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Abstract
Causal mediation analysis has gained increasing attention in recent years. This article guides empirical researchers through 
the concepts and challenges of causal mediation analysis. I first clarify the difference between traditional and causal mediation 
analysis and highlight the importance of adjusting for the treatment-by-mediator interaction and confounders of the treatment–
mediator, treatment–outcome, and mediator–outcome relationships. I then introduce the definition of causal mediation effects 
under the potential outcomes framework and different methods for the identification and estimation of the effects. After 
that, I highlight the importance of conducting a sensitivity analysis to assess the sensitivity of analysis results to potential 
unmeasured confounding. I also list various statistical software that can conduct causal mediation analysis and sensitivity 
analysis and provide suggestions for writing a causal mediation analysis paper. Finally, I briefly introduce some extensions 
that I made with my colleagues, including power analysis, multisite causal mediation analysis, causal moderated mediation 
analysis, and relaxing the assumption of no post-treatment confounding.
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Introduction

Mediation analysis answers the question regarding how a 
treatment generates an impact on an outcome by uncovering 
the underlying pathways. It is crucial for advancing in-depth 
scientific understanding in various disciplines, such as edu-
cation, psychology, and public health. In education research, 
mediation analysis is necessary when a researcher aims to 
investigate the mechanisms through which an educational 
program or intervention operates, i.e., to develop and test a 
theory explaining the educational processes that shape par-
ticipants’ learning and development. A hypothesized media-
tion mechanism characterizes the educational process, which 
often involves a change in cognitive or social-emotional 
behaviors induced by the program/intervention participation 
and a subsequent change in one’s developmental outcomes. 
The variable that transmits the program/intervention impact 
on the outcome plays a role as a mediator. In the basic 

mediation framework, a treatment affects a focal mediator, 
which in turn affects an outcome. The total treatment effect 
can be decomposed into an indirect effect that transmits the 
treatment effect through the hypothesized focal mediator and 
a direct effect that works directly or through other unspeci-
fied mechanisms. In general, an average indirect effect in the 
desired direction and magnitude lends support to the theory 
about the central mechanism.

For example, in the United States National Evaluation of 
Welfare-to-Work Strategies (NEWWS) study, participants 
were randomly assigned to the labor force attachment (LFA) 
program and the control group. The LFA program provided 
participants with employment-focused incentives and ser-
vices to transition low-income parents from welfare to work 
as rapidly as possible, while the control group received aid 
from the Aid to Families with Dependent Children (AFDC) 
program and was not given either incentives or mandates to 
work. Despite the potential effectiveness of LFA on employ-
ment, researchers (e.g., Morris, 2008) raised concerns about 
its potential harm to the long-term mental health of the par-
ticipants, who tend to be low-income single mothers with 
young children, especially if they were not able to secure 
employment. To understand the mediation mechanism 
underlying the impact of LFA on maternal depression in 
the long run, Hong et al. (2015) hypothesized that, after 
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the random treatment assignment ( T = 1 if assigned to the 
LFA program and T = 0 otherwise), whether a mother was 
employed in the following two years ( M = 1 if employed 
and M = 0 otherwise) would mediate the LFA impact on 
maternal depression at the end of the second year ( Y  ). The 
causal diagram in Fig. 1 depicts the mediation process. The 
arrow from T  to M and that from M to Y  represent how 
the treatment generates the impact on the outcome through 
the mediator. The arrow from T  to Y  captures all the other 
possible pathways that transmit the treatment effect on the 
outcome. The goal of a mediation analysis is to decompose 
the total treatment effect into an indirect effect transmitted 
through M and a direct effect that operates through all the 
other possible mechanisms.

Various methods have been developed for mediation 
analysis, including traditional mediation analysis methods 
developed within the framework of structural equation 
modeling (SEM) and causal mediation analysis methods 
developed within the counterfactual causal framework. The 
following two sections introduce these two frameworks, 
respectively, and discuss the advancements offered by causal 
mediation analysis methods over the traditional approaches.

Traditional mediation analysis and its 
limitations

In social science research, path analysis (Alwin & Hauser, 
1975; Baron & Kenny, 1986; Duncan, 1966; Sobel, 1982; 
Wright, 1934) and SEM (Bollen, 1987; Jo, 2008; Jöreskog, 
1970; MacKinnon, 2008; MacKinnon & Dwyer, 1993) have 
been the primary techniques for mediation analysis in the 
past decades. This technique regresses the mediator on the 
treatment and regresses the outcome on the mediator and 
the treatment:

M = �m
0
+ �m

t
T + �m

(1)Y = �
y

0
+ �

y

t T + �y
m
M + �y,

where �m
t

 denotes the association between the treatment 
and the mediator, �ym indicates the association between the 
mediator and the outcome given the treatment condition, and 
�
y

t  is the association between the treatment and the outcome 
given the mediator level. The indirect effect is represented 
as �m

t
× �ym , and �yt  represents the direct effect.

In presentations and applications of this technique, one 
major concern is that researchers are not able to make causal 
arguments of mediation effects due to a lack of clarifications 
of the underlying assumptions. In particular, �̂m

t
× �̂

y
m and 

�̂
y

t  estimated from mediator and outcome models in Eq. (1) 
would be biased for the indirect and direct effect estimation, 
if there were confounders of the treatment–mediator, 
treatment–outcome, and mediator–outcome relationships. 
Even if observed confounders can be adjusted for in Eq. (1), 
�̂m
t
× �̂

y
m and �̂yt  would still be biased in the presence of 

unobserved confounders that are hardly avoidable in reality. 
Another concern is that the definitions of the indirect and 
direct effects may vary as the mediator and outcome models 
change. For example, the indirect and direct effects are no 
longer �m

t
× �ym and �yt  if the treatment interacts with the 

mediator when affecting the outcome, as shown in Eq. (8) 
or when the mediator and outcome models are nonlinear. 
Correspondingly, �̂m

t
× �̂

y
m and �̂yt  would be biased estimates 

of the indirect and direct effects if the models in Eq. (1) were 
misspecified.

Consequence of excluding confounders

Even if the treatment is randomized, mediator values are 
typically generated through a natural process rather than 
being experimentally manipulated. As a result, individuals 
displaying different mediator values tend to differ system-
atically in many aspects that would confound the relation-
ship between the mediator and the outcome. As illustrated in 
Fig. 2, X is a vector of covariates that influence the mediator 
and the outcome and thus confound the mediator–outcome 

(E.g.,

(E.g.,(E.g.,

Fig. 1   Diagram of a mediation process

(E.g.,

(E.g.,(E.g.,

Fig. 2   Diagram of a mediation process with confounders of the M–Y 
relationship (if treatment is randomized)



705An introduction to causal mediation analysis﻿	

relationship. In the NEWWS example, a mother who was 
less willing to accept a low-wage job might be less likely 
to be employed and tend to experience more depression if 
assigned to LFA. Hence, the observed association between 
employment and maternal depression might be partly attrib-
utable to the confounding of the willingness to accept a 
low-wage job. Failures to adjust for such confounders in the 
analysis would generate bias. Similarly, if treatment is not 
randomized, omitting confounders of the treatment–media-
tor and treatment–outcome relationships would also lead to 
bias. Therefore, it is important to include such confounders 
in the analysis. Otherwise, causal conclusions regarding the 
mediation mechanisms would be invalid.

Consequence of misspecified models such 
as ignoring treatment‑by‑mediator interaction

This method relies heavily on correct specifications of 
both the mediator model and the outcome model. Even if 
an analyst attempts to make statistical adjustments for all 
potential confounders, estimation of the indirect and direct 
effects would still be biased if the regression models were 
misspecified. Typically, an analyst may overlook a possible 
treatment-by-mediator interaction, ignoring the fact that 
the treatment effect may be generated not only by changing 
the mediator but also by changing the relationship between 
the mediator and the outcome (Judd & Kenny, 1981). For 
example, employment may reduce depression under the 
LFA condition but may not under the control condition, in 
which case a treatment-by-mediator interaction should be 
included in the outcome model but is usually ignored in the 
traditional mediation analysis. An analyst may also overlook 
a possible treatment-by-covariate interaction, a mediator-by-
covariate interaction, a treatment-by-mediator-by-covariate 
interaction, a nonlinear covariate–mediator relationship, or 
a nonlinear covariate–outcome relationship (Hong, 2017). 
Any of these model misspecifications can result in bias.

Causal mediation analysis and its 
advantages

The mainstream literature on path analysis and SEM did not 
incorporate the causal inference framework until relatively 
recently (Holland, 1988; Jo, 2008; Sobel, 2008). This 
framework overcomes the major limitations of traditional 
mediation analysis as illustrated above and has gained 
increasing attention in the recent years (MacKinnon et al., 
2020). It provides general definitions of the indirect and 
direct effects without relying on specific models and clarifies 
the underlying assumptions for making causal conclusions of 

mediation mechanisms. Details can be found in the sections 
of Definition and Identification.

Serious attempts have been made within this causal 
framework to reduce bias associated with confounders 
and relax the model-based assumptions including the no 
treatment-by-mediator interaction assumption. Vander-
Weele and Vansteelandt (2009) extended the mediator and 
outcome regressions in Eq. (1) by further adjusting for 
pretreatment confounders (i.e., confounders preceding the 
treatment) and the treatment-by-mediator interaction. Imai 
et al. (2010) proposed a more general procedure that allows 
mediator and outcome regressions to be semi-parametric 
or nonparametric and thus relaxes functional form assump-
tions. In addition to these regression-based methods, other 
methods were developed to rely on only one of the media-
tor and outcome models and thus further relax model-based 
assumptions. As introduced in the Estimation section, the 
weighting-based method (e.g., Hong et al., 2015) does not 
rely on an outcome model, while the imputation-based 
method does not require a mediator model (e.g., Vanstee-
landt et al., 2012). They are more robust to model mis-
specifications but less efficient than the regression-based 
methods, while multiply robust estimation combines their 
strengths (e.g., Tchetgen Tchetgen & Shpitser, 2012; Van-
steelandt et al., 2012).

In real applications, it is almost impossible to measure 
and adjust for all the potential pretreatment confounders. 
It is also likely that a confounder of the mediator-outcome 
relationship is affected by the treatment, which is known as 
a post-treatment confounder. As explicated in the section 
of Identification, causal inference regarding a hypothesized 
mediation mechanism might be invalidated when some 
confounders of the treatment-mediator, treatment-outcome, 
and mediator-outcome relationships are omitted from the 
analysis. Different sensitivity analysis methods have been 
developed for assessing the sensitivity of causal mediation 
analysis results to omitted confounders. A detailed introduc-
tion can be found in the sections of Sensitivity Analysis and 
Extensions.

In the rest of the article, I introduce the definitions of 
the causal mediation effects under the potential outcomes 
framework and clarify the identification and estimation 
of the effects using the regression-based and weighting-
based methods, including a discussion of correspondence 
and differences between traditional and causal frameworks 
of mediation analysis. After introducing the sensitivity 
analysis methods, I provide a general guideline for writing 
a causal mediation analysis paper. In the end, I discuss 
some important extended topics in the literature on causal 
mediation analysis.
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Definition

In causal mediation analysis, indirect and direct effects are 
defined under the potential outcomes framework, which is 
also known as the counterfactual causal framework (Neyman 
& Iwaszkiewicz, 1935; Rubin, 1978). Unlike the definitions 
of the indirect and direct effects in traditional mediation 
analysis, which rely on mediator and outcome models and 
thus can vary under different scenarios (Preacher et al., 
2007), the potential outcomes framework provides general 
definitions of the effects independent of specific statistical 
models.

Potential mediators and potential outcomes

Under the potential outcomes framework, we can define the 
potential mediator and potential outcome as functions of the 
treatment for each individual i , i.e., Mi(t) and Yi(t) . In the 
NEWWS example, individual i has two potential mediators, 
Mi(1) and Mi(0) , which, respectively, represent individual i ’s 
potential employment status if assigned to the LFA program 
and that if assigned to the control group. Although every 
individual has two potential mediators, only one of them is 
observed. For example, if individual i was actually assigned 
to the LFA program, only Mi(1) is observed, while Mi(0) 
is counterfactual. Similarly, individual i has two potential 
outcomes, Yi(1) and Yi(0) , and only the one under the actual 
treatment condition is observed. Given this setup, we can 
define the total treatment effect on the outcome for each 
individual i as follows:

In causal mediation analysis, to reflect the fact that the 
outcome is affected by both the treatment and the mediator, 
we can alternatively define individual i ’s potential outcome 
as Yi(t,m) , which is the potential outcome that we would 
have observed if the treatment condition were set to t  and 
the mediator value were set to m through intervention or 
manipulation. Among the multiple potential outcomes, only 
the one under the actual treatment condition and mediator 
value is observed.

These definitions rely on the Stable Unit Treatment 
Value Assumption (SUTVA) (Rubin, 1980, 1986, 1990), 
which consists of (1) the no hidden variations in treatment 
assumption (also known as the no multiple versions of 
treatment or treatment-variation irrelevance assumption) 
that there is only one version of each treatment condition 
and (2) the no-interference assumption that an individual’s 
potential mediators do not depend on other individuals’ 
treatment status, and an individual’s potential outcomes do 
not depend on other individuals’ treatment status or mediator 

(2)TEi = Yi(1) − Yi(0)

values (Imai et al., 2010, p. 311). In the NEWWS example, 
the SUTVA assumption requires that individual i ’s potential 
employment status and depression level under the LFA or 
control condition are not affected by the mechanism used to 
assign the treatment and the treatments the other individuals 
receive. In addition, individual i ’s potential depression level 
is not affected by the other individuals’ employment status.

The no-interference assumption would be violated in the 
presence of spillover effects, e.g., if the depression level of 
a mother assigned to the LFA program was affected by the 
employment status of her friend who was assigned to the 
same program. The no-interference assumption tends to 
be violated especially in studies that involve clusters such 
as neighborhoods or schools because the individuals from 
the same cluster are more likely to influence each other 
due to social interactions. Hong (2015) provides a solution 
to potential violations of the no-interference assumption 
by considering “spillover as an intermediate process that 
may constitute a part of the mediation mechanism through 
which a treatment exerts a causal impact on an outcome.” 
For example, the LFA program may impact maternal 
depression through changing not only a mother’s own 
employment status, but also the employment status of 
the mother’s friends. Therefore, we can account for such 
spillover effects by decomposing the total treatment effect 
into the indirect effect mediated by a focal individual’s 
mediator, the indirect effect mediated by peers’ mediator, 
and the direct effect.

Controlled direct effect

Controlling the mediator at a specific level m while 
changing the treatment condition from 0 to 1, we can 
define the controlled direct effect of the treatment 
(Holland, 1988; Pearl, 2001; Robins & Greenland, 1992):

In the NEWWS example, it represents the LFA 
impact on maternal depression when each individual 
i was employed if m = 1 or when each individual i was 
unemployed if m = 0.

Controlled direct effects are of great interest in policy 
evaluation (e.g., Pearl, 2001; Robins, 2003). Nevertheless, 
two major concerns were raised regarding the controlled 
direct effect (VanderWeele & Vansteelandt, 2009). First, 
the definition is based on the principle that both the 
treatment and the mediator are manipulable. However, it 
is often not conceivable to force everyone’s mediator to 
be the same (e.g., every individual is forced to have the 
same employment status). Second, an important goal of 

(3)CDEi(m) = Yi(1,m) − Yi(0,m)
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mediation analysis is to decompose the total treatment 
effect into a direct effect and an indirect effect. However, 
the total treatment effect in Eq. (2) minus the controlled 
direct effect in Eq. (3) may not define the indirect effect. 
For example, if the LFA impact on maternal depression is 
not transmitted through employment, i.e., if the indirect 
effect via employment is 0, the total treatment effect 
should be equal to the direct effect, but the difference 
between (2) and (3) is nonzero if the treatment interacts 
with the mediator when affecting the outcome. In fact, 
the difference between the total treatment effect and 
the controlled direct effect is attributed to not only the 
indirect effect transmitted through the mediator but also 
the treatment-by-mediator interaction.1 Therefore, the 
total treatment effect cannot be decomposed into the 
controlled direct effect and the indirect effect unless there 
is no treatment-by-mediator interaction. The natural direct 
and indirect effects, as introduced below, remove these 
concerns and are of greater interest in the evaluation of 
mediation mechanisms (e.g., Hafeman & Schwartz, 2009; 
Robins, 2003).

Natural direct effect

In consideration of the fact that the mediator value is 
a potential natural response to the treatment assigned, 
individual i ’s potential outcome Yi(t) can be alternatively 
expressed as a function of both the treatment and the 
potential mediator under the same treatment condition 
Yi(t,Mi(t)) . Defining the potential outcome as Yi(t,Mi(t)) 
instead of Yi(t,m) allows mediator values under a given 
treatment condition to naturally vary among individuals 
rather than being fixed at an arbitrary level. When Mi(t) = m , 
Yi(t,Mi(t)) is equivalent to Yi(t,m) . In other words, when the 
naturally occurring level of the potential mediator under 
treatment condition t is equal to m , the two versions of the 
potential outcome are identical.

Given that Yi(t) = Yi(t,Mi(t)) , the total treatment effect 
can be alternatively expressed as follows:

Holding the potential mediator at the level that would be 
observed under the control condition while changing the 
treatment from 0 to 1, we can define the natural direct effect 
(Pearl, 2001), which is alternatively termed as pure direct 
effect by Robins and Greenland (1992):

(4)TEi = Yi(1,Mi(1)) − Yi(0,Mi(0))

where Yi
(
1,Mi(0)

)
 denotes individual i ’s potential outcome 

if they were assigned to the experimental condition yet 
counterfactually having the mediator value as they would 
have under the control condition. In the NEWWS example, 
the natural direct effect represents the impact of LFA on 
individual i ’s maternal depression, while their employment 
status was kept at the level that would have been observed 
in the absence of the intervention.

Unlike the controlled direct effect, the natural direct 
effect maintains the natural relationship between the treat-
ment and the mediator because the mediator is controlled 
at Mi(0) , which allows for natural variation from person 
to person.

Natural indirect effect

In mediation analysis, we are particularly interested in 
the indirect effect, which is the treatment effect that is 
solely transmitted through the mediator. The essence lies 
in assessing how the treatment-induced change in the 
mediator affects the outcome. It can be well captured by the 
difference between the total treatment effect and the natural 
direct effect, which represents how much the outcome 
would change if the treatment condition were controlled at 
the experimental level, while the mediator were changed 
from the level under the control condition to the level under 
the experimental condition. It is termed the natural indirect 
effect by Pearl (2001) and the total indirect effect by Robins 
and Greenland (1992):

In the NEWWS example, it represents the LFA impact on 
individual i’s maternal depression that is solely attributable 
to the change in their employment status induced by LFA, 
when the treatment is fixed at the intervention condition. 
The individual i’s natural indirect effect is zero if LFA does 
not change their employment status or if, despite a change 
in the employment status, their maternal depression remains 
unchanged.

The natural direct effect in Eq. (5) and the natural indirect 
effect in Eq. (6) add up to the total treatment effect in Eq. (4):

which resolves a major concern of the controlled direct 
effect.

The above decomposition of the total treatment effect 
is not unique. Alternatively, the total treatment effect 
can be decomposed into the sum of the total direct effect 

(5)NDEi = Yi
(
1,Mi(0)

)
− Yi

(
0,Mi(0)

)

(6)NIEi = Yi
(
1,Mi(1)

)
− Yi

(
1,Mi(0)

)

TEi = NDEi + NIEi =
[

Yi
(

1,Mi(0)
)

− Yi
(

0,Mi(0)
)]

+
[

Yi
(

1,Mi(1)
)

− Yi
(

1,Mi(0)
)]

1  A detailed reasoning can be found in VanderWeele (2014).
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Yi
(
1,Mi(1)

)
− Yi

(
0,Mi(1)

)
 and the pure indirect effect 

Yi
(
0,Mi(1)

)
− Yi

(
0,Mi(0)

)
 (Robins & Greenland, 1992). The 

two ways of decomposition are not necessarily equivalent. 
A discrepancy between the two would exist if the treatment 
interacts with the mediator when affecting the outcome. For 
simplicity, I focus on decomposing the total treatment effect 
into the natural direct and indirect effects in this article. A 
more detailed discussion about various ways of decomposing 
the total treatment effect can be found in VanderWeele (2014).

The above definitions are illustrated with a binary 
treatment. If a treatment has more than two categories or 
is continuous, we can extend these definitions by replac-
ing 1 and 0 with any two different values of the treatment, 
t  and t′ (Imai et al., 2010; VanderWeele & Vansteelandt, 
2009). By taking an average of each individual-specific 
effect over all the individuals, we can define the popula-
tion average effects as listed in Table 1.

Identification

The definition of the population average causal effects 
in Table 1 relies on four potential outcomes of every 
individual. However, as elaborated above, Yi

(
t,Mi

(
t′
))

 
and Yi

(
t�,Mi(t)

)
 , where t ≠ t′ is never observable and 

Yi
(
t,Mi(t)

)
 (or Yi

(
t′,Mi

(
t′
))

 ) can be observed only if indi-
vidual i  ’s actual treatment condition was t  (or t′ ). As 
illustrated in Table 2, among the eight participants of 
the NEWWS study, the first four were assigned to the 
LFA group, for whom the only observables are Mi(1) 
and Yi

(
1,Mi(1)

)
 . The last four were assigned to the con-

trol group, for whom the only observables are Mi(0) and 
Yi
(
0,Mi(0)

)
 . Therefore, causal inference is essentially a 

missing data problem (Ding & Li, 2018; Holland, 1986). 
The key to causal mediation analysis lies in how to infer 
the counterfactual quantities from the observed data so 
that the population average of each potential outcome and 
correspondingly the population average of each causal 
effect can be identified. 

Table 1   Definitions of population average causal effects

Notation Definition

Total effect TE = E
[
Y
i

(
t,M

i
(t)
)]

− E
[
Y
i

(
t
�,M

i

(
t
�
))]

Overall average change in the potential outcome if the treatment condition 
is changed from t′ to t

Natural direct effect NDE = E
[
Y
i

(
t,M

i

(
t
�
))]

− E
[
Y
i

(
t
�,M

i

(
t
�
))]

Average change in the potential outcome if the treatment condition is 
changed from t′ to t  , while the potential mediator is held at the level that 
would be observed under the treatment condition t′

Natural indirect effect NIE = E
[
Y
i

(
t,M

i
(t)
)]

− E
[
Y
i

(
t,M

i

(
t
�
))]

Average change in the potential outcome if the treatment is fixed at condi-
tion t  , while the potential mediator is changed from the level that would 
be observed under the treatment condition t′ to that under t

Table 2   Illustration of 
observable and counterfactual 
quantities

Note: ? denotes unobserved

Individual Treatment Observed 
mediator

Observed 
outcome

Potential 
mediators

Potential outcomes

 T
i
  M

i
  Y

i
  M

i
(1)  M

i
(0)  Y

i
(1,M

i
(0))  Y

i
(0,M

i
(1))  Y

i
(0,M

i
(0)) 

1 1 0  25 0 ? ? ? ?
2 1 1  5 1 ? ? ? ?
3 1 0  10 0 ? ? ? ?
4 1 0  2 0 ? ? ? ?
5 0 0  30 ? 0 ? ?  30 
6 0 1  2 ? 1 ? ?  2 
7 0 0  8 ? 0 ? ?  8 
8 0 0  10 ? 0 ? ?  10 
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Sequential ignorability assumption

As proved by Hong et al. (2015), Imai et al. (2010), and 
VanderWeele and Vansteelandt (2009), the identification 
requires the sequential ignorability assumption, including.

Assumption 1  Strongly ignorable treatment assignment. 
This assumption can be interpreted as the treatment is as if 
randomized within levels of pretreatment covariates. In other 
words, there are no omitted or unmeasured pretreatment con-
founders of the treatment–mediator or treatment–outcome 
relationship. The assumption is guaranteed to be met if the 
treatment is randomized. If the treatment is not randomized, 
the confounders of the treatment–mediator and treatment–
outcome relationships must be adjusted for in the analysis.

Assumption 2  Strongly ignorable mediator value assign-
ment. This assumption can be interpreted as the mediator 
is as if randomized within the same treatment group or 
across treatment groups among individuals with the same 
levels of pretreatment covariates. In other words, (1) there 
are no omitted or unmeasured pretreatment confounders 
(i.e., confounders preceding the treatment) of the media-
tor–outcome relationship and (2) there are no post-treatment 
confounders (i.e., confounders affected by the treatment) of 
the mediator–outcome relationship within each treatment 
condition or across treatment conditions. As illustrated in 
Fig. 3, component (2) indicates that the covariates that affect 
both the mediator and the outcome must not be affected by 
the treatment. In the NEWWS example, the LFA partici-
pants who were less willing to accept a low-wage job before 
participating in the study (pretreatment) or in the first year 
after participation (post-treatment) might be less likely to 
be employed in the two years after participation and tend to 
experience more depression at the end of the second year. 
Component (1) of Assumption 2 requires that such a pre-
treatment confounder should be controlled for in the analy-
sis, and component (2) requires that such a post-treatment 

confounder should not exist. Otherwise, Assumption 2 
would be violated. Because mediator is usually generated 
through a natural process, and it is almost impossible to 
measure and control for all the confounders, this assump-
tion tends to be violated even if the treatment is randomized. 
Solutions can be found in the sections of Sensitivity Analy-
sis and Extensions.

Assumption 3  Positivity assumption. Within levels of pre-
treatment covariates, every individual has a nonzero prob-
ability of receiving each treatment level and a nonzero prob-
ability of taking each mediator value within the response 
space of the mediator under each treatment condition. This 
assumption would be violated if one or more subgroups 
are never or rarely observed to receive a treatment level or 
take a certain mediator value under a treatment condition, 
in which case no or little information would be available for 
inference about those subgroups’ counterfactual outcome. 
Consequently, as Petersen et al. (2012) argued, “the result-
ing sparsity in the data may increase bias with or without an 
increase in variance and can threaten valid inference.” The 
assumption is more likely to be violated at a smaller sam-
ple. Petersen et al. (2012) discussed diagnosing violations of 
the positivity assumption and remedies for treatment effect 
estimation. Discussions around the positivity assumption are 
very limited in the literature of causal mediation analysis. 
Hong et al., (2015, p. 324–325) assessed if the positivity 
assumption is violated in the case of a discrete mediator by 
identifying common supports.

Under these assumptions, different identification 
strategies have been proposed, including.

(1)	 Regression-based method, which relies on both a 
mediator model and an outcome model;

(2)	 Weighting-based method, which constructs weights 
based on a mediator model and identifies the effects 
through weighted mean contrasts of the outcome 
without relying on an outcome model;

(3)	 Imputation-based method, which identifies the effects 
through mean contrasts of the potential outcomes that 
are imputed via an outcome model without relying on 
a mediator model;

(4)	 Multiply robust method, which combines (1) with (2) 
or (3).

Qin and Yang (2022) provided a brief review of the above 
methods. Due to limited space, I focus on the regression-
based and weighting-based identification in this article, 
while details about the imputation-based and multiply robust 
identification can be found in Vansteelandt et al. (2012) and 
Tchetgen Tchetgen and Shpitser (2012), respectively.Fig. 3   Illustration of the no post-treatment confounders of the M–Y 

relationship
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Regression‑based identification

As proved by Imai et  al. (2010), under the sequential 
ignorability assumption, the distribution of each potential 
outcome given pretreatment covariates can be written as a 
function of the distributions of the observed data, i.e., the 
distribution of the outcome given the treatment, mediator, 
and pretreatment covariates and the distribution of the 
mediator given the treatment and pretreatment covariates:

This enables us to relate counterfactual quantities to the 
observed data and thus identify the causal effects using any 
parametric, semi-parametric, or nonparametric regressions 
for any type of mediator or outcome. Qin (2023) summarized 
in detail the identification results based on parametric 
regressions when the mediator and/or the outcome 
are continuous or binary. Below I focus on parametric 
regressions for continuous mediator and outcome.

By fur ther  adjust ing for  the treatment-by-
mediator interaction TM  and pretreatment covariates 
� , which contain pretreatment confounders of the 
mediator–outcome relationship, as well as confounders of 
the treatment–mediator and treatment–outcome relationships 
if treatment is not randomized, we can extend Eq. (1) to

Assuming that the underlying data-generating process 
is consistent with Eq. (7) (i.e., linear functional form and 
constant � ’s across individuals) and that Assumptions 1–3 
hold, we can identify E

[
Yi(t,Mi(t

�))
]
 as follows:

Correspondingly, the causal mediation effects, as defined 
in Table 1, can be identified as follows:

where t  and t′ are two different treatment levels to be 
contrasted. Proof can be found in VanderWeele and 
Vansteelandt (2009).

A comparison of the indirect and direct effect esti-
mands between the traditional and regression-based 
causal mediation analyses. When the mediator and out-
come are both continuous, despite the difference in the indi-
rect and direct effect estimands in the presence of the treat-
ment-by-mediator interaction (i.e., �ytm ≠ 0 ), the traditional 
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mediation analysis based on Eq. (1) and the regression-
based causal mediation analysis based on Eq. (7) share the 
same estimands of the indirect and direct effects if there 
is no treatment-by-mediator interaction and t − t� = 1 (i.e., 
NIE = �m

t
× �

y
m and NDE = �

y

t  ). The correspondence may 
not hold for other types of mediator and outcome or when 
the mediator and outcome models are semi-parametric or 
nonparametric.

Weighting‑based identification

To illustrate the weighting-based identification, I focus 
on a randomized treatment, a discrete mediator, and a 
discrete or continuous outcome. As proved by Hong (2010), 
under Assumptions 1–3, the expected potential outcome 
E
[
Yi(t,Mi(t

�))
]
 can be identified through the weighted mean 

outcome of the treatment group t,

When t = t� , WMi = 1 , i.e., the expected potential outcome 
under each treatment condition can be identified through the 
expected outcome of the corresponding treatment group, 
given that the treatment is randomized. When t ≠ t′ , 
WMi =

Pr(Mi=m|Ti=t�,�i=�)
Pr(Mi=m|Ti=t,�i=�)

 is known as ratio of mediator-
probability weighting (RMPW). In the NEWWS example, 
given t = 1 and t� = 0 , WMi transforms a treated individual’s 
employment rate to resemble that under the control condition 
within levels of pretreatment covariates, so that the 
counterfactual quantity E

[
Yi(1,Mi(0))

]
 can be related to the 

observed outcome of the treated group.
If treatment is not randomized, we can identify 

E
[
Yi(t,Mi(t

�))
]
 by fur ther  mult iplying WMi  with 

WTi =
Pr(Ti=t)

Pr(Ti=t|�i=�)
 (Hong et al., 2018), which is known as 

inverse probability of treatment weighting (IPTW). It 
removes treatment selection by equalizing everyone’s 
treatment assignment probability, as in a randomized 
experiment.

If the mediator is continuous, RMPW can be constructed 
based on the ratio of conditional densities of M or replaced 
with its mathematical equivalent based on conditional 
probabilities of T  given M and � (Huber, 2014).

With the expectation of each potential outcome identified, 
each causal effect, as defined in Table 1, can be identified 
via weighted mean contrasts of the observed outcome, 
which does not require specifying the functional form of 
the outcome with regard to T  , M , and �.

In summary, the regression-based identification requires 
that both the mediator and outcome models are correctly 
specified. In contrast, the weighting-based identification 
only requires the mediator model to be correctly specified. 
Therefore, the weighting-based method is robust to outcome 

(9)E
[
Yi(t,Mi(t

�))
]
= E

[
WMiYi|Ti = t

]
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model misspecifications but is less efficient than the 
regression-based method if both the mediator and outcome 
models are correctly specified.

Estimation and software

Despite the various identification methods, estimation of 
the causal mediation effects shares the same essence, i.e., 
estimating each expected potential outcome and taking 
their contrasts to estimate the effects. The estimation and 
inference can be conducted with common algorithms, such 
as Bootstrapping method (Imai et al., 2010), the Monte 
Carlo confidence interval method (King et al., 2000), also 
known as the quasi-Bayesian Monte Carlo (Imai et al., 
2010), and Bayesian method (Yuan & MacKinnon, 2009). 
Qin and Wang (2023) introduced step-by-step implementa-
tions of the three methods for causal moderated mediation 
analysis, which also applies to causal mediation analysis 
in general.

For the regression-based methods, given the estimands 
as in Eq. (8), we can alternatively estimate the standard 
errors of the effect estimates with the delta method and test 
the significance of the effects by assuming the sampling 
distributions of the effect estimates to be approximately 
normal (VanderWeele & Vansteelandt, 2009). However, an 
effect estimate is not normal at a relatively small sample size 
if it involves products of regression coefficient estimates. 
When the normality assumption does not hold, inference 
based on the delta method is inappropriate in most cases 
(Preacher & Selig, 2012).

For the weighting-based methods, the estimation involves 
two steps. The first step estimates the weight based on a 
mediator model, and the second step estimates the causal 
effects through weighted mean contrasts of the observed 
outcome. It is crucial to account for the estimation 
uncertainty of the weights when estimating the standard 
errors of the causal mediation effect estimates. Otherwise, 
the inference results might be misleading (Bein et al., 2018). 
In addition to the three common algorithms mentioned 
above, Bein et al. (2018) provided an alternative solution 
to the two‐step estimation problem by stacking the moment 
functions from both steps. While the former is more flexible, 
the latter is less computationally intensive.

Various software programs have been developed for 
implementing different causal mediation analysis methods.

–	 Some implement the regression-based methods, but the 
regressions can only be parametric, including Mplus 
Model Indirect command (Muthén & Muthén, 2017) 
and those that do not allow the pretreatment covariates 
to interact with the treatment, mediator, or treatment-
by-mediator interaction, i.e., SAS and SPSS mediation 

macros (Valeri & VanderWeele, 2013, 2015), SAS 
PROC CAUSALMED procedure (SAS Institute, 2018), 
Stata PARAMED macro (Emsley & Liu, 2013), and 
Stata Med4Way macro that is focused on four-way 
decomposition of the treatment effect (Discacciati et al., 
2019). R regmedint package extends the SAS mediation 
macro and the SAS PROC CAUSALMED procedure by 
allowing for treatment-by-covariate and mediator-by-
covariate interactions.

–	 Some implement the regression-based methods and allow 
for parametric, semi-parametric, and nonparametric mod-
els and interactions of the pretreatment covariates with the 
treatment, mediator, or treatment-by-mediator interaction, 
including R mediation package (Tingley et al., 2014) and 
Stata medeff macro (Hicks & Tingley, 2011).

–	 R rmpw package (Qin et  al., 2018) implements the 
weighting-based method.

–	 R medflex package (Steen et al., 2017) implements both 
the weighting-based and imputation-based methods.

–	 The R CMAverse package (Shi et al., 2021) implements 
the parametric regression-based, weighting-based, 
imputation-based method, and several other methods. 
They also allow for the analysis from the interventional 
perspective as introduced in the section of Extensions.

A detailed review and comparison of the programs except 
for CMAverse can be found in Valente et al. (2020).

Sensitivity analysis and software

The above causal mediation analysis relies on the sequential 
ignorability assumption. The assumption would be violated 
when there are post-treatment confounders or omitted 
pretreatment confounders, which is highly likely in real 
applications. It is important to assess if such a potential 
violation would easily alter the initial causal conclusions. 
The majority of the existing literature of sensitivity analysis 
for causal mediation analysis is focused on assessing the 
influence of omitted pretreatment confounding, assuming 
no post-treatment confounding. A brief review of sensitivity 
analysis methods for post-treatment confounding can be 
found in the section of Extensions. As reviewed by Qin 
and Yang (2022), there are two types of omissions of 
pretreatment confounding. Some pretreatment confounders 
are observed but omitted to avoid model overfitting, while 
others are unmeasured. To evaluate the influence of the 
former, one may simply compare the results before and 
after including the omitted covariates in the analysis. To 
evaluate the influence of the latter, different sensitivity 
analysis methods have been developed in the past decade 
(e.g., Cox et  al., 2013; Imai et  al., 2010; Qin & Yang, 
2022). The basic idea is to evaluate how the point estimates 
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and significance of the indirect and direct effects change 
with sensitivity parameters that imply the strength of 
unmeasured pretreatment confounding. Each method has 
its unique advantage. However, some ignore the treatment-
by-mediator interaction, some lack intuitive interpretations 
of the sensitivity parameters, and some ignore the influence 
of unmeasured confounding on the standard errors of the 
causal effect estimates, while others are applicable only 
when the treatment is randomized.

Qin and Yang (2022) overcame the limitations through 
a simulation-based strategy that can assess the sensitivity 
of results obtained from different causal mediation analysis 
approaches. The method (1) allows applied researchers 
to quantify the strength of an unmeasured pretreatment 
confounder based on its conditional associations with 
the treatment, mediator, and outcome, which serve as 
sensitivity parameters; (2) simulates the pretreatment 
confounder from its conditional distribution; and (3) 
assesses the influence of the pretreatment confounder on 
both the estimation and inference of the causal effects by 
comparing the results before and after adjusting for the 
simulated confounder in the analysis. Step (2) is repeated 
multiple times to account for the uncertainty of the 
simulation of the unmeasured pretreatment confounder. 
The sensitivity analysis results can be visualized to 
ease the evaluation of sensitivity. The original analysis 
results obtained under the assumption of no unmeasured 
pretreatment confounding would be considered sensitive if 
the signs or significance of the effects can be altered by a 
slight violation of the identification assumption, i.e., by an 
omitted confounder that is merely weakly associated with 
the treatment, mediator, and outcome. The degree to which 
the assumption is violated, i.e., the strength of unmeasured 
confounding implied by conditional associations of 
unmeasured confounding with the treatment, mediator, and 
outcome, can be gauged by prior knowledge, theoretical 
reasoning, or the observed pretreatment confounders in the 
data, as illustrated in Qin and Yang (2022).

Sensitivity analysis is an essential component in 
causal mediation analysis. However, it has not received 
enough attention in most empirical studies. Software has 
been developed to ease implementations. The method 
can be implemented in R mediationsens package (Qin & 
Yang, 2020). It is applicable to both regression-based and 
weighting-based causal mediation analysis. A review of five 
R packages for sensitivity analysis in mediation analysis, 
including mediationsens, can be found in Kawabata et al. 
(2023). In addition, the Mplus Model Indirect command and 
R packages mediation and rmpw, as mentioned above, have 
sensitivity analysis embedded.

Writing a causal mediation analysis paper

Mediation analysis is becoming increasingly popular. 
Articles with “mediation analysis” in the title or text have 
been growing exponentially in the past two decades (Nguyen 
et al., 2021). Yet the advancement of mediation analysis 
methods under the counterfactual causal framework has 
not been widely adopted by educational researchers. To 
promote applications of causal mediation analysis methods, 
I highlight key components of a causal mediation analysis 
paper in this section. Detailed guidelines can be found in Lee 
et al. (2021) and Montoya (2023).

1.	 Introduction. It is essential to clarify the hypothesized 
mediation mechanism based on a literature review of 
theoretical rationale or supporting evidence for why 
the treatment affects the mediator, which subsequently 
affects the outcome. It is also necessary to list research 
questions, such as whether the mediator significantly 
mediates the relationship between the treatment and 
the outcome and how much of the treatment effect is 
transmitted through the mediator (if the indirect effect 
and the total treatment effect have the same sign).

2.	 Methods. This section includes the study design, 
participants, sample size, and measures, including the 
treatment, mediator, outcome, and a set of pretreatment 
confounders of the mediator–outcome relationship 
(and the treatment–mediator and treatment–outcome 
relationships if the treatment is not randomized). It is 
particularly important to clarify when the variables 
were measured. Under the principle of temporal 
precedence (i.e., the cause precedes the effect), the 
treatment, mediator, and outcome should be measured 
in order, rather than simultaneously, to allow the 
treatment to generate an impact on the mediator and 
subsequently influence the outcome, as illustrated in 
the NEWWS example. The pretreatment covariates, 
as the name suggests, should be measured before 
the treatment. If a pretreatment covariate does not 
vary over time, it can be measured at any time. To 
minimize the possibility of violating the assumption 
of no post-treatment confounding, one may choose 
the time point of measurement for the mediator to be 
relatively close to that for the treatment (VanderWeele 
& Vansteelandt, 2009, p. 462). It is worth noting that 
the indirect effect may vary when the mediator is 
measured at a different time point. For example, the 
mediating role of whether a mother was employed 
during the first year after randomization underlying 
the LFA impact on maternal depression at the end 
of the second year may differ from that of whether a 
mother was employed during the two-year period after 
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randomization. The latter can better capture the entire 
process, but at a higher risk of violating the no post-
treatment confounding assumption, as illustrated in 
the section of Identification. Therefore, when stating 
research questions, it is crucial to clarify when the 
mediator is measured. In the presence of potential 
post-treatment confounders, possible solutions are 
discussed in the following section of Extensions. To 
better capture the time-varying property of a mediator, 
researchers may also consider conducting a longitudinal 
mediation analysis, as briefly mentioned in the section 
of Extensions. In addition, in this section, it is essential 
to describe the chosen causal mediation analysis 
method, rationalize the choice of the method, clarify 
the underlying assumptions, discuss the plausibility of 
the assumptions, and justify the methods used to handle 
missing data.

3.	 Analysis results. This section reports the estimation 
and inference results of the causal mediation analysis. 
The effect sizes reflect the practical significance, 
while the p-values or confidence intervals reveal the 
statistical significance. In terms of the effect sizes, 
some researchers reported mediation effect estimates 
in the standard deviation of the outcome in the control 
group (Kraft, 2020), or the standard deviation of the 
outcome in the whole sample (e.g., Hong et al., 2015; 
MacKinnon, 2008), while some fully standardized 
the mediation effects by standardizing all the 
variables (e.g., Preacher and Hayes, 2008). As Kraft 
(2020) argued on page 245, for a binary treatment, 
“it is preferable to use the standard deviation of the 
control group outcome rather than the pooled sample 
because the intervention may have affected the 
variation in outcomes among the treatment group. 
Intuitive interpretations of the effects are needed to 
better answer the research questions proposed in the 
introduction section.

4.	 Sensitivity analysis. A causal mediation analysis is 
incomplete without a sensitivity analysis. It is crucial 
to report how robust the reported analysis results are to 
potential unmeasured pretreatment confounding.

5.	 Discussion. This section summarizes the findings, 
states the implications of the results for practice, 
policy, and science, and discusses limitations of the 
analysis, such as a possible violation of the SUTVA 
assumption, the positivity assumption, or the assumption 
of no post-treatment confounding, failures to account 
for measurement error, and vulnerability to model 
misspecifications. It is also necessary to clarify how 
these limitations would affect the validity of the 
conclusions.

Extensions

Many other advancements have emerged in causal mediation 
analysis over the past two decades but have not received 
enough attention among empirical researchers. This section 
briefly introduces some extensions that I made with my 
colleagues and several other extended topics.

Power analysis for causal mediation analysis

With the rapid development of causal mediation analysis, 
tools for power and sample size calculations are increasingly 
needed for study design or grant application. However, 
the development of such tools has lagged far behind the 
development of analytic methods. Qin (2023) developed 
a simulation-based method and the very first easy-to-use 
R Shiny app (https://​xuqin.​shiny​apps.​io/​Causa​lMedi​ation​
Power​Analy​sis/) for power and sample size calculations 
for parametric regression-based causal mediation analysis 
under the single-level settings. It is compatible with 
the widely used R mediation package. Users can either 
calculate the power for detecting a causal mediation effect 
at a given sample size or determine the sample size required 
for achieving a specific power. The app is applicable to 
a wide range of scenarios, including a randomized or 
nonrandomized treatment, a mediator, and an outcome that 
can be either binary or continuous. The article also provided 
sample size suggestions under a wide range of scenarios 
and a detailed guideline for app implementation to facilitate 
study designs.

Multisite causal mediation analysis

Intervention programs in education are usually delivered in 
various sites, such as organizations or communities. Multisite 
trials that randomly assign individuals to different treatment 
conditions within each site have been pervasive in education 
in the past two decades. While most evaluation research in 
the past has focused solely on average intervention impacts, 
researchers have argued that the average alone is not 
sufficient for informing policy and practice. Investigations 
of between-site variations in causal mechanisms will allow 
researchers to assess the generalizability or a lack thereof of 
findings across a wide range of contexts. Qin and colleagues 
(Qin & Hong, 2017; Qin et al., 2019, 2021) enabled such 
evaluations by developing conceptual frameworks, statistical 
methods, and the R package MultisiteMediation. Sampling 
weights and nonresponse weights are incorporated into the 
analysis to enhance the external and internal validity of 
conclusions. The analysis results include the point estimates 
and significance of the population average and between-site 
variance of each causal mediation effect. Such evidence may 

https://xuqin.shinyapps.io/CausalMediationPowerAnalysis/
https://xuqin.shinyapps.io/CausalMediationPowerAnalysis/
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generate important information for understanding why the 
total impacts vary across different contexts and reveal a need 
to revisit the program or intervention theory.

Causal moderated mediation analysis

In addition to the population average and between-site 
variance of causal mediation mechanisms, it is also 
important to evaluate how causal mediation mechanisms 
are moderated by individual and contextual characteristics. 
The evidence may suggest individual and/or site-specific 
modifications of the intervention practice and thus improve 
interventions to enhance participants’ outcomes across 
various subpopulations and contextual settings.

Different moderated mediation analysis methods 
have been developed under the traditional path analysis/
structural equation modeling framework. There are three 
major concerns about this conventional line of research. 
First, the definitions of moderated mediation effects depend 
on specific mediator and the outcome regressions and can 
be very complex as multiple moderated relationships are 
involved. Second, when the mediator or outcome model is 
nonlinear, moderated mediation analysis is so challenging 
that no solutions have been provided. Third, analysis results 
may not have causal interpretations due to a lack of care 
about confounding.

Qin and Wang (2023) developed general definitions, 
identification, estimation, and sensitivity analysis for 
causal moderated mediation effects under the counterfactual 
causal framework. They also developed a user-friendly R 
package moderate.mediation that can provide numerical 
summaries and intuitive visualizations for the conditional 
and moderated causal mediation effects and the extent to 
which the results are sensitive to unmeasured pretreatment 
confounding. The package is applicable to a wide range of 
scenarios, including a binary or continuous treatment that is 
either randomized or nonrandomized, a binary or continuous 
mediator, a binary or continuous outcome, and one or more 
moderators of any scale. The article provided a step-by-
step guide on how to use the package to conduct the entire 
analytic procedure. The method was developed under single-
level settings. An extension to multilevel settings is being 
developed.

Relaxing the no post‑treatment confounding 
assumption

A big challenge of causal mediation analysis lies in 
relaxing the assumption of no post-treatment confounders 
of the mediator–outcome relationship. Because a post-
treatment confounder is affected by the treatment, 
directly controlling for it in the mediator and/or outcome 
models would bias the indirect and direct effect estimates. 

Intuitively speaking, the original direct effect estimand 
would no longer indicate the treatment effect that is not 
transmitted through the focal mediator. Instead, it would 
be the treatment effect that is transmitted through neither 
the focal mediator nor the post-treatment confounder. The 
essence of the problem is that a post-treatment confounder 
is only partially observed. Specifically, if an individual 
has been assigned to the experimental condition, the 
individual’s potential post-treatment confounder value 
associated with the counterfactual control condition is 
unobserved. In this sense, the problem with statistical 
adjustment for a post-treatment confounder is a problem 
of missing data.

Hong et  al. (2023) developed an imputation-based 
sensitivity analysis strategy for handling post-treatment 
confounding and incorporated it into weighting-based 
causal mediation analysis. Daniel et al. (2015) provided 
a similar solution for regression-based causal mediation 
analysis. An alternative solution is to conduct a causal 
mediation analysis from the interventional perspective 
(Nguyen et al., 2021; VanderWeele et al., 2014), which 
allows adjustment for post-treatment confounders. Park 
and colleagues (Park et  al., 2022, 2023) developed 
sensitivity analysis strategies for such analysis to assess 
the influence of unmeasured confounding.

Other extensions

Beyond the above extensions, researchers have made 
many other important extensions to enrich the literature 
on causal mediation analysis. For example, researchers 
have developed methods for causal mediation analysis 
with multiple mediators (e.g., Daniel et al., 2015; Imai 
& Yamamoto, 2013) and causal mediation analysis that 
accounts for noncompliance with treatment randomization 
(e.g., Keele et al., 2015; Park & Kurum, 2020). Another 
emerging domain is longitudinal causal mediation analysis 
with time-varying treatment, mediator, and outcome 
(e.g., VanderWeele & Tchetgen Tchetgen, 2017). Because 
mediation consists of causal processes that unfold over 
time, longitudinal causal mediation analysis enables 
researchers to make more rigorous inferences about causal 
relations.

Summary

The literature on causal mediation analysis has been 
growing rapidly in the past two decades. This article aims 
at guiding empirical researchers who have little knowledge 
about this field through concepts and challenges of 
mediation analysis under the counterfactual causal 



715An introduction to causal mediation analysis﻿	

framework. After reading the articles, readers are expected 
to be able to tell the difference between causal mediation 
analysis and traditional mediation analysis, understand 
the definitions of potential outcomes and the causal 
mediation effects, realize the importance of controlling for 
pretreatment confounders in the analysis and conducting 
sensitivity analysis to assess the influence of unmeasured 
confounding, know the difference among different causal 
mediation analysis methods and what software to use for 
the analysis, and learn how to write a causal mediation 
analysis paper. For more in-depth investigations of causal 
mediation mechanisms, readers may further read the 
references cited in the Extensions section and read two 
books written by leading scholars in causal mediation 
analysis, Hong (2015) and VanderWeele (2015).
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