​ or ATU​) is the weighted 
mean difference of the outcome between treatment and 
control groups. Researchers can incorporate the weights 
in weighted least squares regression or survey sampling 
procedures that account for sampling weights to estimate 
ATE.

Because PSAs assume all covariates needed to remove 
the entire confounding bias are measured, it is suggested 
to conduct a sensitivity analysis examining the robustness 
of the results to violations of the conditional independence 
assumption.

(23)

ÂTE =

S∑

s=1

(
Ns

N
× Ds

)

Ds = E
(
Yi|Ti = 1, S = s

)
− E(Yi|Ti = 0, S = s)of stratum s,

As mentioned previously, a clustered design can be 
used to fulfill the no spillover effect assumption within the 
SUTVA. Clustering in PSAs can be more complicated than 
other designs in this paper. The PS estimation method and 
the PS balancing method should both account for the clus-
tered data structure (Arpino & Mealli, 2011; Collier et al., 
2022; Leite et al., 2015; Thoemmes & West, 2011).

Other covariate‑adjusting methods

There are several promising covariate-adjusting methods as 
alternatives to PSAs. All these covariate-adjusting methods 
require the conditional independence assumption. First, 
entropy balancing uses a maximum entropy reweighting 
scheme to balance the measured covariates’ sample moments 
between the treatment group and the control group (Hainmu-
eller, 2012). Second, genetic matching balance the weighted 
Mahalanobis distance of the measured covariates between 
the groups (Diamond & Sekhon, 2013). Third, regression 
estimation builds two prediction models where the meas-
ured covariates predict the measured outcome (Schafer & 
Kang, 2008). The first prediction model is estimated using 
the treatment group data, and this model is used to predict 
the potential treatment outcome Yi(1) for all participants; the 
second prediction model is estimated using the control group 
data, and this model is used to predict the potential control 
outcome Yi(0) for all participants. The mean difference of the 
predicted potential treatment outcomes and potential con-
trol outcomes estimates the ATE. Fourth, there is a class of 
doubly robust methods that utilize regression estimation (or 
regression) and the inversed probability weighting in PSA 
simultaneously to estimate the causal estimands. Kang and 
Schafer (2007) suggested that these doubly robust methods 
may not always be superior, and careful considerations about 
which combinations of covariate-adjusting methods and PS 
estimation methods may be needed for good performance.

Summary

The PSA is a useful tool to minimize confounding bias by 
adjusting for the measured covariates. The selected covari-
ates must meet the conditional independence assumption 
(i.e., be able to remove the entire confounding bias). PSAs 
can be combined with other quasi-experimental designs to 
adjust for the measured covariates.

Conclusion

This article overviews RDDs, DiDs, ITSs, IV analyses, 
and PSAs. Table 1 summarizes the design characteris-
tics, causal estimands, and causal assumptions for each 
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design. We conducted a survey in ERIC and found that 
RCTs were still the dominating experimental design in 
education research. PSAs were the most popular among all 
the quasi-experimental designs introduced in this article. 
One likely reason is its availability of learning resources 
and software implementation in recent years. We hope this 
article and other articles in this issue are useful learning 
resources for education researchers to apply various quasi-
experimental designs for high internal validity.

Acknowledgements  This research was supported by a R01 grant from 
the National Institute on Aging (NIA) (R01AG065110), R01 grants 
from the National Institute on Minority Health and Health Dispari-
ties (R01MD015763 and R01MD015715), and a R21 grant from the 
National Institute of Mental Health (R21MH124902). The content is 
solely the responsibility of the authors and does not necessarily rep-
resent the official views of the National Institute on Aging, National 
Institute on Minority Health and Health Disparities, or the National 
Institute of Mental Health. We thank Dr. Peter M. Steiner, Dr. Yongnam 
Kim, and the anonymous reviewers for their valuable comments and 
suggestions on the earlier draft of this paper.

Declarations 

Conflict of interest  All authors declare that they have no conflicts of 
interest.

Ethical approval  This research article does not involve any human par-
ticipants or animal subjects. No data collection are involved.

References

Angrist, J. D., Imbens, G. W., & Rubin, D. B. (1996). Identification of 
causal effects using instrumental variables. Journal of the Ameri-
can Statistical Association, 91(434), 444–455. https://​doi.​org/​10.​
1080/​01621​459.​1996.​10476​902

Arpino, B., & Mealli, F. (2011). The specification of the propensity 
score in multilevel observational studies. Computational Statis-
tics & Data Analysis, 55(4), 1770–1780. https://​doi.​org/​10.​1016/j.​
csda.​2010.​11.​008

Austin, P. C. (2009). Balance diagnostics for comparing the distri-
bution of baseline covariates between treatment groups in pro-
pensity-score matched samples. Statistics in Medicine, 28(25), 
3083–3107. https://​doi.​org/​10.​1002/​sim.​3697

Austin, P. C. (2014). A comparison of 12 algorithms for matching on 
the propensity score. Statistics in Medicine, 33(6), 1057–1069. 
https://​doi.​org/​10.​1002/​sim.​6004

Baiocchi, M., Cheng, J., & Small, D. S. (2014). Tutorial in biostatistics: 
Instrumental variable methods for causal inference. Statistics in 
Medicine, 33(13), 2297–2340. https://​doi.​org/​10.​1002/​sim.​6128

Bloom, H. S. (2012). Modern regression discontinuity analysis. Jour-
nal of Research on Educational Effectiveness, 5(1), 43–82. https://​
doi.​org/​10.​1080/​19345​747.​2011.​578707

Cannas, M., & Arpino, B. (2019). A comparison of machine learning 
algorithms and covariate balance measures for propensity score 
matching and weighting. Biometrical Journal, 61(4), 1049–1072. 
https://​doi.​org/​10.​1002/​bimj.​20180​0132

Cham, H. (2022). Quasi-experimental designs. In G. J. G. Asmundson 
(Ed.), Comprehensive clinical psychology (2nd ed., pp. 29–48). 
Elsevier.

Cham, H., & West, S. G. (2016). Propensity score analysis with missing 
data. Psychological Methods, 21(3), 427–445. https://​doi.​org/​10.​
1037/​met00​00076

Table 1   Summary of design characteristics, causal estimands, and causal assumptions of quasi-experimental designs

SUTVA means the stable unit treatment value assumption
ATE means the average treatment effect. ATEC means the average treatment effect at the cutoff value. ATT​ means the average treatment effect on 
the treated. ATU​ means the average treatment effect on the untreated. LATE means the local average treatment effect

Quasi-experimental design Design characteristics Causal estimand(s) Causal assumptions

Regression discontinuity design (Sharp 
RDD)

Treatment assignment according to a 
cutoff value of a continuous treat-
ment assignment

ATEC SUTVA, continuity

Difference-in-differences (DiD) One pre-treatment measurement ATT​ SUTVA, parallel trends
Interrupted time series (ITS) Within-subject design, multiple pre-

treatment measurements and multiple 
Post-treatment measurements

ATT​ SUTVA, stability of the functional form 
from the pre-treatment time series 
across the post-treatment time points

Comparative interrupted time series 
(CITS)

ITS plus a no-treatment comparison 
group

ATT​ SUTVA, parallel trends, stability of the 
functional form from the pre-treatment 
time series across the post-treatment 
time points

Instrumental variable (IV) Unmeasured confounding ATE SUTVA, relevance, exclusion restriction, 
exchangeability, homogeneity

Noncompliance in randomized control 
trial

Noncompliance LATE SUTVA, relevance, exclusion restriction, 
exchangeability, monotonicity

Propensity score analysis Measured covariates being adjusted for ATE, ATT​, ATU​ SUTVA, conditional independence, 
positivity

https://doi.org/10.1080/01621459.1996.10476902
https://doi.org/10.1080/01621459.1996.10476902
https://doi.org/10.1016/j.csda.2010.11.008
https://doi.org/10.1016/j.csda.2010.11.008
https://doi.org/10.1002/sim.3697
https://doi.org/10.1002/sim.6004
https://doi.org/10.1002/sim.6128
https://doi.org/10.1080/19345747.2011.578707
https://doi.org/10.1080/19345747.2011.578707
https://doi.org/10.1002/bimj.201800132
https://doi.org/10.1037/met0000076
https://doi.org/10.1037/met0000076


626	 H. Cham et al.

Collier, Z. K., Zhang, H., & Liu, L. (2022). Explained: Artificial intel-
ligence for propensity score estimation in multilevel educational 
settings. Practical Assessment, Research & Evaluation, 27, 3.

Cook, T. D. (2008). “Waiting for life to arrive”: A history of the regres-
sion-discontinuity design in psychology, statistics and econom-
ics. Journal of Econometrics, 142(2), 636–654. https://​doi.​org/​
10.​1016/j.​jecon​om.​2007.​05.​002

Cunningham, S. (2021). Causal inference: The mixtape. Yale University 
Press. https://​doi.​org/​10.​2307/j.​ctv1c​29t27

Diamond, A., & Sekhon, J. S. (2013). Genetic matching for estimat-
ing causal effects: A general multivariate matching method for 
achieving balance in observational studies. Review of Economics 
and Statistics, 95(3), 932–945. https://​doi.​org/​10.​1162/​REST_a_​
00318

Enders, C. K. (2022). Applied missing data analysis (2nd ed.). Guilford 
Press.

Feely, M., Seay, K. D., Lanier, P., Auslander, W., & Kohl, P. L. (2018). 
Measuring fidelity in research studies: A field guide to developing 
a comprehensive fidelity measurement system. Child and Ado-
lescent Social Work Journal, 35(2), 139–152. https://​doi.​org/​10.​
1007/​s10560-​017-​0512-6

Grimm, K. J., & McArdle, J. J. (2023). Latent curve modeling of longi-
tudinal growth data. In R. H. Hoyle (Ed.), Handbook of structural 
equation modeling (2nd ed., pp. 556–575). Guilford Press.

Hainmueller, J. (2012). Entropy balancing for causal effects: A multi-
variate reweighting method to produce balanced samples in obser-
vational studies. Political Analysis, 20(1), 25–46. https://​doi.​org/​
10.​1093/​pan/​mpr025

Ho, D., Imai, K., King, G., & Stuart, E. (2007). Matching as nonpara-
metric preprocessing for reducing model dependence in paramet-
ric causal inference. Political Analysis, 15(3), 199–236. https://​
doi.​org/​10.​1093/​pan/​mpl013

Holland, P. W. (1986). Statistics and causal inference. Journal of the 
American Statistical Association, 81(396), 945–960. https://​doi.​
org/​10.​2307/​22890​64

Huang, H., Cagle, P. J., Mazumdar, M., & Poeran, J. (2019). Statistics 
in brief: Instrumental variable analysis: An underutilized method 
in orthopaedic research. Clinical Orthopaedics and Related 
Research, 477(7), 1750–1755. https://​doi.​org/​10.​1097/​CORR.​
00000​00000​000729

Hughes, J. N., West, S. G., Kim, H., & Bauer, S. S. (2018). Effect of 
early grade retention on school completion: A prospective study. 
Journal of Educational Psychology, 110(7), 974–991. https://​doi.​
org/​10.​1037/​edu00​00243

Imai, K., & Ratkovic, M. (2014). Covariate balancing propensity score. 
Journal of the Royal Statistical Society: Series B (statistical Meth-
odology), 76(1), 243–263.

Imbens, G. W., & Lemieux, T. (2008). Regression discontinuity 
designs: A guide to practice. Journal of Econometrics, 142(2), 
615–635. https://​doi.​org/​10.​1016/j.​jecon​om.​2007.​05.​001

Jacob, R., Zhu, P., Somers, M. A., & Bloom, H. (2012). A practical 
guide to regression discontinuity. MDRC.

Jennings, P. A., Brown, J. L., Frank, J. L., Doyle, S., Oh, Y., Davis, R., 
Rasheed, D., DeWeese, A., DeMauro, A. A., Cham, H., & Green-
berg, M. T. (2017). Impacts of the CARE for teachers program on 
teachers’ social and emotional competence and classroom interac-
tions. Journal of Educational Psychology, 109(7), 1010–1028. 
https://​doi.​org/​10.​1037/​edu00​00187

Kang, J., Chan, W., Kim, M. O., & Steiner, P. M. (2016). Practice of 
causal inference with the propensity of being zero or one: Assess-
ing the effect of arbitrary cutoffs of propensity scores. Commu-
nications for Statistical Applications and Methods, 23(1), 1–20. 
https://​doi.​org/​10.​5351/​CSAM.​2016.​23.1.​001

Kang, J. D., & Schafer, J. L. (2007). Demystifying double robustness: 
A comparison of alternative strategies for estimating a population 

mean from incomplete data. Statistical Science, 22(4), 523–539. 
https://​doi.​org/​10.​1214/​07-​STS227

Kim, Y., & Steiner, P. (2016). Quasi-experimental designs for causal 
inference. Educational Psychologist, 51(3–4), 395–405. https://​
doi.​org/​10.​1080/​00461​520.​2016.​12071​77

Kwok, O. M., West, S. G., & Green, S. B. (2007). The impact of mis-
specifying the within-subject covariance structure in multiwave 
longitudinal multilevel models: A Monte Carlo study. Multivari-
ate Behavioral Research, 42(3), 557–592. https://​doi.​org/​10.​1080/​
00273​17070​15405​37

Labrecque, J., & Swanson, S. A. (2018). Understanding the assump-
tions underlying instrumental variable analyses: A brief review 
of falsification strategies and related tools. Current Epide-
miology Reports, 5(3), 214–220. https://​doi.​org/​10.​1007/​
s40471-​018-​0152-1

Latif, E., & Miles, S. (2020). The impact of assignments and quizzes 
on exam grades: A difference-in-difference approach. Journal of 
Statistics Education, 28(3), 289–294. https://​doi.​org/​10.​1080/​
10691​898.​2020.​18074​29

Lee, D. S., & Lemieux, T. (2010). Regression discontinuity designs 
in economics. Journal of Economic Literature, 48(2), 281–355. 
https://​doi.​org/​10.​1257/​jel.​48.2.​281

Lee, B. K., Lessler, J., & Stuart, E. A. (2010). Improving propensity 
score weighting using machine learning. Statistics in Medicine, 
29(3), 337–346. https://​doi.​org/​10.​1002/​sim.​3782

Leite, W. L., Jimenez, F., Kaya, Y., Stapleton, L. M., MacInnes, J. 
W., & Sandbach, R. (2015). An evaluation of weighting methods 
based on propensity scores to reduce selection bias in multilevel 
observational studies. Multivariate Behavioral Research, 50(3), 
265–284. https://​doi.​org/​10.​1080/​00273​171.​2014.​991018

Little, R. J., & Rubin, D. B. (2019). Statistical analysis with missing 
data (3rd ed.). John Wiley & Sons.

Lousdal, M. L. (2018). An introduction to instrumental vari-
able assumptions, validation and estimation. Emerging 
Themes in Epidemiology, 22(15), 1–7. https://​doi.​org/​10.​1186/​
s12982-​018-​0069-7

Maynard, C., & Young, C. (2022). The results of using a traits-based 
rubric on the writing performance of third grade students. Texas 
Journal of Literacy Education, 9(2), 102–128.

McCaffrey, D. F., Ridgeway, G., & Morral, A. R. (2004). Propensity 
score estimation with boosted regression for evaluating causal 
effects in observational studies. Psychological Methods, 9(4), 
403–425. https://​doi.​org/​10.​1037/​1082-​989X.9.​4.​403

Neyman, J., Dabrowska, D. M., & Speed, T. P. (1990). On the applica-
tion of probability theory to agricultural experiments: Essay on 
principles. Statistical Science, 5(4), 465–472.

Nguyen, T. T., Tchetgen Tchetgen, E. J., Kawachi, I., Gilman, S. E., 
Walter, S., Liu, S. Y., Manly, J. J., & Glymour, M. M. (2016). 
Instrumental variable approaches to identifying the causal effect 
of educational attainment on dementia risk. Annals of Epidemi-
ology, 26(1), 71–76. https://​doi.​org/​10.​1016/j.​annep​idem.​2015.​
10.​006

Pearl, J. (2009). Causality: Models, reasoning, and inference (2nd ed.). 
Cambridge University Press.

Reichardt, C. S. (2019). Quasi-experimentation: A guide to design and 
analysis. Guilford Press.

Rubin, D. B. (2006). Matched sampling for causal effects. Cambridge 
University Press.

Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the pro-
pensity score in observational studies for causal effects. Biom-
etrika, 70(1), 41–55. https://​doi.​org/​10.​1093/​biomet/​70.1.​41

Roth, J., Sant’Anna, P. H., Bilinski, A., & Poe, J. (2023). What’s trend-
ing in difference-in-differences? A synthesis of the recent econo-
metrics literature. Journal of Econometrics, 235(2), 2218–2244. 
https://​doi.​org/​10.​1016/j.​jecon​om.​2023.​03.​008

https://doi.org/10.1016/j.jeconom.2007.05.002
https://doi.org/10.1016/j.jeconom.2007.05.002
https://doi.org/10.2307/j.ctv1c29t27
https://doi.org/10.1162/REST_a_00318
https://doi.org/10.1162/REST_a_00318
https://doi.org/10.1007/s10560-017-0512-6
https://doi.org/10.1007/s10560-017-0512-6
https://doi.org/10.1093/pan/mpr025
https://doi.org/10.1093/pan/mpr025
https://doi.org/10.1093/pan/mpl013
https://doi.org/10.1093/pan/mpl013
https://doi.org/10.2307/2289064
https://doi.org/10.2307/2289064
https://doi.org/10.1097/CORR.0000000000000729
https://doi.org/10.1097/CORR.0000000000000729
https://doi.org/10.1037/edu0000243
https://doi.org/10.1037/edu0000243
https://doi.org/10.1016/j.jeconom.2007.05.001
https://doi.org/10.1037/edu0000187
https://doi.org/10.5351/CSAM.2016.23.1.001
https://doi.org/10.1214/07-STS227
https://doi.org/10.1080/00461520.2016.1207177
https://doi.org/10.1080/00461520.2016.1207177
https://doi.org/10.1080/00273170701540537
https://doi.org/10.1080/00273170701540537
https://doi.org/10.1007/s40471-018-0152-1
https://doi.org/10.1007/s40471-018-0152-1
https://doi.org/10.1080/10691898.2020.1807429
https://doi.org/10.1080/10691898.2020.1807429
https://doi.org/10.1257/jel.48.2.281
https://doi.org/10.1002/sim.3782
https://doi.org/10.1080/00273171.2014.991018
https://doi.org/10.1186/s12982-018-0069-7
https://doi.org/10.1186/s12982-018-0069-7
https://doi.org/10.1037/1082-989X.9.4.403
https://doi.org/10.1016/j.annepidem.2015.10.006
https://doi.org/10.1016/j.annepidem.2015.10.006
https://doi.org/10.1093/biomet/70.1.41
https://doi.org/10.1016/j.jeconom.2023.03.008


627Quasi‑experimental designs for causal inference: an overview﻿	

Sagarin, B. J., West, S. G., Ratnikov, A., Homan, W. K., Ritchie, T. D., 
& Hansen, E. J. (2014). Treatment noncompliance in randomized 
experiments: Statistical approaches and design issues. Psychologi-
cal Methods, 19(3), 317–333. https://​doi.​org/​10.​1037/​met00​00013

Schafer, J. L., & Kang, J. (2008). Average causal effects from non-
randomized studies: A practical guide and simulated example. 
Psychological Methods, 13(4), 279–313. https://​doi.​org/​10.​1037/​
a0014​268

Shadish, W., Cook, T. D., & Campbell, D. T. (2002). Experimental 
and quasi-experimental designs for generalized causal inference. 
Houghton Mifflin.

Steiner, P. M., Cook, T. D., Shadish, W. R., & Clark, M. H. (2010). The 
importance of covariate selection in controlling for selection bias 
in observational studies. Psychological Methods, 15(3), 250–267. 
https://​doi.​org/​10.​1037/​a0018​719

Steiner, P. M., Shadish, W. R., & Sullivan, K. J. (2023). Frameworks 
for causal inference in psychological science. In H. Cooper, M. N. 
Coutanche, L. M. McMullen, A. T. Panter, D. Rindskopf, & K. J. 
Sher (Eds.), APA handbook of research methods in psychology: 
Foundations, planning, measures, and psychometrics (2nd ed., pp. 
23–56). American Psychological Association.

Stuart, E. A., Huskamp, H. A., Duckworth, K., Simmons, J., Song, Z., 
Chernew, M. E., & Barry, C. L. (2014). Using propensity scores in 
difference-in-differences models to estimate the effects of a policy 
change. Health Services and Outcomes Research Methodology, 
14, 166–182. https://​doi.​org/​10.​1007/​s10742-​014-​0123-z

Suk, Y., Steiner, P. M., Kim, J. S., & Kang, H. (2022). Regression 
discontinuity designs with an ordinal running variable: Evaluat-
ing the effects of extended time accommodations for English-
language learners. Journal of Educational and Behavioral Statis-
tics, 47(4), 459–484. https://​doi.​org/​10.​3102/​10769​98622​10902​75

Tarr, A., & Imai, K. (2021). Estimating average treatment effects with 
support vector machines. arXiv preprint. https://​arxiv.​org/​abs/​
2102.​11926

Thoemmes, F. J., & West, S. G. (2011). The use of propensity scores 
for nonrandomized designs with clustered data. Multivariate 
Behavioral Research, 46(3), 514–543. https://​doi.​org/​10.​1080/​
00273​171.​2011.​569395

U.S. Department of Education (2022). What works clearinghouse: 
Procedures and standards handbook (Version 5.0). https://​ies.​
ed.​gov/​ncee/​wwc/​Docs/​refer​encer​esour​ces/​Final_​WWC-​Handb​
ookVe​r5_0-​0-​508.​pdf

West, S. G., Cham, H., & Liu, Y. (2014). Causal inference and gener-
alization in field settings: Experimental and quasi-experimental 
designs. In H. T. Reis & C. M. Judd (Eds.), Handbook of research 
methods in social and personality psychology (2nd ed., pp. 
49–80). Cambridge University Press.

Wong, V. C., Cook, T. D., Barnett, W. S., & Jung, K. (2008). An effec-
tiveness-based evaluation of five state pre-kindergarten programs. 
Journal of Policy Analysis and Management: THe Journal of the 
Association for Public Policy Analysis and Management, 27(1), 
122–154. https://​doi.​org/​10.​1002/​pam.​20310

Wong, V. C., Wing, C., Steiner, P. M., Wong, M., & Cook, T. D. (2013). 
Research designs for program evaluation. In J. A. Schinka, W. F. 
Velicer, & I. B. Weiner (Eds.), Handbook of psychology: Research 
methods in psychology (2nd ed., pp. 316–341). John Wiley and 
Sons, Inc.

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.1037/met0000013
https://doi.org/10.1037/a0014268
https://doi.org/10.1037/a0014268
https://doi.org/10.1037/a0018719
https://doi.org/10.1007/s10742-014-0123-z
https://doi.org/10.3102/10769986221090275
https://arxiv.org/abs/2102.11926
https://arxiv.org/abs/2102.11926
https://doi.org/10.1080/00273171.2011.569395
https://doi.org/10.1080/00273171.2011.569395
https://ies.ed.gov/ncee/wwc/Docs/referenceresources/Final_WWC-HandbookVer5_0-0-508.pdf
https://ies.ed.gov/ncee/wwc/Docs/referenceresources/Final_WWC-HandbookVer5_0-0-508.pdf
https://ies.ed.gov/ncee/wwc/Docs/referenceresources/Final_WWC-HandbookVer5_0-0-508.pdf
https://doi.org/10.1002/pam.20310

	Quasi-experimental designs for causal inference: an overview
	Abstract
	Use of quasi-experimental designs in education research
	Causal estimands and causal assumptions
	Stable unit treatment value assumption

	Regression discontinuity design (RDD)
	Causal estimand
	Causal assumption
	Statistical analysis
	Remarks: statistical power and generalizability
	Summary

	Difference-in-differences analysis (DiD)
	Causal estimand
	Causal assumption
	Statistical analysis
	Remarks: potential confounders
	Summary

	Interrupted time series design (ITS)
	Causal assumptions and estimand
	Statistical analysis
	Comparative interrupted time series (CITS)
	Summary

	Instrumental variable (IV) analysis
	Causal assumptions
	Statistical analysis
	Noncompliance in RCTs
	Summary

	Propensity score analysis (PSA)
	Causal estimands and causal assumptions
	Why not regression or analysis of covariance?
	Step 1: selecting covariates
	Step 2: estimating propensity scores
	Step 3: balancing groups on propensity scores
	Step 4: examining covariate balance
	Step 5: estimating causal estimand and sensitivity analysis
	Other covariate-adjusting methods
	Summary

	Conclusion
	Acknowledgements 
	References




