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Abstract
Predicting the outbreak of disease is essential when managing shrimp farms. Acute hepatopancreatic necrosis disease 
(AHPND) caused by Vibrio parahaemolyticus is a serious disease in shrimp. It is essential that shrimp farmers on the east 
coast of the Mekong Delta detect the disease as early as possible, because the mortality rate can reach 100%. Here, we used 
machine learning to predict AHPND development based on data collected since 2010 from shrimp farms in Tra Vinh, Ben 
Tre, Bac Lieu, and Ca Mau provinces. We initially hypothesized that the dependent variable, AHPND, was affected by 31 
independent variables, but ultimately used 15 key variables to train the models. Logistic regression, artificial neural network, 
decision tree, and K-nearest neighbor analyses were performed, and the accuracy of the predictions was evaluated using 
hold-out and cross-validation tests. Logistic regression, as the most stable algorithm, was thus used to predict AHPND 
outbreaks in shrimp farms.
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Introduction

Aquaculture is a key economic driver in Vietnam. Long-
term sustainable shrimp-farming contributes 4–5% of the 
gross domestic product (GDP) of Vietnam and currently 
employs more than 4 million people. By exploiting the 
available resources, the fishery industry has grown very 
rapidly, producing 6.1 and 6.7 million tonnes of product 
in 2015 and 2016, respectively (COFI 2019). The Viet-
namese coastline is 3260 km long, and is amenable to both 
fish and shrimp farming. Many shrimp farms have been 

developed in southern Vietnam, where the Mekong Delta 
(area of 40,000 km2) is one of the most productive fish-
ing and shrimping zones, contributing about 80% of all 
farmed shrimp exports. Shrimp farming is a key compo-
nent of Vietnamese aquaculture. However, about 80% of 
all shrimp farms report regular disease outbreaks (ADB-
NACA 1998) that are initially difficult to detect. Acute 
hepatopancreatic necrosis disease (AHPND), caused by 
Vibrio parahaemolyticus, first appeared in 2010 and has 
caused severe shrimp losses not only in Vietnam, but 
worldwide. Overt disease is evident within 20–30 days 
of infection (10 days for shrimp in ponds receiving early 
casein supplements); AHPND is thus also termed early 
mortality syndrome (EMS). Environmental factors, shrimp 
seedstocks, and poor nutritional management may contrib-
ute to infection (Crane 2019). The causative agent can be 
detected in the hepatopancreas; the characteristic disease 
signs include a pale and tough hepatopancreas, and fluid in 
the gut. AHPND has caused massive shrimp losses (Zheng 
et al. 2018). From 2010 to 2017, AHPND caused major 
economic losses in Thailand; the value of shrimp traded 
in the Mahachai Market fell by about $US7.4 billion, with 

Aquaculture

 *	 Nguyen Minh Khiem 
	 nmkhiem@cit.ctu.edu.vn

1	 Graduate School of Fisheries Sciences, Hokkaido University, 
Hakodate, Hokkaido 041‑8611, Japan

2	 Faculty of Fisheries Sciences, Hokkaido University, 
Hakodate, Hokkaido 041‑8611, Japan

3	 College of Aquaculture and Fisheries, CanTho University, 
Can Tho, Vietnam

4	 College of Information and Communication Technology, 
CanTho University, Can Tho, Vietnam

http://crossmark.crossref.org/dialog/?doi=10.1007/s12562-020-01427-z&domain=pdf


674	 Fisheries Science (2020) 86:673–683

1 3

a further $US4.2 billion loss in exports. In the Mekong 
Delta of Vietnam, the losses attributed to AHPND in 
2015 exceeded $US26 million (Shinn et al. 2018). Thus, 
AHPND is a serious problem in the Mekong Delta. Most 
shrimp farms are very large; the farmers pay minimal 
attention to shrimp nutrition, water temperature, or pH. 
The risk of AHPND is very high, and enormous areas 
may be affected. In 2012, the total area of affected farms 
was 46,093 ha [Soc Trang province, 23,371 ha (56.6% of 
the total area); Bac Lieu, 16,919 ha (41.9%); Tra Vinh, 
12,224 ha (49.5%); and Ben Tre, 2237 ha (29.0%)] (Dang 
et al. 2018).

Much effort has been devoted to the detection and pre-
vention of AHPND. A Thai case study evaluated farm 
characteristics and management, pond and water prepa-
ration, feed management, and post-larval shrimp and 
stock management (Boonyawiwat 2017). Chlorine treat-
ment and reservoir availability were assessed, and preda-
tory fish counted. Dhar et al. (2019) used the polymerase 
chain reaction technique to show that the toxin-encoding 
pirA and pirB genes played key roles in AHPND devel-
opment in white leg shrimp Litopenaeus vannamei on a 
shrimp farm in Texas. In the Philippines, AHPND has 
caused major losses of cultured Litopenaeus vannamei 
and Penaeus monodon (Leobert et al. 2015). AHPND was 
evident in both shrimps of marketable size and late-stage 
juveniles.

The Vietnamese government has established a national 
task force to prevent and manage AHPND. Of the factors 
affecting AHPND development in the Mekong Delta, envi-
ronmental conditions are of particular concern, because 
these are closely associated with disease development 
(Glenn 1976). Pond and water quality management is very 
poor, and pollution is widespread; pond water is taken from 
canals into which effluent is discharged, and cross-contami-
nation among farms is rife (Claude et al. 2019). Environmen-
tal factors increasing the risk of AHPND at ponds and farms 
include larger ponds, sun-drying of pond bottoms, and prox-
imity to already infected farms (Boonyawiwat 2018). Some 
practical solutions (an appropriate stocking density, monitor-
ing of environmental parameters, and nutrition monitoring 
in the first month of life) have been suggested (Dang et al. 
2018). However, such physical changes work only temporar-
ily; they are not long-term solutions.

In recent years, machine learning has been applied for 
disease prediction in aquaculture (Rahman and Tasnim 
2014). However, only a few studies have sought to predict 
shrimp diseases. Data collection is difficult, and technical 
barriers may be encountered. Disease timing is a particularly 
important issue. Some studies have used computers to pro-
cess digital images, to facilitate the diagnosis of diseases of 
aquaculture (Rao 2017). Artificial neural networks have been 
used to diagnose protozoan and bacterial infections of fish 

(Lopes et al. 2011), and shrimp diseases have been reliably 
diagnosed using logistic regression (Leung and Tran 2000).

AHPND symptoms are easily confused with those of 
other diseases (“white feces” and gut conditions). Water 
parameters (dissolved oxygen level, pH, and temperature) 
and shrimp density and nutrition affect AHPND develop-
ment. An understanding of the relationships among symp-
toms, external conditions, and AHPND status would be 
highly useful. However, no computer-based model pre-
dicting AHPND is yet available. Here, to understand the 
relationship between symptoms, external conditions, and 
acute hepatopancreatic necrosis disease (AHPND), we used 
machine learning to evaluate historical shrimp farm data 
from the Mekong Delta. We used an artificial neural net-
work, logistic regression, the K-nearest neighbor approach, 
and a decision tree to analyze the data, and built a predictive 
algorithm using the best approach.

Materials and methods

Dataset

Data from 2010 to 2019 were collected from shrimp farms 
on the east coast of the Mekong Delta. This region has 
been heavily affected by AHPND since 2010 (Fig. 1); the 
research area includes four provinces: Soc Trang, Ca Mau, 
Tra Vinh, and Bac Lieu. The white leg shrimp L. vannamei 
and the tiger prawn P. monodon are commonly cultured in 
the delta; 763 samples were collected from 80 shrimp ponds 
of 50 farms and then analyzed (Table 1). Both continuous 
and categorical parameters were evaluated. If a variable was 
associated with disease symptoms, it was coded as 1, and 
otherwise as 0. The dataset was divided into symptoms, vis-
ceral status, environmental factors, and general management 
practices. Symptoms included a curved body, opaque mus-
cles, poor growth, black spots, a lack of appetite, a soft shell, 
and dirty gills. Visceral status included gut and hepatopan-
creatic swelling, atrophy, toughness, pallor, emptiness, fluid 
in the gut, and a discontinuous gut. Environmental factors 
included pond water pH and temperature, dissolved oxygen, 
NO2, NH4, NH3, salinity, and alkalinity levels, and chemi-
cal oxygen demand. Management factors included shrimp 
age, the time of symptom detection, fresh smear test results, 
mortality rates, shrimp density and seedstock origin, prov-
ince, and pond area. The data were collected at different 
times from different provinces; any missing categorical data 
were scored as 0 (no symptoms). The mortality rate, timing 
of symptom detection, and seedstock origin were predicted 
by logistic regression. Mean values were entered into the 
analysis for shrimp age and density, water pH, temperature, 
and salinity, NO2, dissolved oxygen, NH4, and NH3 levels, 
and pond area. 
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Machine learning

We included variables considered informative in the litera-
ture (Crane 2019), and according to the results of machine 
learning; these included poor seedstock quality, exces-
sive water temperature and salinity, and shrimp mortality. 
Machine learning can be accomplished using backward 
elimination or forward selection. The former approach was 
preferred here, because it retains potentially useful vari-
ables in the analysis. Independent variables that correlated 
strongly with dependent variables were selected as follows. 
First, probit regression was used to identify potentially 
informative variables, and backward elimination was then 
employed to exclude certain of these variables to improve 
model accuracy.

A probit model is a regression procedure for binary clas-
sification; the dependent variable takes one of only two 
values. Here, as mentioned above, a variable that affected 
AHPND status was coded as 1, and otherwise as 0. All 
independent variables with p values ≥ 0.05 were excluded 
from the model. We then proceeded to delete additional, 
less informative variables, performing logistic regression 
after omitting each variable to assess model accuracy. The 
first model included all 16 variables; each variable was then 
omitted on an individual basis to determine whether it was 
informative. The five least significant variables were omitted 
according to this process.

For machine learning, the dataset was divided into train-
ing and test datasets (3:1 ratio). Hold-out and cross-validation 
tests (of 572 and 191 samples, respectively) were performed 

to determine model accuracy. The accuracy of models gener-
ated during training was assessed using the validation subset. 
The cross-validation tests used algorithm-dependent, iterative 
-fold values (k values, where k is the number of tests); each 
fold included 673/k samples. Each sample had to appear once 
in the testing subset and could be in both the training and test-
ing subsets during any one test. We evaluated four machine 
learning approaches: logistic regression, the KNN algorithm, 
a decision tree, and an ANN.

Logistic regression

Logistic regression models the binary probability and is often 
used for probabilistic prediction. The following equation 
(where the x values are independent variables) is used:

where p is the probability of the outcome, and coefficients 
β1 to βn are assigned to variables x1 to xn. The outcome is the 
logarithm of the ratio of two probabilities, i.e., that AHPND 
will or will not develop. The algorithm can also be repre-
sented by the sigmoid (or cost) function, which is a continu-
ous approximation of the step function yielding an output 
between 0 and 1:

(1)log

(

p

1 − p

)

= �0 + �1x1 + �2x2 +…+ �
n
x
n
,

(2)�(x) =
1

1 − e−x
,

Fig. 1   The east coast of the Mekong Delta
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Table 1   List of variables Variable Variable Description

General management
1 Shrimp age Continuous variable
2 Day detect symptom Continuous variable, value is smaller than shrimp age
3 Fresh smear test 1: Yes (already tested); 0: No (not tested yet)
4 Mortality Continuous variable, value from 0 to 100
5 Density Continuous variable
6 Seed origin 1–14 ID of hatchery

1: Hoang Gia-CP
2: Tran Hau Dien
3: Costal Seed Production 1
4: Le Tuan Phat
5: Mien Trung
6: Ninh Thuan
7: Xuan Bay
8: Dong Khoi
9: Kim Sa
10: Duong Hung
11: CP
12: Long Phu
13: Tung Bach
14: Thong Thuan

7 Province 1–4: ID of province on east coast of Mekong Delta
1: Ca Mau
2: Tra Vinh
3: Soc Trang
4: Bac Lieu

8 Area Continuous value
Viscera status
10 Hepatopancreas swelling 1: Yes; 0: No
11 Empty gut 1: Yes; 0: No
12 Fluid in gut 1: Yes; 0: No
13 Hepatopancreas atrophy 1: Yes; 0: No
14 Hepatopancreas tough 1: Yes; 0: No
15 Hepatopancreas pale 1: Yes; 0: No
16 Discontinuous gut 1: Yes; 0: No
Symptom appearance
17 Curved body 1: Yes; 0: No
18 Opaque muscle 1: Yes; 0: No
19 Low growth 1: Yes; 0: No
20 Black spot 1: Yes; 0: No
21 Low eating 1: Yes; 0: No
22 Soft shell 1: Yes; 0: No
23 Dirty gills 1: Yes; 0: No
Environmental factors
24 pH Continuous value, > 7
25 Temperature Continuous value, > 30
26 DO Continuous value
27 NO2 Continuous value
28 NH4 Continuous value
29 NH3 Continuous value
30 Salinity Continuous value
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where x includes independent variables x1–xn. This is more 
useful than a linear function that can yield values > 1 or < 0. 
Unlike linear regression, the logit procedure uses the maxi-
mum-likelihood method; the mean and variance are used to 
determine specific parametric values. We used the sklearn 
Python package in this study (Cournapeau 2007).

K‑nearest neighbor algorithm

The KNN algorithm is used for both classification and 
regression, and assumes that similar data are in close prox-
imity (Zhang 2016). The KNN algorithm is based on the 
concept of similarity (i.e., the distance between, or closeness 
of, the points on a graph). We transformed data points math-
ematically and calculated the Euclidean distances between 
them. In particular, when K = 1, the object is simply assigned 
to the single nearest neighbor. In machine learning terms, 
this is considered “lazy learning,” because all approxima-
tions are local. Nearest neighbors affect classification more 
so than distant neighbors. The algorithm run time depends 
on the K-values; if K is large, the algorithm runs rapidly. We 
set K to 5 and used the KNN procedure of the scikit Python 
package (Cournapeau 2007).

Decision tree

A decision tree uses the shape of a tree to predict target val-
ues from input variables. One root node and multiple inter-
nal nodes are the inputs; each leaf is an output. The dataset 
is classified into specific classes. Here, we used a decision 
tree to predict AHPND status (yes or no). The algorithm is 
depth-dependent; a deeper tree is better trained and more 
accurate. We used the decision tree of the scikit Python 
package (Cournapeau 2007).

ANN

An ANN is a complex algorithm inspired by the human 
brain (Harston et al. 1990). ANNs have many connected 
nodes that process data and yield outputs based on sim-
ple mathematical operations. Several parameters must be 
established at every node. These nodes, where computa-
tions occur, are organized into layers. Every node com-
bines input data with coefficients or weights to both learn 
and yield an output for the next node. For complex calcu-
lations, the ANN has multiple hidden layers between the 
input and output layers. The nodes on the hidden layers 

allow many relationships (termed mapping functions) 
between the input and output layers to be tested. Each hid-
den layer node must learn by minimizing a cost function, 
which is a measure of how effectively the ANN detects 
the relationship between a given input and the expected 
output. We used the ReLu activation function implemented 
in the ANN of the scikit Python package (Cournapeau 
2007). ANN complexity depends on the number of lay-
ers; we used one input layer, one hidden layer, and one 
output layer.

Results

Probit regression showed that 16 of 27 independent vari-
ables were useful predictors of AHPND status (Table 2). The 
results of backward elimination are shown in Table 3. Of the 
16 originally included variables, 5 were omitted (province, 
timing of symptom detection, shrimp age, fresh smear test 
results, and poor growth), such that 11 variables remained in 
the model. The model accuracy increased after each removal 
step. We then input 15 variables into the machine learning 
algorithms: 4 were manually selected, and the remaining 11 
were those mentioned above.

Logistic regression

The logistic regression results are shown in Table 4. Hold-
out tests using 572 training samples and 191 test samples 
yielded accuracy rates of 90.33% and 85.50%, respectively. 
For the cross-validation test, the data were divided into three 
folds, each with 254 samples, and tested three times (train-
ing subset, 509 samples; testing subset, 254 samples). The 
accuracy was 83.04%.

ANN

The ANN results are shown in Table 5. The predictive accu-
racy of the hold-out test was 86.43% for the test subset and 
89.35% for the training subset. Regarding the cross-valida-
tion test, the highest predictive accuracy, of 73.05%, was 
obtained using nine folds (i.e., six more than for the logis-
tic regression). The difference in accuracy was marked; the 
ANN could not determine any trend in the data.

Table 1   (continued) Variable Variable Description

31 kH Continuous value
32 COD Continuous value
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Decision tree

The decision tree results are shown in Table 6. The predic-
tive accuracy rates of the hold-out test were 97.57% and 
99.10% for the validation and training subsets, respectively. 
The cross-validation accuracy, of 73.42%, was significantly 
lower than that of the hold-out test.

Table 2   The probit statistics Variable Coefficient Standard error z p value

Opaque muscle −1.3375 0.535 −2.501 0.012
Poor growth −1.9242 0.716 −2.688 0.007
Poor appetite −2.1870 0.941 −2.323 0.020
Dirty gills 3.8308 0.930 4.120 0.000
Empty gut 3.2240 0.413 7.814 0.000
Hepatopancreatic atrophy 5.2931 0.793 6.671 0.000
Tough hepatopancreas 3.7129 0.942 3.941 0.000
Discontinuous gut 4.6700 0.544 8.579 0.000
Soft shell 0.5026 0.320 1.572 0.016
Shrimp age −0.0557 0.027 −2.050 0.040
Timing of symptom detection −0.2188 0.035 −6.183 0.000
Fresh smear test result 4.7398 0.552 8.594 0.000
NH4 level −2.2574 0.387 −5.840 0.000
Pond area 0.0048 0.001 5.807 0.000
Water pH −0.0229 0.006 −4.017 0.000
Province −1.1319 0.240 −4.707 0.000

Table 3   Predictive accuracy of probit regression after eliminating 
variables

Step Eliminated variable Accuracy after 
elimination (%)

1 Province 72.82
2 Timing of symptom detection 74.40
3 Shrimp age 75.59
4 Fresh smear test result 83.03
5 Poor growth 83.04

Table 4   Classification accuracy 
of the logistic regression model 
according to the hold-out test

Training subset Validation subset

Predicted Percent correct Predicted Percent correct

0 1 0 1

Observed 0 201 29 87.39 61 14 81.33
1 23 319 93.27 12 104 89.66

Overall 90.33 85.50

Table 5   Classification accuracy 
of the neural network model 
according to the hold-out test

Training subset Validation subset

Predicted Percent correct Predicted Percent correct

0 1 0 1

Observed 0 204 20 91.07 65 10 86.67
1 43 305 87.64 16 100 86.20

Overall 89.35 86.43
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K‑nearest neighbor

The results of the KNN tests are shown in Table 7. For the 
hold-out test, the accuracy rates were 91.82% and 87.26% for 
the training and validation subsets, respectively. The cross-
validation test yielded the worst result of all algorithms: 
57.80% accuracy using seven folds. As with the decision 
tree, the accuracy of the KNN algorithm differed notably 
between the hold-out and cross-validation tests.

Discussion

Logistic regression was more stable than the other algo-
rithms based on the results of both the validation and cross-
validation tests; the accuracy rates according to the hold-out 
test were 90.30% and 85.50% for the training and validation 
subsets, respectively, and the cross-validation accuracy was 
similar, at 83.04%.

Notably, the hold-out test showed that all four algorithms 
were remarkably accurate (≥ 85.00% correct for both the 
training and testing subsets). The decision tree accuracy 
rates were 97.57% and 99.10%, respectively. Compared with 
previous studies using machine learning to predict shrimp 
disease (Leung and Tran 2000), the accuracy rates of our 
hold-out tests were higher. However, the hold-out test is 
somewhat simple, calculating predictive accuracy rapidly 
even for large datasets. Most algorithms employ 75% of the 
data for training, and then use the model to predict the out-
comes of the validation subset (the remaining 25% of the 
data). Our dataset was not particularly large (763 individu-
als with or without AHPND), so it may have been suscep-
tible to bias, i.e., to the tendency to “learn incorrectly” as 

a result of not considering all available information during 
dichotomous classification. For the KNN and decision tree 
methods, the respective accuracy rates were 91.82% and 
99.10% (training subset) and 87.26 and 97.57% (validation 
subset). However, both algorithms performed poorly accord-
ing to the results of cross-validation tests (accuracy rates of 
57.80% and 73.42%, respectively). The results for the KNN 
and decision tree methods were markedly different. When 15 
variables were used, the difference in predictive performance 
was about 33% and 25% according to the hold-out and cross-
validation tests, respectively. The decision tree may have 
been generally unsuitable, working well only in small parts 
(i.e., folds) of the test subset. The KNN algorithm focused 
on the details, rather than trends, of the trained data during 
the hold-out test. Also, some of the dataset was unsuitable, 
which reduced its predictive power. Over-fitting may have 
been a factor: while the hold-out test accuracy rate was the 
highest among all algorithms, the cross-validation test accu-
racy rate was the lowest. Neither the KNN nor the decision 
tree was reliable in the present study.

The ANN algorithm was moderately better, with hold-out 
test accuracy rates of 89.35% and 86.43% for the training 
and validation subsets, respectively, and 73.05% in the cross-
validation test. Thus, the difference in accuracy between the 
two tests was approximately 14%. Although this difference 
was less than that for the KNN and decision tree, it nev-
ertheless showed that the model was poorly trained and 
failed to recognize trends in the data. Also, an ANN can be 
considered a “black box” (Leung and Tran 2000); although 
the weightings of the variables are available, they do not 
clearly explain the relative contributions of the variables to 
the prediction. Moreover, the weights (and model accuracy 
rates) were unstable when the number of hidden layers was 

Table 6   Classification accuracy 
of the decision tree model 
according to the hold-out test

Training subset Validation subset

Predicted Percent correct Predicted Percent correct

0 1 0 1

Observed 0 220 4 98.21 72 3 96.00
1 0 348 100.00 1 115 99.14

Overall 99.10 97.57

Table 7   Classification accuracy 
of the K-nearest neighbor model 
according to the hold-out test

Training subset Validation subset

Predicted Percent correct Predicted Percent correct

0 1 0 1

Observed 0 197 27 87.94 63 12 84.00
1 15 333 95.69 11 105 90.51

Overall 91.82 87.26
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varied. The input weights varied considerably as the models 
changed; it was impossible to determine the extent to which 
each variable affected the overall prediction. Furthermore, 
ANNs are more time-consuming than other algorithms, and 
require more computational resources because of the need to 
generate a weight for each variable input into every neuron 
in every layer.

In contrast, logistic regression performed well accord-
ing to both the hold-out and cross-validation tests. Hold-
out tests using 572 training samples and 191 test samples 
yielded accuracy rates of 90.33% and 85.50%; the cross-val-
idation test accuracy was 83.04%. The dichotomous nature 
of the prediction did not require extensive computational 
resources; the results could be interpreted without the need 
to scale the inputs. The small difference in accuracy rate 
between the two tests, of about 4%, showed that the logis-
tic regression model performed well. Moreover, in logistic 
regression models, the contribution of each independent 
variable is clear (Leung and Tran 2000).

Many researchers have used ANNs to make dichoto-
mous predictions. However, our ANN was unstable, where 
the coefficients of the input variable changed when the 
number of hidden layers was varied. Meanwhile, the KNN 

algorithm and decision tree showed over-fitting, where the 
results of the hold-out and cross-validation tests differed 
greatly.

All input variables in the model were removed one-by-
one, and then restored, to evaluate their importance. The 
model including 15 selected independent variables was 
faster and more reliable than the original 31-variable model. 
The literature since 2009 (e.g., Crane 2019) suggests that 
water temperature and salinity, shrimp mortality rate, and 
seedstock source affect AHPND development. In this study, 
we identified additional parameters via backward selection, 
including other disease signs (discontinuous gut, a soft shell, 
and hepatopancreas status). We backward-selected 15 vari-
ables and evaluated the utility of logistic regression, KNN, 
ANN, and decision tree methods for predicting AHPND. 
Figure 2 shows the contributions of those 15 variables to 
the prediction of acute hepatopancreatic necrosis disease. 
Logistic regression was more stable than the other methods 
according to both the hold-out and cross-validation tests, and 
was superior in identifying important predictive variables 
such as hepatopancreatic atrophy, toughness, pallor, and a 
high temperature. On the contrary, the NH3 level, dirty gills, 
poor appetite, and pond area were less important.

‰

%

o C  

I D

‰

% o C  I D

Fig. 2   Relationships among daily shrimp mortality, water temperature and salinity, and seedstock origin. The values of several samples from the 
same ponds were identical
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The appearance of symptoms is a useful early predictor 
of AHPND mortality. As mentioned above, AHPND is also 
known as EMS. A warmer water temperature and higher 
salinity increased the risk of AHPND. Seedstock origin was 
also important; some shrimp farms were infected because 
their seedstocks came from AHPND-affected hatcheries. 
Figure 3 shows the correlations among the computer-pre-
dicted and manually selected factors, including seedstock 
origin, water temperature and salinity, and shrimp mortality: 
the manually selected variables showed good reliability for 
predicting AHPND development. The panels in the figure 
show the correlations between pairs of variables. Although 
all variables were important, the logistic procedure showed 
that some were more influential through the pairing of vari-
ables. For example, a high mortality rate was more important 
than a high water temperature. However, seedstock origin 
and salinity were more important in the mortality/seedstock 
origin and mortality/salinity pairs. In the temperature/seed-
stock origin and temperature/salinity pairs, temperature was 
not prioritized, while in the seedstock origin/salinity pair, 
seedstock origin was prioritized. Thus, high-quality seed-
stock reduced AHPND development regardless of water 
temperature. Hepatopancreatic atrophy had a remarkable 
effect on the predictions, as expected: shrimp with AHPND 
characteristically exhibit atrophy exceeding 50% (Leobert 
et al. 2015). Atrophy was evident in 53% of the AHPND-
affected shrimp in our dataset (Table 8). We used machine 
learning to predict disease outbreaks on shrimp farms based 
on symptoms, visceral status, environmental factors, and 
general management practices. The predictive application 
was built for fish farmers, as shown in Fig. 4. Low (com-
pared to high) salinity reduced the disease risk. Our dataset 
for generating predictive models is valid only up to the time 
of the present study. The interrelationships among variables 

were explored during the data collection period. For exam-
ple, seedstock origin was not independently predictive of 
AHPND, instead exerting an effect in combination with 30 
other environmental, symptomatic, and visceral parameters. 
AHPND status was previously shown to be affected by the 
poor-quality seedstocks used in some hatcheries, but high-
quality seedstocks are now available.  

Hepatopancreatic disease has many signs, including 
hepatopancreas swelling, atrophy, pallor, and a discontinu-
ous gut. These symptoms are also appeared in many other 
disease conditions, such as white feces, low growth, and 
intestinal parasites. The model proposed here can predict 
AHPND with high accuracy without using an empirical 
method. Therefore, the threat of AHPND can be considered 
before making an actual fishpond using the proposed appli-
cation and the proposed model helps shrimp farmers.

Application of this technology to the fishery industry in 
the Mekong Delta has been considered. Many large shrimp 
farms have recently been converted into intensive or semi-
intensive farms to improve aquaculture farm management 
by improving product quality and saving costs. In intensive 
and semi-intensive farms, data on the water environment 
can be easily collected using Internet of Things technol-
ogy. The proposed model can be applied not only in relation 
to AHPND but also to other diseases, if we have enough 
data. Therefore, the proposed model is considered especially 

Fig. 3   The contributions of the variables to the prediction of acute hepatopancreatic necrosis disease

Table 8   Numbers of samples exhibiting hepatopancreatic atrophy

AHPND acute hepatopancreatic necrosis disease

Atrophy No atrophy

AHPND 248 216
No AHPND 3 296



682	 Fisheries Science (2020) 86:673–683

1 3

suitable for intensive farms, and the risk of all potential dis-
eases, not just AHPND, can be predicted.

In this study, we targeted AHPND on the east coast of 
the Mekong Delta. AHPND also occurs in other regions in 
Vietnam; however, the proposed model is not considered 
suitable for other regions because of the different environ-
mental conditions. In the future, we should collect data for 
all Vietnamese aquaculture farms to develop a model to pre-
dict AHPND in various regions. Finally, the proposed model 
can help to improve the efficiency of Vietnamese aquacul-
ture and achieve smart aquaculture fisheries.
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