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rate of ML were 2.12 mm/day and 0.59/day, respectively. 
This study suggests that the upper beak could be used 
for estimating age, growth and population structure of D. 
gigas.
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Introduction

The jumbo flying squid Dosidicus gigas is widely distrib-
uted throughout the Eastern Pacific Ocean, from Califor-
nia (37°N) south to the southern part of Chile (47°S). It 
is the largest and one of the most abundant species of the 
family Ommastrephidae [1, 2]. Dosidicus gigas spawn 
throughout the year, and grow fast with a life span of about 
1 year [3]. The population structure of D. gigas is compli-
cated, with large spatial variability and existence of mul-
tiple geographic stocks [4]. Based on the sizes of adult 
males and females, three intraspecific groups of D. gigas 
were distinguished [1]: a small-sized group (130–260 mm 
for males and 140–340  mm for females, respectively), a 
medium-sized group (240–420  mm for males and 280–
600 mm for females, respectively) and a large-sized group 
(>400–500 mm for males and 550–650 to 1000–1200 mm 
for females, respectively). According to the back-calculated 
hatching dates, D. gigas could be separated into summer/
autumn (December–May) and winter/spring (June–Novem-
ber) spawning cohorts [3]. The fishery biology of D. gigas 
in the Gulf of California, off the Peruvian and Chilean 
coast was studied extensively [1, 5–9], and spatial vari-
ations were found among geographic populations of D. 
gigas in the Eastern Pacific Ocean [4]. Dosidicus gigas is 
one of the most important and abundant species in Peruvian 

Abstract  The beak is a hard structure of cephalopods with 
relatively constant shape, which records a lot of biological 
and ecological information. Based on samples collected by 
Chinese squid jigging vessels off the Peruvian Exclusive 
Economic Zone from July to October 2013, we explored 
the feasibility of age estimation and growth pattern with the 
upper beak of Dosidicus gigas. The internal rostral axis and 
longitudinal increments could be clearly identified on the 
upper beak rostrum sagittal sections of this species. Checks 
and abnormal structure were observed in some beaks. Ages 
estimated were from 123 to 298 days for females and from 
106 to 274 days for males. Back-calculated hatching dates 
were from December 2012 to May 2013. All of the samples 
were from the austral summer/autumn spawning cohort. 
Hatching peak occurred between January and March. 
Growth in mantle length (ML) and body weight were best 
described by exponential functions and there were no sig-
nificant differences between females and males. The maxi-
mum absolute daily growth rate and instantaneous growth 
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waters, and is caught by local and distant-water fishing ves-
sels with high landings [1].

Using length-frequency analysis to estimate growth in 
previous studies [10, 11] was confirmed to be inappropri-
ate for cephalopods, because cohorts of cephalopods tend to 
overlap in length groups [12, 13]. Statoliths are calcareous 
structures located in the equilibrium organs which serve to 
detect body acceleration and have been considered as ‘black 
boxes’ recording valuable information about cephalopod life 
history events [14]. The statolith is widely used in the age 
determination of cephalopods [5, 15–17]. Liu et al. [3] esti-
mated the age of D. gigas off the Peruvian Exclusive Eco-
nomic Zone (EEZ) using statoliths, and the estimated ages 
ranged from 144 to 633 days. Chen et al. [18] analyzed the 
statolith microstructure of D. gigas off the Chilean EEZ and 
back-calculated hatch dates, confirming that D. gigas had 
spring and autumn spawning cohorts. However, the statolith 
is tiny and hard to extract. It is also difficult to obtain the 
proper grinding plane in which growth increments are wid-
est. The increments in statoliths are usually confusing and it 
is difficult to correctly count their numbers [19].

The beak is mainly composed of proteins and chitin fib-
ers [20]. Like other hard structures, it also has a relatively 
constant shape and high stiffness [21–23]. Up to now, the 
beak was widely used in population identification, system-
atics and biomass estimation [4, 24, 25]. Besides, it is also 
used in age estimation due to the regular growth cycle of 
beak [26–29]. The daily deposition of Octopus vulgaris’s 
beak increments was validated in the rostrum sagittal sec-
tion (RSS) by environmental marking [30]. Villegas Barce-
nas et  al. [31] studied the beak RSSs increments of culti-
vated Octopus maya, and found that there was no significant 
difference between the number of beak increments and 
age. Therefore, it was confirmed that the beak RSS incre-
ments of Octopus maya were formed daily as a result of 
periodic deposition of increments. Hu et al. [32] developed 
the relationship between the number of beak and statolith 
increments, and found that the number of beak increments 
was lineally related to the number of statolith increments. 
The regression model was significant (p < 0.01) and had an 
r2 value of 1 and slope close to 1. Therefore, they suggest 
that the beak can be used to estimate the age of D. gigas. 
Liu et al. [33] studied the bias of the increments in statolith 
and beak of four oceanic ommastrephid squid species, and 
found that increments counted on the upper beak RSS of 
D. gigas and O. bartramii were mostly similar to the ages 
determined by statolith, which confirms that the beak could 
yield reliable age estimation for both species.

The objectives of this study are to study the upper beak 
microstructure of D. gigas and analyze its feasibility to esti-
mate the age and growth for a population in a specific area 
off the Peruvian EEZ. This study will provide a effective 
tools for determining the age and growth for oceanic squids.

Materials and methods

A total of 467 samples were taken from the catch of the 
Chinese commercial jigging vessel “Puyuan 802” off the 
Peruvian EEZ (79°57′–83°24′W and 10°54′–15°09′S) 
from July to October in 2013 (Fig. 1). About 30–40 squids 
were randomly sampled every fishing day. The sampled 
squids were immediately frozen on the vessel. In this 
study, according to the size of D. gigas, the upper beaks of 
276 samples were used to estimate the age. The sampled 
squids were defrosted in the laboratory, and mantle length 
(ML) and body weight (BW) were measured to the nearest 
1 mm and 1 g, respectively. Sex was identified and maturity 
stages were evaluated according to the maturity scale of 
Lipiński and Underhill [34], who defined I–II as immature, 
III as maturing, and IV–V as mature.

The beaks were extracted, then cleaned and preserved 
in 70 % alcohol for further processing. The increments of 
beak’s microstructure were located in the RSS (Fig.  2), 

Fig. 1   Map of the study area off the Peruvian coast. The hollow cir-
cles showing the sampling locations of Dosidicus gigas

Rostrum sagittal section
(RSS)

Upper beak rostrum

Hood region

Lateral wall region

Fig. 2   Location of increments in upper beak for Dosidicus gigas [35]
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which was obtained using the methodology modified by 
Perales-Raya et  al. [35]. The rostrum area of upper beak 
was cut and then embedded in a small plastic mold of 
epoxy (UKORM) mixed with hardener. After hardening, 
the piece was ground with 600 and 1200 grit waterproof 
sandpaper. Both sides of the sagittal section were polished 
with 0.05  μm aluminum oxide powder (BAIKOWSKI) 
after reaching the sagittal pane (Fig.  2). Increments were 
counted along the internal rostral axis (Fig. 3a), which con-
tinues from the anterior to the posterior part of the hood 
[36]. To avoid tip erosion effects, the first increments were 
counted in the dorsal area of the rostral sections (Fig. 3a, 
d). The beak RSS increments were deposited daily, which 
has been confirmed for D. gigas [32, 33]. The number of 
increments for each beak was counted independently by 
two readers. The average was adopted if counts of rings 
from the two readers were within 10 % of the mean [13]. 
The hatching date was back-calculated from the number of 
increments and the date of capture.

Based on the back-calculated hatching dates, spawning 
cohorts were defined. Linear, power, exponential and loga-
rithmic curves were fitted to age–ML and age–BW data [13, 
18, 37]. The Akaike information criterion (AIC) was calcu-
lated for each model, and the model with the smallest AIC 
value was selected to describe the growth [18]. The analysis 
of covariance (ANCOVA) was used to evaluate the differ-
ences in growth curves (age–ML and age–BW) between 
females and males. Instantaneous growth rate (G) and abso-
lute daily growth rate (DGR, mm/day or g/day) were calcu-
lated for each 30-day interval by sex. The G and DGR were 
calculated using the following equations [38, 39]:

where S1 and S2 were estimated ML or BW at the beginning 
(t1) and end (t2) of time interval, respectively.

Results

Rostrum sagittal sections (RSS) of upper beak

The increments of upper beak RSS continued from the 
rostral tip to the joining point of the hood and the crest, 
and were composed of light and dark bands (Fig. 3a). The 
increments of hood and lateral wall regions were distrib-
uted symmetrically on the both sides of internal rostral 
axis. The term “longitudinal increments” is used for these 
thin and closed portions of the bands, which are deposited 
parallel to the beak edges (Fig. 3a).

G =

ln (S2)− ln (S1)

t2 − t1

× 100

DGR =

S2 − S1

t2 − t1

 In analyzing the upper beak RSS, the pigmentation of 
the hood region was darker than that for the lateral wall 
region (Fig. 3a). Checks were found universally in the upper 
beak microstructure, and a check was generally composed 
of several bands (increments). The light bands of checks 
were lighter than the general light bands and the bands of 
checks were darker than the general dark bands (Fig.  3b). 
There were not only growth increments, but also bands that 
intersect with growth increments in the upper beak RSS 
(Fig.  3c). The bands were narrow between two adjacent 
increments and were thin in the dorsal border of hood. The 
rostrum was generally eroded during the feeding process. 
Therefore, to avoid the tip erosion effects, we counted the 
first increments in the dorsal region of the rostral sections 
(Fig. 3d). A special structure was found in the upper beak 
RSS of a male D. gigas with its increments of dorsal region 
being obstructed and becoming distorted (Fig. 3e).

Size‑structure

For female squids, ML ranged from 209 to 405  mm, 
the average ML reached 275.0 ±  34.5  mm, and the 230–
290  mm size range contained 69.5  % of the females 
(Fig. 4a). For males, ML ranged from 205 to 396 mm, the 
average ML of males reaching 258.3 ± 30.4 mm was less 
than the average ML of females, and the dominant ML 
ranged from 230 to 290 mm, consisting of 77.3  % of the 
males (Fig. 4b). For females, the percentage of maturing and 
mature squid was 4.4 %, and the ML ranged from 211 to 
356 mm. For males, the percentage of maturing and mature 
squid was 31.2 %, and ML ranged from 205 to 321 mm.

Age‑structure

The ages of female specimens ranged from 123 to 298 days 
and the average age was 195.8 ± 29.0 days. Females of 150 
to 240 days old consisted of 89.4 % of the total number of 
female squid (Fig. 5a). The age of males varied from 106 to 
274 days and the average age reached 183.4 ± 30.0 days. 
The age range of 150–240  days included 87.5  % of the 
males (Fig.  5b). The maturing and mature squids ranged 
from 180 to 235 days for females and 135 to 225 days for 
males (Fig. 5).

Hatching time and spawning cohort

The hatching dates ranged from 2 December 2012 to 19 
May 2013 (Fig. 6). Therefore, all of the samples were from 
the summer/autumn spawning cohort. A distinct hatching 
peak was observed between January and March for squids 
collected during July and October in 2013, and squids 
hatched between January and March consisted of 83.7 % of 
the total samples (Fig. 6).
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Growth models

The age–ML data were best described by exponential curves 
that had the lowest AIC values, and there were no signifi-
cant differences between females and males (ANCOVA, 
F  =  0.701, p  =  0.918) (Table  1; Fig.  7). The age–BW 
data were also best fitted by exponential curves and there 
were no significant differences between females and males 
(ANCOVA, F = 0.576, p = 0.984) (Table 1; Fig. 8).

Growth rates

There were no significant differences in DGR and G between 
females and males (t test, p > 0.05). Therefore, growth rates 
were analyzed for sex-combined a data. The maximum DGR 
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and G of ML and BW occurred in 271–300 days (Table 2). In 
this study, the average DGR and G of ML were 1.05 mm/day 
and 0.34/day, respectively. The maximum DGR and G in ML 
reached 2.12 mm/day and 0.59/day, respectively (Table 2).
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Table 1   Estimated model parameters and AIC values of functional 
relationships between ML/BW and age

Linear linear function: y = a + bx, Power power function: y = axb, 
Exponential exponential function: y = aebx, Logarithmic logarithmic 
function: y = aln(x) + b, AIC Akaike’s information criterion

Underlines are the lowest AIC values on which the best model was 
chosen

Variables Model Age (day)

a b AIC

ML Linear 99.578 0.914 1728.250

Power 9.574 0.639 1732.287

Exponential 147.080 0.003 1724.757

Logarithm 170.455 −619.021 1742.446

BW Linear −606.742 6.275 2856.892

Power 0.010 2.095 2845.110

Exponential 85.400 0.009 2842.764

Logarithm 1156.211 −5466.852 2874.868

ML = 147.08e0.0032Age

R² = 0.6  N=276
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Fig. 7   Relationship between age and mantle length for Dosidicus 
gigas caught off the Peruvian EEZ
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Discussion

The light and dark bands were alternant in the upper beak 
RSS. Regular activity patterns and endogenous rhythms 
are induced by light–dark cycles in some cephalopods, 
and this endogenous rhythm was probably reflected on the 
beaks [36, 40]. The increments were distributed symmet-
rically on both sides of the internal rostral axis (Figs.  2, 
3a). Compared to the pigmentation of hood region, the 
pigmentation of lateral wall area was more lightly depos-
ited (Fig. 3a). Therefore, the increments in the lateral wall 
region were easily observed. However, the increments 
were generally overlapping and difficult to count accu-
rately. Meanwhile, the increments of border in the lateral 
wall region were usually incomplete. Thus, age determi-
nation should be done by counting the increments of the 
hood region.

The bands intersecting with growth increments were 
found in the upper beak RSS (Fig. 3c). These bands were 
thin and dense, which probably resulted from the deposi-
tion and growth of the upper beak in another direction. The 
rostrum tip was usually lost during the feeding process, 
which made it impossible to count the increments located 
at the rostrum tip. To avoid the tip erosion effects, the first 
increments were counted in the dorsal region of the rostral 
sections (Fig. 3a, d). A similar result was also observed in 
the beak RSS of Octopus vulgaris [35]. Checks were preva-
lent in the upper beak RSS (Fig. 3b), and were considered 
to record life history events of the octopus [30, 41]. There-
fore, checks might also reflect stressful events of squids. It 
is possible that environmental stresses, such as temperature 
shocks, storms or unsuccessful attacks by predators, pro-
vide sufficient stress to induce check formation within the 
beak RSS [14]. In this study, there was an extremely special 
structure that was located at the upper beak RSS (Fig. 3e). 
The increments of the dorsal area of the hood were seem-
ingly obstructed, became distorted and then restored to a 
normal condition, which was probably induced by some 
ambient environmental stress. Therefore, the beak also 
has the potential for studying the life history of squid by 

analyzing its trace element, just like the statolith in previ-
ous studies [42, 43].

For females, there were only a few maturing and mature 
squids throughout the ML (Fig.  4a). For male samples, 
however, the maturing and mature squids consisted of 
48.0 % of samples of ML from 200 to 260 mm and con-
sisted of 17.1 % of samples with the ML ranging from 260 
to 410  mm, respectively (Fig.  4b). Therefore, the squids 
sampled in this study were probably composed of small-
sized and medium-sized groups based on the classification 
standard of Nigmatullin et al. [1]. In previous studies, the 
small-sized and medium-sized groups were also observed 
off the Peruvian coast [1, 44]. In some studies, temperature 
and food availability were considered as the main factors 
leading to the existence of different groups as a result of 
phenotypic size variability, but with no definitive conclu-
sion [45–47]. However, Arkhipkin et  al. [48] studied the 
effect of ambient temperature on adult size and life span 
of D. gigas, and demonstrated that the significant negative 
effect of sea surface temperatures on the life span led to a 
shorter life cycle of squid with a smaller size or a longer 
life cycle of squid with a larger size. Besides, it was consid-
ered that the small-sized group was found predominantly in 
the near-equatorial area, those of the large-sized group live 
in the northern and southern peripheries of the range, and 
those of the medium-sized group occur within the whole 
species range (except in the most high-latitudinal parts) [1]. 
Squids probably mature quickly at a smaller size in high 
temperature areas [6, 48]. On the contrary, squids mature 
late and at a larger size in low temperature areas.

This study suggests a hatching peak between January 
and February. A similar result was also found in the Peru-
vian waters [3]. Besides, squids hatched in summer/autumn 
and recruited to the fishery in winter/spring were found 
based on the hatching dates and the dates of capture in 
this study. However, in this study, the squids were sampled 
only in 4 months. The low abundance in 2013 led to a rela-
tively short fishing season compared to previous years [3]. 
Dosidicus gigas spawns throughout the year [3]. However, 
the hatching peak would vary in different geographic areas. 

Table 2   Absolute daily growth rates (DGR) and instantaneous growth rate (G) of mantle length (ML) and body weight (BW) for Dosidicus 
gigas

Age-class (day) Sample size Mantle length Body weight

Average ML (mm) DGR (mm/day) G Average BW (g) DGR (g/day) G

121–150 14 232.4 – – 347.9 – –

151–180 97 251.9 0.65 0.27 437.9 3.00 0.77

181–210 87 275.8 0.80 0.30 591.7 5.13 1.00

211–240 61 304.0 0.94 0.32 793.8 6.74 0.98

241–270 14 325.9 0.73 0.23 949.9 5.20 0.60

271–300 2 389.5 2.12 0.59 1624.0 22.47 1.79
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Off the western coast of the Baja California Peninsula, 
Mejia-Rebollo et al. [49] suggested that the hatching peak 
of D. gigas was from January to March. Off the Chilean 
EEZ, Chen et  al. [18] stated that the prevailing hatching 
time was from August to November. Environment factors 
such as temperature and salinity were probably different 
in the same time frame among different geographic areas. 
Therefore, the hatching peaks of D. gigas differ among 
geographic areas.

In this study, all of the samples were identified to be of 
a summer/autumn spawning cohort. The age–ML data and 
age–BW data were both best fitted with exponential models 
(Figs. 7, 8). Meanwhile, Liu et al. [3] found that the age–
ML data and age–BW data were best described by expo-
nential functions for summer/autumn spawning cohort of 
D. gigas, based on statolith microstructure off the Peruvian 
EEZ. The growth curve in this study is close to that in Liu 
et al. [3], from 120 to 300 days (Fig. 9). Therefore, this also 
indicates that the beak microstructure can be used to study 
the age and growth of D. gigas. But the sampled squids in 
this study did not cover all the life history stages. Thus, the 
application of the models developed in this study should be 
restricted to the size ranges included by this study. There-
fore, the squids of all ontogenetic stages should be col-
lected using fishing gear such as purse nets to research the 
growth of the whole lifespan.

Based on the results in this study, significant differences 
of growth rates were not found between females and males. 
The maximum DGR and G of ML and BW were reached 
in 271–300 days (Table 2). The maximum DGR in ML and 
BW reached 2.12  mm/day and 22.47  g/day, respectively. 
However, the results might be biased because fewer samples 
ranged between 271 and 300 days old. In previous studies, off 
Costa Rica Dome EEZ, the maximum DGR (1.46 mm/day) 
and G (0.52/day) in ML occurred in 181–210  days old for 
females, and the maximum DGR (2.07 mm/day) and G (0.85/

day) were reached in 151–180 days old for males [3]. In Baja 
California waters, the maximum DGR (2.09 mm/day) in ML 
occurred at 220 days old in females, and the maximum DGR 
(2.1 mm/day) reached at 200 days in males [49]. Therefore, 
the growth rates of squid might be different among spawn-
ing cohorts and geographic populations of D. gigas due to the 
variation of oceanographic environments in different areas.

In summary, the age, growth and population structure 
of D. gigas were successfully estimated using the micro-
structure of the upper beak for RSS in this study. We rec-
ommend that the beak be used in the study of age, growth 
and population structure of Ommastrephidae squid. A sam-
pling program covering large areas and a long time period 
needs to be conducted in the future for evaluating potential 
spatio-temporal variability in age and growth of D. gigas.
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