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Introduction

The swimming crab Portunus trituberculatus is an impor-
tant commercial mariculture species, which is widely dis-
tributed in the coastal waters of Japan, Korea and China 
[1–4]. The global production of this species was almost 
429,959 t in 2012 [5]. In China, the swimming crab has 
become one of the most well-known aquaculture crusta-
cean species for its high nutritional value and fast growth 
rate [3], and production exceeded 99,500 t in 2013 [6]. The 
swimming crab inhabits sandy or pebble-covered benthic 
habitats, but in its natural environment rarely experiences 
optimal conditions. It must cope with natural stressors for 
most of its life cycle, including starvation, extreme tem-
peratures, oxygen depletion and pathogens [7, 8]. Recently, 
some studies have been undertaken on the natural stressors 
of the swimming crab, including salinity and pH [4], con-
taminants [9], temperature [10–12], and ammonia [13–15]. 
However, there are no studies on starvation stress in P. 
trituberculatus broodstock.

Farmed and wild aquatic animals usually face starva-
tion stress caused by food deprivation due to many fac-
tors such as habitat destruction, seasonal change and the 
temporal and spatial fluctuations of their food resources 
[16–18]. Molting, reproduction, migration and changes 
in temperature can cause reduced food intake for many 
animals [19]. Aquatic animals employ various behavio-
ral, physiological and biochemical responses to decrease 
maintenance metabolism under starvation conditions, and 
these responses are integrated at all levels of organiza-
tion [17]. Crustaceans, like most poikilotherms, are able 
to withstand relatively long periods of food shortage 
[20–24]. However, the response to starvation stress dif-
fers from species to species. Blood-borne nutrients and 
metabolites have been proven to be direct and effective 
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indicators for the estimation of the nutritional condition 
of animals under various feeding conditions [20, 25]. 
These nutrients or metabolites include serum total pro-
tein (TP), cholesterol, triglycerides, high-density lipopro-
tein (HDL), low-density lipoprotein (LDL) and glucose 
(GLC) [25, 26]. All of these indicators may be important 
tools for revealing the connection between the nutritional 
conditions and feeding activities of female swimming 
crabs. However, there is little information clearly show-
ing how blood chemistry variables respond to starvation 
in crustacean species.

Metabolism in crustaceans is primarily centered on gly-
cogen and lipids/fatty acids. The nature of fatty acid utiliza-
tion for energy during starvation may differ among species 
[23]. For example, in the African catfish Clarias gariepi-
nus, starvation resulted in an initial utilization of 14:0, 16: 
1n-9 and 18: 1n-9 fatty acids and a relative conservation 
of 22:6n-3 and 20:5n-3 [27]. Similarly, De Silva et al. [28] 
reported that the relative amount of polyunsaturated fatty 
acids (PUFA), in particular docosahexaenoic acid (DHA), 
increased considerably and varied significantly with star-
vation in the hybrid red tilapia Oreochromis mossam-
bicus × Oreochromis niloticus. On the other hand, Webster 
et al. [29] pointed out that little change occurred in the fatty 
acid profile of visceral fat when channel catfish had been 
starved for 80 days. In decapod broodstock, nutritional sta-
tus, especially for fatty acids, can affect ovarian maturation, 
reproductive performance and offspring quality [30–33]. 
Till now, no studies have been carried out on the effect of 
starvation or feeding on the fatty acid composition of the 
tissues of the swimming crab. In addition, little attention 
has been paid to the relative expression of the fatty acid-
binding protein gene (FABP) in relation to starvation or 
feeding.

In many species, reduced feeding and starvation can also 
restrain ovarian maturation and decrease fecundity [34, 35]. 
Vitellogenesis is a crucial reproductive process in oviparous 
animals. In mature females, vitellogenin (Vtg) is usually 
synthesized in response to endogenous estrogens, released 
into the blood and deposited in developing oocytes. In 
males, although present, Vtg is usually silent [36]. Hence, 
the expression of Vtg might be useful in revealing the pro-
cess of ovarian maturation. Previous studies have reported 
the effects of starvation on larval/juvenile survival, growth 
and development [20–24]; however, little is known about 
the effects of starvation on crustacean broodstock. Also, 
there have been no investigations of the mRNA expression 
of Vtg under starvation conditions in crustacean species. 
This study investigated the effects of starvation and feed-
ing on blood chemistry, fatty acid composition, and mRNA 
expression levels of Vtg and FABP in the female swimming 
crab P. trituberculatus broodstock.

Materials and methods

Experimental animals and design

The experiment was conducted at the Xing-Yi Nursery 
Farm (Ningbo, China). Wild, healthy adult female P. 
trituberculatus (body weight 230 ± 45 g) were caught 
in natural habitats in the East China Sea. Before the 
experiment, crabs were acclimated to culture conditions 
for 7 days and fed with fresh clam Ruditapes philippi-
narum. A total of 180 female crab broodstock were then 
randomly allocated to 180 individual plastic baskets 
(50 cm × 35 cm × 35 cm), which were divided into two 
experimental treatments (the starved group and the fed 
group); each treatment had three replicates (30 crabs per 
replicate). The plastic basket had two compartments, one 
section filled with sand to mimic the swimming crab’s 
habitat and the other section as the feeding area.

The plastic baskets were set down in a cement pool 
(70 m × 100 m × 0.6 m, length × width × depth) pro-
vided with continuous aeration through an air stone to 
maintain dissolved oxygen levels at, or near, saturation 
level. During the experimental period, the temperature in 
the pool was 17–23 °C, the salinity was 26–28 g l−1 and 
the pH was 7.5–8.4. The dissolved oxygen was not less 
than 6.0 mg l−1, and the ammonia–nitrogen concentration 
was lower than 0.05 mg l−1. Salinity, pH, dissolved oxy-
gen and ammonia–nitrogen were measured using a YSI 
Pro Plus (YSI, Yellow Springs, OH). From the beginning 
of the experiment, the fed crabs were continuously fed 
fresh clams once a day at a rate of 3–5% of body weight, 
while the starved crabs did not receive any food. The 
experiment lasted for 30 days.

Sample collection techniques

At the termination of the feeding trial, the fed crabs were 
starved for 24 h before being sampled to reduce handling 
stress and clear the alimentary canal. Hemolymph sam-
ples from six crabs in each replicate were taken imme-
diately using the method described by Li et al. [37]. The 
samples were stored at 4 °C for 24 h and then centri-
fuged at 4 °C, 1912 g for 10 min. Then, the supernatant 
was collected, packaged and stored at −80 °C until the 
analysis of blood chemistry. The hepatopancreas and the 
ovary from six crabs in each replicate were dissected and 
weighed to determine the hepatosomatic index (HSI) and 
the gonadosomatic index (GSI). The dissected hepato-
pancreas and ovary samples were used to analyze the 
fatty acid composition of the crabs. The hepatopancreas 
and the ovary samples for the analysis of relative gene 
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expression of four crabs in each replicate were collected, 
homogenized with Trizol reagent (TaKaRa, Dalian, 
China), and immediately frozen in liquid nitrogen. All 
samples were stored at −80 °C until needed.

Hemolymph analysis

The TP, GLC, triacylglycerol (TG), total cholesterol (TC), 
HDL and LDL levels in the hemolymph were assayed 
using an automatic blood analyzer (Hitachi 7170A, Japan) 
at a clinical laboratory in Ningbo University Hospital.

Fatty acid analysis

The fatty acid profiles of the hepatopancreas and ovary 
samples were determined as described by [38] with few 
modifications. The freeze-dried samples (~80 mg hepato-
pancreas sample and ~100 mg ovary sample) were added to 
a 12-ml volumetric glass tube with lid (containing a Teflon 
gasket). Then 3 ml potassium hydroxide methanol (1 N) 
was added and the tubes heated in a water bath at 72 °C 
for 20 min. After cooling, 3 ml HCl–methanol (2 N) was 
added and the mixture was heated at 72 °C in a water bath 
for another 20 min. Previous tests were conducted to make 
sure that all fatty acids can be esterified following the pro-
cedures above. Finally, 1 ml hexane was added, the mixture 
shaken vigorously for 1 min, and then allowed to separate 
into two layers. Fatty acid methyl esters were separated 
and measured by a gas chromatograph mass spectrometer 
(GC–MS) (Agilent-GCMS 7890-5975C; Agilent Technolo-
gies, Santa Clara, CA) equipped with a capillary HP-5MS 
column (30 m × 0.250 mm; film thickness, 0.25 μm; Agi-
lent Technologies) using helium as the carrier gas in a split 
mode (20:1). Mass spectra were scanned from m/z 50-800. 
Identification of fatty acids was confirmed by comparing 
the mass spectra with a commercially available standard 
library (the National Institute of Standards and Technology 
Mass Spectral Library 2011). Results are relative percent-
ages of each fatty acid, calculated as the proportion of the 
area under the considered peak to the total area of all peaks.

RNA extraction and gene expression analysis

Total RNA from each crab sample was extracted from 
the hepatopancreas and the ovary using trizol reagent 
according to the manufacturer’s instructions (TransGen, 
Beijing, China). RNA quantity, purity and integrity were 
detected by a ND-2000 NanoDrop UV spectrophotom-
eter (NanoDrop Technologies, USA) (A260/A280) and 
by electrophoresis on 1.2% agarose gels. Genomic DNA 
contamination was eliminated by RNase-free DNase 
(TransGen, Beijing, China), according to the manufactur-
er’s protocol. The RNA was reverse transcribed at 42 °C 
for 60 min using a reversed first strand cDNA synthesis 
kit (TransGen) and stored at −20 °C.

The levels of Vtg and FABP mRNA were detected by 
real-time quantitative polymerase chain reaction (PCR) 
(Light Cycler 96; Roche, Switzerland). The primers 
used for real-time quantitative PCR [Vtg F and Vtg R, 
FABP F and FABP R (Table 1)] were designed based on 
the Vtg cDNA sequence of P. trituberculatus (GenBank 
accession no. DQ000638) [39] and the FABP cDNA 
sequence of P. trituberculatus from the transcriptome 
[40]. The PCR was performed in a 20 μl reaction volume 
containing 10 μl of SYBR Green premix, 1 μl of cDNA 
template, 1 μl of each primer (10 μM) and 7 μl of die-
thyl pyrocarbonate-treated water. The PCR conditions 
were as follows: 95 °C for 10 min; 45 cycles of 95 °C 
for 15 s, 58 °C for 15 s and 72 °C for 20 s. RNA was 
extracted from each of the three crabs sampled from a 
triplicate. As the internal controls, β-actin F and β-actin 
R (Table 1) were used to amplify the β-actin gene for 
each RT reaction product [4, 41, 42]. Normalized gene 
expression of the ovary in the fed crabs was set to 1, and 
the expression of each target gene for the hepatopancreas 
in the fed crabs as well as the ovary and the hepatopan-
creas in the starved crabs were expressed relative to the 
ovary in the fed crabs. The data were optimized using 
the comparative Ct (2−ΔΔCt) value method as described 
by Livak and Schmittgen [43] and then subjected to sta-
tistical analysis.

Table 1  Primers designed 
to profile the mRNA 
expression in the ovary and 
the hepatopancreas of fed and 
starved female swimming crab 
Portunus trituberculatus

Vtg Vitellogenin, FABP fatty acid-binding protein, PCR polymerase chain reaction

Primer Primer sequence (5′-3′) Purpose

Vtg F CGGTCCTGAGACGCTATT Real-time quantitative PCR for Vtg

Vtg R CTTCCTCGCAAACCAACA Real-time quantitative PCR for Vtg

FABP F GGAGTGGCTGGCTGCTGTTGGTA Real-time quantitative PCR for FABP

FABP R AAGGTGGAGCCAGACAGGTTCA Real-time quantitative PCR for FABP

β-actin F CCTGACTGCCTACCTCACCAA Internal control

β-actin R ATGCCGACAGATTCCATACCC Internal control
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Calculations of GSI and HSI

The GSI and HSI of the crabs were calculated using the 
following formulae:

GSI (%) = 100 × gonad wet weight/body wet weight;
HSI (%) = 100 × hepatopancreas wet weight/body wet 

weight.

Statistical analysis

The values are expressed as the mean ± SD. The results 
were compared by Student’s t-test. Differences among 
means were considered significant when P < 0.05. All sta-
tistical analyses were performed using the SPSS 17.0 soft-
ware package (SPSS, IL).

Results

GSI and HSI data

There was no significant difference in final body weight 
between fed and starved crabs (P > 0.05) (Fig. 1). After 
30 days without feeding, a significant decrease in the GSI 
was found in the starved crabs (P < 0.05) (Fig. 2). How-
ever, statistical analysis showed no significant effect of 
starvation and feeding on the HSI during the period of the 
experiment (P > 0.05) (Fig. 3).

Hematological characteristics

The effect of starvation and feeding on the hematological 
characteristics of the crabs are presented in Table 2. After 
30 days of starvation, TG, HDL and LDL concentrations 
in the hemolymph did not differ significantly between the 
starved and fed crabs (P > 0.05). The GLC and TC levels in 
hemolymph were significantly lower in starved crabs than 
in crabs fed clams (P < 0.05); however, the TP concentra-
tion in the starved crabs was higher than in crabs fed clams 
(P < 0.05).

Fatty acid composition in ovary and hepatopancreas

The effects of starvation and feeding on ovarian fatty acid 
composition (% total fatty acid) are shown in Table 3. 
For saturated fatty acid (SFA), starved crabs contained a 
significantly higher relative percentage of 12:0, but sig-
nificantly lower relative percentages of 18:0 fatty acid and 
ΣSFA than the fed crabs (P < 0.05). Among monounsatu-
rated fatty acids (MUFA), starved crabs had significantly 
higher relative percentages of 18:1n-9 than fed crabs, but 
significantly lower relative percentages of 16:1n-7 and 
20:1n-9 than fed crabs (P < 0.05); however, there were no 

significant differences in ΣMUFA between starved and fed 
crabs (P > 0.05). Regards the PUFA, starved crabs con-
tained significantly higher relative percentages of 20:4n-6, 
20:5n-3, and 22:6n-3 fatty acids, as well as ΣPUFA and 
ΣHUFA, than fed crabs.

The effects of starvation and feeding on hepatopancreas 
fatty acid composition in the crabs are presented in Table 4. 
The relative percentages of 18:1n-9, 22:1n-9, 20:2n-
6, 20:4n-6, and 22:6n-3 fatty acids as well as ΣPUFA 
and ΣHUFA were significantly higher in starved crabs 
than in fed crabs, while starved crabs had significantly 
lower relative percentages of 14:0, 16:0, 16:1n-7, 22:2n-6 
and 20:4n-3 fatty acids as well as ΣSFA (P < 0.05). The 
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Fig. 1  Final body weight (g) in fed and starved female swimming 
crab Portunus trituberculatus. Values are mean ± SD of three repli-
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Fig. 2  Gonadosomatic index (GSI; %) in fed and starved female 
swimming crab P. trituberculatus. Values are mean ± SD of three 
replicates. *P < 0.05
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percentages of C18:0, C20:0, C22:0, C18:1n-7, C20:1n-9, 
C18:2n-6 and C20:5n-3 were not significantly differ-
ent in the hepatopancreas between starved and fed crabs 
(P > 0.05).

Relative expression of Vtg and FABP

Starvation significantly influenced the relative expression 
of Vtg and FABP in the ovary and the hepatopancreas in 
female swimming crabs (P < 0.05) (Figs. 4, 5). The expres-
sion of ovarian Vtg in starved crabs was significantly lower 
than in fed crabs (P < 0.05), whereas the expression of 
hepatopancreas Vtg was not influenced by starvation stress 
(P > 0.05) (Fig. 4). The relative expression of FABP in the 
ovary and the hepatopancreas of starved crabs was signifi-
cantly higher than in those of fed crabs (P < 0.05) (Fig. 5).

Discussion

In some aquatic animals, such as Atlantic salmon Salmo 
salar [44, 45], winter flounder Pleuronectes americanus 
[46, 47] and sea bass Dicentrarchus labrax [34], maturation 

was suppressed or reduced by starvation at specific periods. 
In the present study, starvation of female swimming crabs 
for 30 days caused a significant decrease in the GSI with 
a concomitant deterioration of nutritional status (Fig. 2), 
indicating that starvation affected gonadal development. 
The effect on gonadal development may be attributed to 
nutritional factors which play a critical role in the devel-
opment of the ovary in female swimming crabs. There is 
abundant evidence for the influence of feeding ration and 
feeding levels on gonadal maturation and reproduction 
under culture conditions [48–50]. In the present study, star-
vation deprived the gonads of energy sources leading to 
reduced gonad size, and also affected gonad maturation. 
Thus good nutritional status of female swimming crabs is 
very important for gonadal development and maturation 
under culture conditions.

There were no significant differences in the HSI between 
starved and fed crabs (Fig. 3). Sureshkumar and Kurup 
considered [51] that the HSI of Macrobrachium rosenbergii 
could be expected to decline during fasting because the rel-
ative weight of the hepatopancreas reflects the provision of 
energy utilization for metabolism, i.e., this species compen-
sates for the fasting condition with its own reserves. How-
ever, Uglow reported [52] that marine decapods utilize pro-
tein as the predominant metabolic source at a higher rate 
in ovaries than in the hepatopancreas [53]. In the present 
study, the starved crabs had no external energy supply to 
maintain their basic life activities and may have absorbed 
nutrients from the ovaries. Meanwhile, the HSI in swim-
ming crab broodstock showed no significant difference 
during the over-wintering period [54]. These results could 
explain the lack of a significant difference in the HSI and 
decreased GSI in starved crabs in the present study.

Vitellogenesis is an important step in the oocyte matura-
tion of decapods, involving the synthesis and accumulation 
of yolk proteins in the ovary. The site of synthesis of Vtg 
(precursor of vitellin) in crustaceans is controversial [55]. 
Several studies have confirmed that Vtg is synthesized in 
the ovaries of Callinectes sapdius [56] and Penaeus semi-
sulcatus [57]. Other studies have shown that Vtg is synthe-
sized exclusively in the hepatopancreas of Oziothelphusa 
senex senex [55], Pandalus hypsinotus [58], Macrobra-
chium rosenbergii [59] and Charybdis feriatus [60]. In 
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Fig. 3  Hepatosomatic index (HSI; %) in fed and starved female 
swimming crab P. trituberculatus. Values are the mean ± SD of three 
replicates

Table 2  Serum total protein, cholesterol, triglycerides, high-density lipoprotein (HDL), low-density lipoprotein (LDL) and glucose in fed and 
starved female swimming crab P. trituberculatus

Values are the mean ± SD of three replicates

*P < 0.05

Total protein (g l−1) Cholesterol (mg l−1) Triglycerides (mg l−1) HDL (mg l−1) LDL (mg l−1) Glucose (mg l−1)

Fed crabs 36.57 ± 2.27 88.94 ± 7.73 35.42 ± 8.85 19.34 ± 11.60 27.07 ± 11.60 1380.33 ± 127.94

Starved crabs 51.57 ± 0.32* 69.61 ± 3.87* 26.56 ± 8.85 7.73 ± 3.87 23.20 ± 11.60 486.54 ± 73.88*
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crustaceans, the mRNA expression of Vtg has been used 
to determine the site of vitellogenesis [61]. In the present 
study (Fig. 4), Vtg gene expression in the hepatopancreas 
and the ovary indicated that the swimming crab could uti-
lize these two tissues for vitellogenesis. Like some other 
decapod species, such as C. sapidus [62, 63], Homarus 
americanus [64], Eriocheir sinensis [65] and Scylla para-
mamosain [36], the swimming crab was shown to synthe-
size Vtg mainly in the hepatopancreas because the gene 
expression level of Vtg here was higher than in the ovary. 
The gene expression of ovarian Vtg in starved crabs was 
significantly lower than in fed crabs (Fig. 4), which could 
explain why starvation stress affects gonadal development 

in the female swimming crab. The stable Vtg mRNA 
expression in the hepatopancreas and the subsequent reduc-
tion in the level of Vtg mRNA in the ovary indicated that 
the crabs may have absorbed nutrients from the ovaries, 
which may have affected the maturation of the gonads, and 
caused the decreased relative gene expression of Vtg here.

The GLC concentration in serum is significantly affected 
by starvation or feeding. The reduction in serum GLC lev-
els induced by starvation in female swimming crabs after 
30 days of starvation (Table 2) is in agreement with most 
studies performed in other crustaceans and fish [25, 66–
70]. The lower serum GLC levels in starved swimming 
crabs may be due to the utilization of GLC, a primary met-
abolic response to starvation. Previously, our studies have 
shown that serum lipid concentrations in the swimming 

Table 3  Fatty acid composition (% total fatty acid) of the ovary in 
fed and starved female swimming crab P. trituberculatus

Values are the mean ± SD of three replicates

SFA Saturated fatty acids; MUFA monounsaturated fatty acid; PUFA 
polyunsaturated fatty acids; HUFA Highly unsaturated fatty acid 
means the PUFA higher than C20:3n

*P < 0.05

Fatty acid Fed crabs Starved crabs

C12:0 0.11 ± 0.01 0.20 ± 0.03*

C14:0 2.26 ± 0.17 2.83 ± 0.41

C16:0 19.43 ± 1.02 17.91 ± 0.77

C18:0 7.48 ± 0.63 5.30 ± 0.71*

C20:0 0.32 ± 0.07 0.29 ± 0.16

C22:0 0.16 ± 0.04 0.15 ± 0.06

ΣSFA 29.76 ± 0.38 26.68 ± 0.82*

C16:1n-7 11.28 ± 1.01 8.17 ± 0.85*

C18:1n-7 5.76 ± 0.19 5.66 ± 0.26

C18:1n-9 17.35 ± 1.24 20.69 ± 0.78*

C20:1n-9 2.65 ± 0.39 1.96 ± 0.07*

C22:1n-9 0.39 ± 0.07 0.41 ± 0.13

ΣMUFA 37.42 ± 0.76 36.90 ± 1.51

C18:2n-6 1.45 ± 0.31 1.59 ± 0.21

C18:3n-3 0.27 ± 0.04 0.28 ± 0.10

C18:4n-3 0.46 ± 0.05 0.15 ± 0.04*

C20:2n-6 1.48 ± 0.43 1.20 ± 0.36

C22:2n-6 0.53 ± 0.11 0.10 ± 0.08*

C20:3n-3 0.17 ± 0.02 0.22 ± 0.06

C20:3n-6 0.18 ± 0.03 0.16 ± 0.10

C20:4n-3 1.03 ± 0.10 0.66 ± 0.08*

C20:4n-6 3.15 ± 0.24 4.62 ± 0.49*

C20:5n-3 8.08 ± 0.28 8.92 ± 0.33*

C22:4n-6 1.10 ± 0.12 1.20 ± 0.38

C22:5n-3 1.82 ± 0.08 1.79 ± 0.20

C22:5n-6 0.67 ± 0.08 0.53 ± 0.01*

C22:6n-3 12.33 ± 0.06 14.92 ± 0.68*

ΣPUFA 32.72 ± 0.64 36.34 ± 1.19*

ΣHUFA 28.52 ± 0.22 33.03 ± 1.15*

Table 4  Fatty acid composition (% total fatty acid) of the hepatopan-
creas in fed and starved female swimming crab P. trituberculatus

Values are the mean ± SD of three replicates

ND Not detected; for other abbreviations. see Table 3

*P < 0.05

Fatty acid Fed crabs Starved crabs

C12:0 ND ND

C14:0 3.02 ± 0.59 1.58 ± 0.27*

C16:0 21.66 ± 0.62 18.95 ± 0.85*

C18:0 9.77 ± 0.75 8.70 ± 0.12

C20:0 1.18 ± 0.16 1.11 ± 0.05

C22:0 1.01 ± 0.33 0.97 ± 0.12

ΣSFA 36.63 ± 1.81 31.31 ± 1.19*

C16:1n-7 11.16 ± 1.06 8.57 ± 0.55*

C18:1n-7 10.16 ± 0.18 10.06 ± 0.63

C18:1n-9 19.55 ± 1.63 22.34 ± 0.62*

C20:1n-9 8.98 ± 1.63 8.69 ± 0.25

C22:1n-9 2.49 ± 0.37 3.83 ± 0.57*

ΣMUFA 52.34 ± 1.53 53.48 ± 0.40

C18:2n-6 1.14 ± 0.24 1.61 ± 0.24

C18:3n-3 0.18 ± 0.03 0.19 ± 0.03

C18:4n-3 ND ND

C20:2n-6 1.50 ± 0.07 2.44 ± 0.26*

C22:2n-6 2.51 ± 0.33 1.28 ± 0.03*

C20:3n-3 0.08 ± 0.01 0.09 ± 0.02

C20:3n-6 0.08 ± 0.03 0.06 ± 0.02

C20:4n-3 0.13 ± 0.02 0.06 ± 0.01*

C20:4n-6 0.93 ± 0.10 1.83 ± 0.26*

C20:5n-3 1.10 ± 0.29 1.73 ± 0.32

C22:4n-6 0.50 ± 0.03 0.44 ± 0.07

C22:5n-3 0.21 ± 0.03 0.13 ± 0.07

C22:5n-6 ND ND

C22:6n-3 1.90 ± 0.15 2.43 ± 0.07*

ΣPUFA 10.26 ± 0.59 12.29 ± 0.45*

ΣHUFA 4.93 ± 0.46 6.77 ± 0.66*
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crab, particularly those of triglycerides and cholesterol, are 
highly dependent on the crab’s nutritional or physiologi-
cal state [26]. In the present study, a significant decrease in 
serum cholesterol levels was observed for the starved crabs 
(Table 2). Cholesterol is one of the most important sterol 
lipids. During starvation, stored carbohydrates are primar-
ily utilized to yield energy, followed by lipid mobilization 
[71]. Decreases in the cholesterol content during starva-
tion have been observed by various workers, such as Gat-
sko et al. [72], Prasad [71] and Shreni [73]. The plasma TP 
level is usually regarded as an indicator of protein mobi-
lization during starvation [8, 74]. Several studies have 
shown that food deprivation in animals results in a reduc-
tion in plasma protein concentration [75–77]. Hu et al. [20] 
reported that no significant reduction were observed in the 

plasma TP in Tachypleus tridentatus and Carcinoscorpius 
rotundicauda. However, Pellegrino et al. [78] indicated that 
an increase in the activity of the gluconeogenic pathway 
occurred after 15 days of fasting in the crab Chasmagna-
thus granulatus previously fed a high protein (HP) diet. 
In our study, the levels of serum TP in starved crabs were 
significantly higher than in fed crabs (Table 2), which may 
have been due to the mobilization of protein from the ovary 
and/or muscle for gluconeogenesis in the starved condition 
[78, 79].

The energy metabolism of crustaceans under starva-
tion primarily centers on glycogen and lipids. Halver 
[80] reported that the oxidation of fatty acids plays a very 
important role in the energy supply. In the present study, 
the relative percentages of ΣSFA in the ovary and hepato-
pancreas of the starved crabs were significantly lower 
than in the fed crabs (Tables 3, 4). Conversely, the relative 
percentages of ΣPUFA and ΣHUFA in the starved crabs 
were significantly higher than in fed crabs. Usually SFAs 
and MUFAs are utilized as energy sources. However, some 
of the PUFAs and HUFAs were thought to be conserved 
because HUFAs, such as 20:4n-6 (ARA), 20:5n-3 (EPA) 
and 22:6n-3 (DHA), are the major components of phos-
pholipids, which may play a role in the structure of the cell 
membrane and appear to be preferentially conserved [81, 
82]. Similarly, changes in SFA, PUFA and HUFA utiliza-
tion during starvation have been reported in other species 
[23, 83]. According to the changing relative amounts of 
these fatty acids between starved and fed crabs, we inferred 
that the utilization of fatty acids in the ovary was 18:0 > 1
6:1n-7 > 20:1n-9 > 16:0, whereas the conservation was 20:
4n-6 > 22:6n-3 > 18:1n-9 > 20:5n-3 > 18:2n-6 during the 
starvation period. During the 30-day starvation period, the 
utilization of fatty acids in the hepatopancreas was 14:0 > 
22:2n-6 > 16:1n-7 > 16:0, whereas the conservation was 
20:4n-6 > 20:2n-6 > 22:1n-9 > 22:6n-3 > 18:1n-9. Ravid 
et al. [84] reported that food consumed by the shrimp 
affects the abundance of specific fatty acids in the ovary, 
and that as the ovary matures, there is a gradual decrease 
in the relative abundance of PUFA. In the present study, 
the significant changes of relative fatty acid levels in ovary 
tissue during starvation might indicate that the ovary is an 
important organ for fatty acid metabolism in female swim-
ming crab broodstock. In juvenile crustaceans, the hepato-
pancreas is the primary organ for fatty acid metabolism 
[23, 85]. There were different strategies for utilizing fatty 
acids between the ovary and hepatopancreas during star-
vation in female swimming crabs. For example, 20:4n-6 
(ARA) was primarily conserved in starved crabs in the 
ovary and hepatopancreas, indicating that it may play a 
prominent role in ovarian development in starved crabs. Wu 
et al. reported [33] that the ARA level in eggs from swim-
ming crabs had an important function in determining egg 

Fig. 4  Relative expression of vitellogenin (Vtg) mRNA of the ovary 
and the hepatopancreas in fed and starved female swimming crab P. 
trituberculatus. Values are mean ± SD of three replicates. *P < 0.05

Fig. 5   Relative expression of fatty acid-binding protein (FABP) 
mRNA of the ovary and hepatopancreas in fed and starved female 
swimming crab P. trituberculatus. Values are mean ± SD of three 
replicates. *P < 0.05
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hatchability. Moreover, Silva et al. [28] reported that ARA 
was the precursor of the eicosanoids, thromboxanes, pros-
taglandins, and leukotrienes, which are biologically active 
molecules, and it was preserved in starved hybrid tila-
pia [28] and zebrafish [86] because of these roles; this is 
a possible explanation for increased ARA level in starved 
crabs. FABPs primarily bind fatty acids [87] and have a 
wide range of crucial biological roles, including intracel-
lular targeting of fatty acids to specific organelles as well as 
the uptake and utilization of fatty acids [88, 89]. Moreover, 
studies with E. sinensis have shown that FABP expression 
levels increased with ovarian development, which reflected 
lipid nutritional requirements [90]. In the present study, 
the FABP expression levels in the ovary and the hepato-
pancreas in starved crabs were higher than in the fed crabs 
(Fig. 5), indicating that starved swimming crabs need more 
lipids for energy metabolism.

In conclusion, the results of the present study indicate 
that:

1. Starvation suppressed or reduced gonadal development 
in the female swimming crab.

2. The swimming crab modulated its biochemistry to 
cope with starvation, which significantly influenced 
blood GLC and lipid levels.

3. The SFAs and MUFAs, 14:0, 16:0, 18:0; and 16:1n-7, 
are the main energy sources of swimming crabs during 
starvation. Thus, not only sufficient HUFAs but also 
sufficient SFAs and MUFAs must be supplied in the 
diets of female swimming crab broodstock.
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