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Abstract
Oxidative stress is an automatic mechanism responsible for the commencement and continuance of liver injury. In this 
study, an antioxidative peptide Val-Thr-Ala-Leu (VTAL) was purified from simulated gastrointestinal digestion of protein 
hydrolysates of the triploid oyster Magallana gigas. Significant antioxidant activity was identified, as well as a protective 
effect against acetaminophen (APAP)-induced human liver cancer (HepG2) cells. The results suggested that the antioxidant 
activity improved in a dose-dependent manner. The highest cell viability (88.105 ± 3.62%) was observed in 15 mM APAP-
induced cells when treated with 25 μg/mL M. gigas peptide [M.g (pep)]. The peptide sequences include hydrophobic amino 
acids, which could be responsible for its chemoprotective and antioxidant activities. Treatment with M.g (pep) significantly 
promoted the proliferation of HepG2 cells, thus protecting them against APAP and imbuing them with significant antioxidant 
capacity. M.g (pep) could be beneficial for treating drug-induced oxidative stress and liver damage. Additionally, M.g (pep) 
could serve as an alternative to synthetic antioxidant drugs.

Keywords Magallana gigas · Enzymatic digestion · Bioactive peptide · Antioxidant activity · Chemoprotective effect · 
Acetaminophen · Simulated gastrointestinal digestion

Introduction

Oysters are highly nutritious marine organisms with medici-
nal value. They have a high protein, active polysaccharide, 
taurine, vitamin, and mineral content, and are also low in fat 

(Guo et al. 2020). Bioactive materials have been extracted 
from various oyster species: oyster protein can be defrag-
mented as multiple peptides with high bioactivity. Oyster 
protein hydrolysates (OPHs) and peptides are valuable 
owing to their stability and diverse biological activities (Guo 
et al. 2020; Xie et al. 2018). Many studies have described the 
bioactive properties of oyster peptides (OPs), including their 
antioxidant, antitumor, antimelanogenic, immunomodula-
tory, antifatigue, antimicrobial, antithrombotic, antiviral, 
antiwrinkle, antihypertensive, antiinflammatory, antifungal, 
anticancer, anticoagulant, and osteogenic effects (Ulagesan 
et al. 2022; Asha et al. 2016; Wang et al. 2014; Wang et al. 
2010; Gueguen et al. 2006; Liu et al. 2008; Seo et al. 2013; 
Zeng et al. 2008; Hwang et al. 2012; Qian et al. 2020; Liu 
et al. 2007; Cheong et al. 2013; Han et al. 2019; Kim et al. 
2015; Hao et al. 2013; Miao et al. 2018; Cheng et al. 2018; 
Cheng et al. 2021; Chen et al. 2019a, b A; Chen et al. 2019a, 
b B; Ngo et al. 2012; Bharathiraja et al. 2017). Oyster pep-
tides may also enhance spatial learning and memory, ace-
tylcholinesterase activity, and sexual function, and they also 
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serve as angiotensin-converting enzyme (ACE) inhibitors 
(Wang et al. 2020; Zhang et al. 2021; Hao et al. 2022).

Acetaminophen (APAP) is a widely available antipy-
retic and painkiller medicine that has been used exten-
sively since 1955. It is considered safe at therapeutic 
levels, but overdose or therapeutic misuse may cause hepa-
totoxicity and liver damage. In the last few decades, there 
have been concerns regarding the role of APAP in acute 
liver failure (ALF) in adults, with APAP-related ALF 
accounting for about 30–50% of cases worldwide (Bun-
chorntavakul and Reddy, 2013). In the USA, APAP hepa-
totoxicity was reported as the cause of 50% of all cases of 
overdose-related ALF and 20% of liver transplants. Toxic 
ingestion of APAP induces hepatic failure at concentra-
tions above 150 mg/kg, but even minor doses may result 
in acute liver injury or failure (Yoon et al. 2016). During 
the COVID-19 epidemic, infected patients were widely 
treated with antipyretic agents that contained APAP (Feng 
et al. 2020). Misuse of these medicines could lead to liver 
injury (Zhang et al. 2022). Additionally, an APAP over-
dose will increase oxidative stress and levels of reactive 
oxygen species (ROS).

ROS are produced in the body by several endogenous sys-
tems (Lobo et al. 2010). The formation of free radicals, such 
as superoxide anions  (O2

−) and hydroxyl radicals (·OH), are 
inevitable in aerobic organisms during respiration, and play 
a major role in many diseases. These radicals are highly 
unstable and so they react with other groups and elements 
in the body and cause cell or tissue injury (Kim et al. 2007; 
Bharathiraja et al. 2017). Excessive amounts of these free 
radicals induce oxidative stress, which may damage cells and 
lead to chronic diseases such as hepatitis, as well as alco-
holic and nonalcoholic fatty liver diseases. Toxins, drugs, 
and xenobiotics are metabolized in the liver, while liver cells 
balance ROS production. Generally, the metabolic functions 
of the liver, and its relationship to the gastrointestinal tract, 
make it susceptible to these toxins (Cichoz-Lach and Micha-
lak 2014; Bharathiraja et al. 2018; Santha Moorthy et al. 
2017). Thus, antioxidant therapy with bioactive peptides 
could be useful to maintain the balance between oxidants 
and antioxidants during liver disease, as well as for protect-
ing hepatocytes from oxidative stress.

Oysters are an abundant marine resource with a high 
protein content. Oyster proteins are digested by various 
proteases, producing low-molecular-weight protein hydro-
lysates and amino acids. Various enzymes are used to digest 
oyster proteins, and bioactive peptides have been purified 
from OPHs. Oyster peptides possess a wide range of bioac-
tive properties that vary according to the receptors involved. 
Many studies have shown that OPs are derived from gas-
trointestinal enzymatic hydrolysates with high antioxidant 
activity (Qian et al. 2008, 2020; Nam et al. 2015). How-
ever, limited studies have been carried out to assess the 

chemoprotective effects of OPs. This study aims to inves-
tigate the ability of OPs derived from Magallana gigas to 
repair the damage caused by APAP-induced hepatotoxicity 
using HepG2 cells.

Materials and methods

Chemicals

The following enzymes and chemicals were used in this 
study: trypsin, pepsin, α-chymotrypsin, fluorescein (FL), 
2,2′-azobis(2-methylpropionamidine) dihydrochloride 
(AAPH), ( ±)-6-hydroxy-2,5,7,8-tetramethylchromane-
2-carboxylic acid (Trolox), 2,2′-azino-bis (3-ethylbenzothi-
azoline-6-sulphonic acid (ABTS), and APAP. All of these 
analytical grade reagents and enzymes were purchased from 
Sigma-Aldrich (St. Louis, MO, USA). Reactions were per-
formed in deionized water.

Sample collection and preparation

The broodstock of cultivated Pacific oysters M. gigas was 
procured from the Myeongdeung Fisheries in Geoje, Gyeo-
ngsangnam-do, Korea. The shell length (SL), shell height 
(SH), and shell width (SW) were measured using a Vernier 
caliper. The total wet weight, soft tissue weight (STW), and 
total shell weight were calculated using an electronic bal-
ance. The oysters were dissected and the adductor muscle, 
digestive gland, gills, labial palps, mantle edge, and gonads 
were isolated. Each specimen was frozen in liquid nitrogen 
and stored at −80 °C.

Preparation of M. gigas protein hydrolysate

The protein was extracted from the gill tissue of M. gigas. 
Gill tissue (1 g) was homogenized with deionized water 
at a ratio of 1:3 v/w. The homogenate was modified to the 
optimum temperature and pH for the protein hydrolysate 
preparation.

Protein hydrolysates were prepared with three different 
enzymes as single hydrolysates and in combination, with an 
enzyme/substratum ratio of 1/100 (w/w) using buffers under 
optimum conditions.

Four different protein hydrolysates were prepared as 
follows:

1. Pepsin (10 mM glycine buffer; pH 2 at 37 °C for 2 h at 
100 rpm)

2. Trypsin (50 mM sodium phosphate buffer; pH 8 at 37 °C 
for 4 h at 100 rpm)

3. α-Chymotrypsin (50 mM sodium phosphate; pH 8 at 
37 °C for 4 h at 100 rpm)



73Fisheries Science (2023) 89:71–81 

1 3

4. Pepsin + trypsin + α-chymotrypsin (digested under opti-
mum pepsin conditions for 2 h; the pH was changed 
to 8, and trypsin and α-chymotrypsin were added and 
incubated for 4 h at 37 °C and 100 rpm)

After digestion, the enzymes were deactivated by heating 
for 10 min at 100 °C. The hydrolysates were centrifuged 
at 10,000 × g (4 °C) for 10 min, and the supernatants were 
stored for further study.

Antioxidant activity

Oxygen radical absorbance capacity (ORAC) assay

The ORAC assay of M. gigas protein hydrolysates was con-
ducted using FL as the probe. The programmed ORAC assay 
was performed on a Synergy HTX multi-mode microplate 
reader (BioTek, Winooski, VT, USA) with fluorescence fil-
ters, at excitation and emission wavelengths of 485 nm and 
535 nm, respectively; 96-well black-bottomed plates were 
used. The reaction was carried out at 37 °C, and was ini-
tiated by thermal decomposition of AAPH (Zulueta et al. 
2009).

FL stock solution was prepared by dissolving of 44 mg of 
FL in 100 mL of phosphate-buffered saline (PBS;75 mM, pH 
7.0), and was stored in a dark refrigerated condition. Addi-
tionally, the working solution (78 nM) was freshly prepared 
by diluting 0.167 mL of the stock solution with 25 mL phos-
phate buffer. The AAPH radical (221 mM) was freshly made 
by making up 600 mg of AAPH to 10 mL with PBS. The ref-
erence standard was a 20 μM Trolox solution prepared daily 
with PBS from a 1 mM stock standard solution, and kept in 
the freezer at –20 °C. Since the ORAC assay is very sensi-
tive, samples should be diluted properly prior to the analy-
sis to avoid interference. Each well was filled with 150 μL 
of FL (78 nM) and 25 μL of the sample, blank (PBS), or 
standard (Trolox, 20 μM). Then 25 μL of AAPH (221 mM) 
was added. Owing to the low conductivity of polypropylene 
plates, measurement deviations between wells can occur. 
To avoid this, the plates were warmed to 37 °C for 15 min 
before adding AAPH. Fluorescence was measured instantly 
after the addition of AAPH and measurements were then 
taken every 2 min up to 60 min. The measurements were 
performed in triplicate. The ORAC value, expressed as mM 
Trolox equivalent (mM TE/mg) was calculated by applying 
the following equation:

where C Trolox is the concentration (μM) of Trolox 
(20 μM), k is the sample dilution factor, and AUC is the area 

ORAC (�M TE) = CTrolox.

(

AUCSample−AUCBlank

)

.

k∕ (AUCTrolox−AUCBlank)

under the fluorescence decay curve of the sample, blank, 
and Trolox.

Trolox equivalent antioxidant capacity (TEAC) assay

This study utilized the method described by Re et al. 1999 
with minor modifications, to measure an individual sam-
ple’s ability to inhibit the ABTS radical (ABTS +) when 
compared with a reference antioxidant standard (Trolox). 
ABTS + is produced by a chemical reaction with potassium 
persulfate  (K2S2O8). The radical was prepared by adding 
25 mL of ABTS (7 mM) to 440 μL of  K2S2O8 (140 mM) 
in the dark and allowing it to stand at room temperature for 
12–16 h (the amount of time required for radical formation). 
The working solution was prepared by diluting a volume 
of the previous solution in PBS (pH 7.4) until the absorb-
ance at k = 734 nm was 0.7 ± 0.02. Further dark incubation 
was performed for 5 min, followed by diluted ABTS work-
ing solution (200 μL + sample or PBS, or 10 μL of Trolox) 
added, and the absorbance at 734 nm (Zulueta et al. 2009) 
was determined using the Synergy HTX multi-mode micro-
plate reader. In the range of 0–400 μM, a Trolox calibra-
tion curve was generated, and inhibition percentages for the 
samples were interpolated to determine the concentration 
in Trolox equivalents (mM TE/mg). Each measurement was 
performed in triplicate.

Molecular weight cutoff for separation

The M. gigas protein hydrolysate was separated by an ultra-
filtration membrane (Vivaflow 200 Laboratory Cross Flow 
Cassette; Sartorius, Gottingen, Germany).

The protein hydrolysate was separated into four different 
molecular weight fractions:

•  > 10 kDa
• 10–5 kDa
• 5–3 kDa
•  < 3 kDa

Analyses of antioxidant activity were performed on the 
four different fractions. Compared with the other three 
molecular weight fractions, < 3  kDa exhibited greater 
antioxidant activity. To further purify the activity-rich 
fraction < 3  kDa, anion exchange chromatography was 
performed.

Fast protein liquid chromatography (FPLC)

After further purification, the > 3 kDa hydrolysate was run 
on a HiPrep 16/10 diethylaminoethyl ion-exchange column 
(DEAE-FF) with the FPLC system (AKTA Prime Plus; GE 
Healthcare, Piscataway, NJ, USA). The freeze-dried 3 kDa 
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protein hydrolysates (20 mg/mL) was dispersed in 20 mM 
Tris–HCl buffer (pH 9.5). Further, 5 mL of samples were 
loaded onto a HiPrep 16/10 DEAE FF ion-exchange column 
equilibrated in 20 Mm Tris–HCl buffer (pH 9.5), followed 
by an elution into a linear gradient of NaCl (0–1 M) at a flow 
rate of 2 mL/min. For each fraction (5 mL), the peaks were 
monitored at 214 nm, and fractions corresponding to those 
peaks were collected and pooled. The freeze-dried pooled 
fractions were subsequently analyzed for antioxidants and 
hydroxyl radical-scavenging activity. The fraction with 
the pooled fractions that exhibited highest antioxidant and 
hydroxyl radical-scavenging activities was additionally puri-
fied with high-performance liquid chromatography (HPLC) 
to find a pure peptide.

Preparative reverse phase (RP)‑HPLC

Fractions with higher antioxidant were further purified by 
RP-HPLC using a Luna 5 µm C18(2) 100 Å, 250 × 10 mm 
LC column (Phenomenex., Torrance, CA, USA), attached 
to the Dionex Chromeleon 7.2 chromatography system 
(Thermo Fisher Scientific, Waltham, MA, USA.). Separation 
was performed with solution A (0.1% formic acid in deion-
ized water) and solution B (0.1% formic acid in acetonitrile) 
eluted with a linear gradient of acetonitrile (0–5 min, 90% of 
solution A and 10% of solution B; 6–55 min, 20% of solution 
A and 80% of solution B; 56–60 min, 20% of solution A and 
80% of solution B; 60–66 min, 90% of solution A and 10% 
of solution B) at a flow rate of 1 mL/min. Absorbance was 
monitored at 214 nm.

Determination of peptide sequences by liquid 
chromatography–tandem mass spectrometry (LC‑MS/MS)

The amino acid sequence was confirmed by de novo 
sequencing of peptides derived from proteolytic substances 
or extracted through LC–MS/MS. A micro quadrupole time 
of flight (Q-TOF) III mass spectrometer (255,748; Bruker 
Daltonics, Hamburg, Germany) was used to perform the 
MS analysis. Filtered (Minisart syringe filter; Sartorius; 
pore size, 0.45 μm) samples (10 μL) were injected through 
a Poroshell 120 EC-C18 (2.1 × 100 mm, 2.7 μm; Agilent) 
LC column and separated using the UltiMate 3000 system 
(Thermo Fisher Scientific). The separation was attained at a 
flow rate of 0.2 mL/min by using a gradient elution program, 
starting with 98% solvent AA  [H2O/FA = 100/0.1 (v/v)) 
and 2% solvent B (acetonitrile/FA = 100/0.1 (v/v)] for up 
to 2 min. This was gradually changed to 70% solvent A and 
30% solvent B at 20 min. The gradient then changed rapidly 
to 5% solvent A and 95% solvent B from 20 to 21 min, which 
was then maintained up to 26 min. The program then rapidly 

changed to 98% solvent A and 2% solvent B at 27 min, which 
was maintained up to 35 min.

Further samples were subjected to the mass spectrometer 
via electrospray ionization (ESI +) via the subsequent MS 
parameters: capillary voltage, 3500 V; nebulizer flow, 0.8 L/
min; dry gas flow rate, 5.5 L/min; dry temperature, 180 °C; 
transfer, funnel 1RF at 400 Vpp and funnel 2RF at 400 Vpp; 
ISCID energy, 0 eV; hexapole radiofrequency setting, 250; 
quadruple, ion energy of 5.0 eV; low mass of 300 m/z; col-
lision cell collision energy, 7 eV; collision radiofrequency, 
600; transfer time, 80 μs; and pre-pulse storage, 10 μs. The 
collected spectra were scanned from 50 to 2000 m/z. The 
normalized collision energy of 100 Vpp was used to pro-
duce the MS spectra by the collision-induced dissociation 
of the metabolite ions. Peptide de novo sequencing was per-
formed to analyze the amino acid sequence based on the 
MS/MS spectra. A single peptide amino acid sequence was 
identified.

Cell culture

HepG2 human liver cancer cells (cat. no. HB-8065) were 
procured from the American Type Culture Collection 
(Manassas, VA, USA) with the culture conditions of 37 °C 
with 5%  CO2 in minimum essential medium (MEM; Sigma-
Aldrich) enhanced with 10% fetal bovine serum (FBS) (Gen-
DEPOT, Katy, TX, USA) containing 100 U/mL penicillin 
and 100 mg/mL streptomycin. The medium was changed on 
alternative days.

Cell viability assay

Cell viability was assessed with the EZ-Cytox cell viability 
assay kit (cat. no. EZ-1000). Cells were seeded in 96-well 
plates (2 ×  104 cells/well in 100 μL medium) and allowed 
to attach for 24 h at 37 °C. The attached cells were then 
treated with M. gigas (pep) (1.25, 2.5, 5, or 25 µg/mL) and 
15 mM APAP (A7085; Sigma-Aldrich) in serum-free MEM 
(SFM) for 18 h at 37 °C. After adding the Cytox solution 
to the cells, they were incubated at 37 °C for 1 h, and the 
absorbance was measured at a wavelength of 450 nm using 
a FilterMAX F5 microplate reader (Molecular Devices LLC, 
San Jose, CA, USA) (Kim et al. 2019).

Apoptosis assay

Apoptosis was evaluated using Muse annexin V and a dead 
cell assay kit (cat. no. MCH100105; BD Biosciences, Frank-
lin Lakes, NJ, USA). The harvested cells were washed twice 
with PBS, and stained with FITC annexin V and propidium 



75Fisheries Science (2023) 89:71–81 

1 3

iodide for 15 min at room temperature. The apoptotic cell 
percentage was determined using annexin V and the Muse 
cell analyzer system (Merck Millipore, Burlington, MA, 
USA).

Statistical analysis

All the results are presented as the mean with the stand-
ard deviation of three independent experiments. The sig-
nificant difference among the means was calculated by 
one- or two-way ANOVA followed by Dunnett’s multiple 
comparison test using GraphPad Prism software (version 
9/0; GraphPad Software Inc., San Diego, CA, USA). A 
p-value < 0.05 was considered to indicate a statistically sig-
nificant difference.

Results

Protein extraction and purification

M. gigas (triploid oyster) was dissected and crude protein 
was extracted from the gill tissue.

Antioxidant activity of M. gigas protein hydrolysate

The oyster protein was digested with multiple proteases, 
either singly or in combination. The digested protein 
hydrolysates were analyzed to determine their antioxi-
dant activities (ORAC and TEAC). The three enzymes 

(pepsin + trypsin + α-chymotrypsin) combined in the sim-
ulated gastrointestinal digestion (SGID) had higher anti-
oxidant activity than the other protein hydrolysates and 
unhydrolyzed M. gigas protein (Fig. 1a and b). The ORAC 
and TEAC values in the SGID were 3437.22 ± 44.7 and 
392.96 ± 9.3 mM TE/mg, respectively, and the correspond-
ing values for unhydrolyzed M. gigas were 311.371 ± 27.3 
and 117.28 ± 9.3 mM TE/mg.

Antioxidant activities of different molecular weight 
fractions

The gastrointestinal digested protein hydrolysate was fur-
ther purified using different molecular weight cutoffs (> 10, 
10–5, 5–3, and < 3  kDa). The lowest molecular weight 
fraction (< 3 kDa) had the highest antioxidant activity. 
The ORAC and TEAC values were 4,298.51 ± 82.69 and 
5,44.91 ± 7.73 mM TE/mg, respectively (Fig. 2a and b).

Purification and antioxidant activity of < 3 kDa 
molecular weight fraction

Anion exchange chromatography (FPLC) was used to purify 
the antioxidant-rich (3  kDa) molecular weight fraction 
(Fig. 3a). Gradient elution was performed using 1 M NaCl. 
Six peaks were observed and pooled, and then analyzed for 
antioxidant activity. Fraction 3 exhibited the maximum anti-
oxidant activity compared with other fractions (Fig. 3b and 
c).

Fig. 1  Antioxidant activity 
of M. gigas protein and the 
different protein hydrolysates 
of M. gigas. a ORAC activity, 
b TEAC activity. Values are 
expressed as mean ± SD (n = 3). 
*denote significant differences 
(p < 0.05), while ns indicate no 
significant difference (p > 0.05)
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Purification of the antioxidant‑rich fraction 3

Antioxidant-rich fraction 3 was further purified by RP-
HPLC, with two peaks analyzed separately for antioxidant 
activity (Fig. 4a) and compared with glutathione (GSH) 
(naturally occurring antioxidant). Peak two had the highest 
antioxidant activity (Fig. 4b and c). Peak two (p2) had the 
maximum antioxidant activity and was subsequently ana-
lyzed by LC-MS/MS; a single peak was observed (Fig. 5) 
and the peptide sequence was identified by de nova sequenc-
ing (Table 1).

Analysis of M. gigas peptide [M.g (pep)] 
in APAP‑induced HepG2 cell

Cell viability

The cell viability of M.g (pep) was analyzed relative to the 
APAP-induced toxicity in HepG2 liver cells. The APAP-
treated groups had a 60% survival rate after an 18 h treat-
ment. The cell viability of the APAP-treated group was 
61.67 ± 2.32% that of the control (Fig.  6). Subsequent 
treatment with 15 Mm APAP and 1.25, 2.5, 5, and 25 μg/
mL M.g (pep) was associated with significantly higher cell 
viability compared with the control group: 69.20 ± 3.66%, 
79.78 ± 7.3%, 85.97 ± 2.5%, 88.10 ± 3.6%, respectively. 

Fig. 2  The antioxidant activity 
of different molecular weight 
fractions of M. gigas protein 
hydrolysates. a ORAC activity, 
b TEAC activity. Values are 
expressed as mean ± SD (n = 3). 
* denote significant differences 
(p < 0.05), while ns indicate no 
significant difference (p > 0.05)
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Fig. 3  a Fast protein liquid chromatography profile of < 3  kDa pep-
tide. A 5  mL sample was loaded onto a HiPrep 16/10 DEAE FF 
anion-exchange column. Separation was performed at 2 mL/min. Elu-
tion  was  monitored  at  214  nm. Antioxidant activity of the fractions 

collected from FPLC. b The ORAC value of the fractions, c the 
ABTS activity of the fractions. Values are expressed as mean ± SD 
(n = 3). *denote significant differences (p < 0.05), while ns indicate no 
significant difference (p > 0.05)
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These results suggested that the increased cell viability was 
evident in a dose-dependent manner.

Discussion

Oyster proteins generally contain various bioactive 
sequences, which can be released by enzyme hydrolyses 
to act as bioactive peptides. Thus, enzyme hydrolyses 
increase the nutritional properties of the oyster protein 
(Wang et al. 2010). The present study also elucidated the 
protective effects of a bioactive peptide derived from pro-
tein hydrolysates of the oyster Magallana gigas against 
acetaminophen-induced HepG2 cells. Oyster meat accounts 
for about half of the dry weight of an oyster (Linehan et al. 
1999). The oyster gill is a complex ciliated organ with major 
roles in feeding, respiration, and excretion. Cilia of the gill 
are involved in the generation of strong water currents that 
pass through numerous branchial chambers to ensure gas 
exchange between organs and the surrounding medium, as 
well as the transport of food particles. Crude protein was 
isolated from the gill tissue of M. gigas. Protein hydrolysates 
digested with the combined SGID showed higher antioxi-
dant activity. The antioxidant activity of gastrointestinally 
digested protein hydrolysates were significantly higher than 
other enzyme-digested protein hydrolysates and unhydro-
lyzed M. gigas protein. The antioxidant activities of protein 
hydrolysates mainly depend on the amino acid composition 
and sequence, as well as the peptide’s configuration and 
size (Chen et al. 1996). Generally, antioxidant activity is 
characterized by the enzymes when using the same protein 

substrates. Protein hydrolysates derived from different pro-
teases had different antioxidant activities, suggesting that 
the enzymes were a major factor influencing the antioxidant 
properties of the protein hydrolysates. The results indicated 
that M. gigas undergoing SGID released more amino acids 
than other enzyme-digested protein hydrolysates. A previ-
ous study on SGID of mulberry leaf protein and its neutrase 
hydrolysates found similar results (Sun et al. 2021). Further, 
the antioxidant activity of different molecular weight frac-
tions indicated the lower fraction (< 3 kDa) exhibited the 
maximum activity, demonstrated with ORAC and TEAC 
assays. The molecular size of a peptide is also a major fac-
tor influencing the absorption of food protein hydrolysates. 
Peptides with lower molecular weights were the main con-
tributors to the antioxidant activity of protein hydrolysates 
(Garcia-Mora et al. 2015). These results are in accordance 
with those of previous studies reporting that low-molecu-
lar-weight peptides have greater antioxidant activity (Ren 
et al. 2008; Zhu et al. 2008; Cao et al. 2009). The FPLC 
purified > 3 kDa fraction with higher antioxidant activity 
(fraction 3) was subjected to RP-HPLC analysis and further 
separated into two peaks. The peak with higher activity (P2) 
was further purified by LC-MS/MS and the peptide sequence 
was identified as Val-Thr-Ala-Leu (VTAL). A strong cor-
relation exists between the amino acid composition and the 
bioactivities of peptides (Mendis et al. 2005a, b A; Mendis 
et al. 2005a, b; Shen et al. 2010). Generally, the higher the 
content of hydrophobic amino acids (Pro, Tyr, Val, Ala, Leu, 
Ile, Phe, and Met) in the peptide sequence, the stronger the 
antioxidant activity; this may be due to the interaction with 
lipid-soluble free radicals and a delay in lipid peroxidation 
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Fig. 4  a Results of RP-HPLC analysis using a Luna 5  µm C18 (2) 
100 Å, 250 × 10 mm LC column attached to a Dionex system. Elution 
was performed with solution A (0.1% formic acid in deionized water) 
and solution B (0.1% formic acid in acetonitrile), eluted with a linear 
gradient of acetonitrile (0–80% in 0–66 min) at a flow rate of 1 mL/

min. Absorbance was monitored at 214  nm. Antioxidant activity of 
peaks identified by RP-HPLC. b The ORAC value of the fractions, c 
the ABTS activity of the fractions are compared with the glutathione 
(GSH)
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(Harnedy and FitzGerald, 2012; Bunchorntavakul and 
Reddy, 2013; Zou et al. 2016). The peptide sequence identi-
fied in the present study contained Val-Thr-Ala-Leu, which 
indicated that the peptide isolated from M. gigas was rich 
in amino acids implicated in antioxidant activity, and could 
therefore be a potential antioxidative peptide. Further, the 
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protective effect of protein hydrolysate was tested with 
APAP-induced HepG2 cells and increased viability was 
observed in a dose-dependent manner. Park et al. 2014 also 
revealed the protective effects of enzymatic oyster hydro-
lysate against APAP-induced HepG-2 cell damage, and the 
results show that the oyster hydrolysate has potential as a 
health food or liver-protecting drug.

This study showed that M. gigas protein hydrolysate 
subjected to SGID had significantly more antioxidant activ-
ity than other enzyme-digested protein hydrolysates and 
unhydrolyzed proteins. Furthermore, the low-molecular-
weight peptide fractions derived using molecular weight 
cutoffs exhibited significant antioxidant activity. However, 

the purified peptide (VTAL) also had remarkable antioxi-
dant activity, among other positive effects (i.e., promotion 
of cell viability and reduction of oxidative stress) against 
APAP-induced liver damage involving HepG2 liver cells. 
The identified peptide sequence, which encompasses hydro-
phobic and aromatic amino acids, could promote antioxidant 
and chemoprotective activity. Further synthesis and in vivo 
studies of the peptide will be valuable for the food and phar-
maceutical industries.
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