ORIGINAL ARTICLE

Determination and characterization of vitamin B₁₂ compounds in edible sea snails, ivory shell *Babylonia japonica* and turban shell *Turdo Batillus cornutus*

Fei Teng¹ · Yuri Tanioka² · Natsumi Hamaguchi³ · Tomohiro Bito¹ · Shigeo Takenaka⁴ · Yukinori Yabuta^{1,3} · Fumio Watanabe^{1,3}

Received: 28 April 2015 / Accepted: 7 August 2015 / Published online: 16 September 2015 © Japanese Society of Fisheries Science 2015

Abstract In this study, we characterized and quantified vitamin B₁₂ compounds in popular edible snails *Babylonia japonica* and *Turdo Batillus cornutus* using a microbiological assay based on Lactobacillus delbrueckii subsp. lactis ATCC 7830. The meat and viscera of B. japonica contained 27.2 ± 9.1 and $92.8 \pm 25.8 \ \mu g$ of vitamin B₁₂ per 100 g, respectively. However, the meat and viscera of T. cornutus contained extremely low amounts of vitamin B_{12} (3.0 \pm 1.5 and $15.1 \pm 8.3 \,\mu g$ of vitamin B₁₂ per 100 g, respectively). We identified the vitamin B₁₂ compounds from the edible portions (meat and viscera) of B. japonica and T. cornutus using liquid chromatography-electrospray ionization/ tandem mass spectrometry. We found that B. japonica contained substantial amounts of true vitamin B_{12} , while pseudovitamin B₁₂ was the predominant corrinoid in T. cornutus. These results indicate that the meat and viscera of *B. japonica* are excellent sources of vitamin B_{12} for humans.

Keywords Edible sea snails \cdot Ivory shell \cdot Pseudovitamin $B_{12} \cdot$ Turban shell \cdot Vitamin B_{12}

☑ Fumio Watanabe watanabe@muses.tottori-u.ac.jp

- ¹ Division of Applied Bioresources Chemistry, United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan
- ² Department of Nutrition, Junior College of Tokyo University of Agriculture, Setagayaku 156-8502, Japan
- ³ Department of Agricultural, Biological and Environmental Sciences, School of Agriculture, Tottori University, Tottori 680-8553, Japan
- ⁴ Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan

Introduction

Vitamin B_{12} compounds are synthesized only by certain bacteria and are concentrated mainly in the bodies of higher predators in the natural food chain. The usual dietary sources of vitamin B_{12} are animal products (i.e., meat, milk, egg, fish, and shellfish) [1]. The Japanese obtain most (approximately 84 %) of their daily vitamin B_{12} intake from fish and shellfish [2]. Shellfish siphon large quantities of vitamin B_{12} -synthesizing bacteria from seawater and freshwater and are excellent sources of vitamin B_{12} (>10 µg/100 g wet weight) [1, 3]. However, these vitamin B_{12} -synthesizing bacteria can also synthesize other corrinoids that contain a different base moiety in the lower ligand of the molecule [4].

Our previous studies indicated that vitamin B₁₂ levels were significantly higher in edible bivalves (approximately 60 μ g/100 g wet weight) than in edible snails (approximately 20 μ g/100 g wet weight) [5]. The corrinoid compounds purified from most edible bivalves (clams, oysters, mussels, etc.) have been identified as 'true' vitamin B_{12} [6]. In the edible sea snail abalone, vitamin B₁₂ and pseudovitamin B_{12} (Co β -cyano-N7-adeninyl-cobamide, an inactive corrinoid for humans; as shown in Fig. 1) were observed to be the major and minor corrinoid compounds, respectively [5]. However, there is little information available on the vitamin B_{12} compounds of other edible sea snails. Among the edible sea snails, ivory shell Babylonia japonica and turban shell Turdo Batillus cornutus are the most popular food items in Japan. Their meat and viscera are edible because high levels of vitamin B₁₂ accumulate in the viscera of shellfish [5]. If these popular snails contain a large amount of "true" vitamin B₁₂, they would be good sources of vitamin B_{12} in humans.

 \mathbf{B}_{12} and pseudovitamin \mathbf{B}_{12}

In this study, we identified vitamin B_{12} compounds from the edible portions (meat and viscera) of *B. japonica* and *T. cornutus* using liquid chromatography–electrospray ionization/tandem mass spectrometry (LC/ESI–MS/MS). We found that *B. japonica* contains substantial amounts of "true" vitamin B_{12} , while pseudovitamin B_{12} was the predominant corrinoid in *T. cornutus*. These results indicate that the meat and viscera of *B. japonica* are excellent sources of vitamin B_{12} for humans.

Materials and methods

Materials

Vitamin B_{12} (cyanocobalamin) was obtained from Sigma-Aldrich (St Louis, Missouri, USA). Pseudovitamin B_{12} that had been purified from *Aphanizomenon flos-aquae* and identified with proton nuclear magnetic resonance (¹H– NMR) spectroscopy [7] was used in this study. A vitamin B_{12} assay medium based on *Lactobacillus delbrueckii* (formerly *L. leichmannii*) ATCC 7830 was obtained from Nissui (Tokyo, Japan). Raw *B. japonica* and *T. cornutus* were purchased from local markets in Tottori prefecture, Japan.

Extraction and assay of vitamin B₁₂ from edible snails

After the shells were removed from *B. japonica* and *T. cornutus*, their edible portions (meat and viscera) were sampled. Each sample was homogenized using a mixer (TML160; Tescom & Co., Ltd., Tokyo, Japan). An aliquot (2.0 g) of the homogenate was used as the sample for the

vitamin B_{12} assay. Vitamin B_{12} compounds were extracted from each sample by boiling for 30 min under acidic conditions (pH 4.5) and then assayed using a microbiological method based on *L. delbrueckii* ATCC 7830, according to a previously described method [4]. The extraction procedures were done in a Dalton (Tokyo, Japan) draft chamber in the dark.

Because *L. delbrueckii* ATCC 7830 can utilize deoxyribosides and deoxyribonucleotides (known to be an alkaliresistant factor) as well as vitamin B_{12} , the correct vitamin B_{12} values were calculated by subtracting the values for the alkali-resistant factor from the total vitamin B_{12} values.

Identification of sea snail vitamin B₁₂ compounds by LC/ESI–MS/MS

Each vitamin B₁₂ extract (40 mL) was partially purified and concentrated using a Sep-Pak® Plus C18 cartridge (Waters Corp., MA, USA), as described previously [4]. The eluate was evaporated to dryness under reduced pressure, and then was dissolved in 3 mL of distilled water and centrifuged at $10,000 \times g$ for 10 min to remove insoluble material. The supernatant fraction was loaded onto an immunoaffinity column [EASI-EXTRACT® vitamin B12 immunoaffinity column (P80), R-Biopharm AG, Darmstadt, Germany], and were purified according to the manufacturer's protocol. The purified vitamin B_{12} compounds were dissolved in 0.1-% (v/v) acetic acid and filtered through a Nanosep MF centrifuge device (0.4 µm; Pall Corp., Tokyo, Japan) to remove small particles. An aliquot (2 µL) of the filtrate was analyzed using an LC-MS ion trap-time-of-flight (IT-TOF) system coupled to an ultra-fast LC system (Shimadzu,

Table 1 Vitamin B₁₂ content of edible sea snails

12 content of calore sea sha				
	Amount of vitamin B ₁₂ compounds			Body weight ^a (g)
	Muscle (µg/100 g)	Viscera (µg/100 g)	Whole body ^a (µg/one body)	

 92.8 ± 25.8

 15.1 ± 8.3

Data represent the values per wet weight

Ivory shell *Babylonia japonica* (n = 5)Turban shell *TurdoBatillus cornutus* (n = 5)

^a except their shells

Kyoto, Japan). Each purified corrinoid was injected into an inert-sustain column (3 μ m, 2.0 \times 100 mm; GL Science, Tokyo, Japan) equilibrated with 85 % of solvent A [0.1-% (v/v) acetic acid] and 15 % of solvent B (100-% methanol) at 40 °C. Corrinoids were eluted using a linear gradient of methanol (15 % of solvent B for 0-5 min, 15-90 % of solvent B for 5-11 min, and 90-15 % of solvent B for 11-15 min). The flow rate was 0.2 mL/min. ESI conditions were determined by injecting the corrinoids into the MS detector, thereby identifying the optimum parameters for detecting parent and daughter ions of vitamin B₁₂ compounds. The ESI-MS system was operated in a positive ion mode, and argon was used as the collision gas. The identities of pseudovitamin B_{12} (*m/z* 672.7749) and vitamin B_{12} (m/z 678.2914) as $[M + 2H]^{2+}$ were confirmed by comparing the observed molecular ions and retention times.

 27.2 ± 9.1

 3.0 ± 1.5

Results

Vitamin B₁₂ content of edible sea snails

We analyzed the vitamin B₁₂ content of the edible sea snails of the ivory-shelled B. japonica and the turbanshelled T. cornutus, which are commonly consumed in Japan, using the L. delbrueckii ATCC 7830 microbiological assay method (Table 1). The viscera of B. japonica contained a substantial amount of vitamin B_{12} (approximately 92.8 μ g/100 g wet weight); 3.4 times greater than that of the meat (approximately 27.2 μ g/100 g wet weight). The meat and viscera of T. cornutus contained significantly lower amounts of vitamin B₁₂ (approximately 3.0 and 15.1 μ g/100 g wet weight, respectively). These results indicated that high levels of vitamin B₁₂ accumulate in the viscera of these edible sea snails. The vitamin B₁₂ content (approximately 4.7 μ g) per whole body of *B. japonica* was 2.8 times greater than that of T. cornutus. The vitamin B_{12} contents determined in our analysis are significantly higher than those [4.3 and 1.3 μ g of vitamin B₁₂ per 100 g of edible portion (without shell and viscera) of ivory shell and turban shell, respectively] described in the Standard Tables of Food Composition in Japan 2010 [8].

 11.0 ± 0.9

 20.1 ± 4.0

Identification of corrinoid compounds from edible sea snails using LC/ESI-MS/MS analysis

 4.7 ± 0.7

 1.7 ± 0.6

Edible snail extracts were purified using a vitamin B_{12} immunoaffinity column and then analyzed using LC/ ESI-MS/MS. Authentic pseudovitamin B₁₂ and vitamin B_{12} were eluted as peaks with retention times of 7.4 and 7.5 min, respectively (Fig. 2a, d, respectively). The mass spectrum of authentic pseudovitamin B_{12} indicated that a doubly-charged ion with an m/z of 672.7769 [M + 2H]²⁺ was prominent (Fig. 2b). The exact mass calculated from its formula $(C_{59}H_{83}CoN_{17}O_{14}P)$ was 1343.5375 and the isotope distribution data showed that pseudovitamin B_{12} was the major doubly-charged ion under the LC/ ESI-MS conditions used in our analyses. For authentic vitamin B₁₂, which has an exact mass of 1354.5674 $(C_{63}H_{88}CoN_{14}O_{14}P)$, a doubly-charged ion with an m/z of $678.2883 [M + 2H]^{2+}$ was prominent (Fig. 2e). The MS/ MS spectra of authentic pseudovitamin B₁₂ and vitamin B_{12} indicated that their dominant ions at m/z 348.0695 and m/z 359.0984, respectively, were attributable to the nucleotide moiety of each corrinoid compound (Fig. 2c, f). The corrinoids purified from the meat of B. japonica were eluted as an ion peak with m/z 678.2914 at a retention time of 7.5 min. The mass spectrum showed that a doubly-charged ion was formed at m/z 678.2928 (Fig. 3a, b). The MS/MS spectrum of the compound was identical to that of vitamin B_{12} (Fig. 3c). Identical spectral data were obtained for the corrinoids purified from B. japonica viscera (Fig. 3d–f). These results indicate that vitamin B_{12} is the predominant corrinoid compound in B. japonica. The compounds purified from T. cornutus meat eluted as several total ion peaks, indicating that impurities remained. The ion peaks of *m/z* 672.7749 and *m/z* 678.2914 due to pseudovitamin B_{12} and vitamin B_{12} , respectively, were also found (Fig. 4a). Their retention times of 7.3 and 7.4 min, respectively, were similar to those of authentic pseudovitamin B_{12} (retention time of 7.4 min) and vitamin B_{12} (retention time of 7.5 min). Such slight differences in retention times may be due to the existence of impurities in the purified compounds. The mass spectra of the materials eluting at retention times of 7.3 and 7.4 min showed doubly-charged ions at m/z 672.7764 (Fig. 4b) and m/z Fig. 2 LC/ESI-MS/MS chromatograms of authentic pseudovitamin B12 and vitamin B12. Pseudovitamin B12 and vitamin B12 were analyzed with LCMS-IT-TOF (Shimadzu) as described in the text. a, d Total ion chromatograms (TICs) of authentic pseudovitamin B₁₂ and vitamin B_{12} , respectively. **b**, e Mass spectra of the ion peaks from pseudovitamin B₁₂ (inserts magnified mass spectra from m/z 672 to 675) and vitamin B₁₂ (inserts magnified mass spectra from m/z 678 to 680), respectively. c, f MS/MS spectra of the peaks of pseudovitamin B12 and vitamin B12, respectively

Fig. 3 LC/ESI-MS/MS chromatograms of the vitamin B_{12} compounds purified from the meat and viscera of B. japonica. a, d TICs and ion chromatograms for *m/z* 678.2914 (×10) and 672.7749 (×10) of the vitamin B12 compounds purified from the meat and viscera of B. japonica, respectively. b, e Mass spectra of the ion peaks of the meat and visceral vitamin B₁₂ compounds at retention times of 7.5 min (inserts magnified mass spectrum from m/z678 to 680), respectively. c, f MS/MS spectra for the peaks of the muscle and visceral vitamin B_{12} compounds at m/z 678.2928 and at m/z 678.2917, respectively

678.2856 (Fig. 4d), respectively. The MS/MS spectra of these compounds were identical to those of pseudovitamin B_{12} (Fig. 4c) and vitamin B_{12} (Fig. 4e). Similar results were obtained with the visceral sample, but no vitamin B_{12} was detected (Fig. 4f–h). These results indicate that pseudovitamin B_{12} is the predominant corrinoid compound in *T. cornutus*. Similar results were reported in abalone [5]. This result indicated that *T. cornutus* would not be a suitable source of vitamin B_{12} .

Discussion

The vitamin B_{12} content of foods were determined using the *L. delbrueckii* ATCC 7830 bioassay method. Our previous studies showed that the observed correlation rate between the values determined by the *L. delbrueckii* ATCC 7830 bioassay and intrinsic factor (the most specific vitamin B_{12} -binding protein)-based chemiluminescence method is excellent, except for foods containing substantial amounts of pseudovitamin B_{12} [9]. These results indicated

Fig. 4 LC/ESI-MS/MS chromatograms of the vitamin B₁₂ compounds purified from the meat and viscera of T. cornutus. a, f TICs and ion chromatograms for m/z678.2914 (×10 and ×20) and 672.7749 ($\times 10$ and $\times 20$) of the vitamin B12 compounds purified from the meat and viscera of T. cornutus, respectively. **b**, **d** Mass spectra of the ion peaks of the meat vitamin B_{12} compounds at retention times of 7.3 min (inserts magnified mass spectrum from m/z 672 to 675) and 7.4 min (inserts magnified mass spectrum from m/z 678 to 680), respectively. c, e MS/ MS spectra for the peaks of the muscle vitamin B₁₂ compounds at *m/z* 672.7764 and at *m/z* 678.2856, respectively. g Mass spectrum of the ion peak of the visceral vitamin B12 compounds at a retention time of 7.3 min (inserts magnified mass spectrum from m/z 672 to 675). h MS/MS spectrum for the peak of the visceral vitamin B_{12} compound at *m/z* 672.7743

that *L. delbrueckii* ATCC 7830 utilizes pseudovitamin B_{12} as well as vitamin B_{12} . Thus, pseudovitamin B_{12} found in the edible portions of turban shells was determined as vitamin B_{12} using the *L. delbrueckii* ATCC 7830 bioassay.

The differences in content and vitamin B_{12} compounds between these edible sea snails is dependent on their dietary habitats, because *B. japonica* and *T. cornutus* are carnivorous and herbivorous sea snails, respectively. Vitamin B_{12} is synthesized only by certain bacteria and is concentrated mainly in the bodies of higher predators in the natural food chain. The usual dietary sources of vitamin B_{12} are animal-derived products but not plant-derived products [1]. The vitamin B_{12} content of tengusa *Gelidium pacificum Okamura* and wakame *Undaria pinnatifida*, the foods of *T. cornutus*, are very low (0.2 – 0.5 µg/100 g dry weight) [8]. Yamada et al., [10] demonstrated that wakame predominantly contained certain vitamin B_{12} analogues. Moreover, various blue-green algae (cyanobacteria) contain substantial amounts of pseudovitamin B_{12} [1].

The consumption of one whole body (meat and viscera, approximately 11 g) of *B. japonica*, which contains a considerably high vitamin B_{12} level (approximately 4.7 µg), could supply the entire recommended dietary allowance for an adult (2.4 µg/day) [11]. Our unpublished studies indicated that the edible portions (without shell and viscera) of other carnivorous sea snails, e.g., whelks *Buccinum striatissium* and *Neptunea intersculpta*, also contain considerable amounts of vitamin B_{12} [10.13 ± 3.33 (n = 5) and 28.72 ± 5.48 (n = 5) µg/100 g, respectively]. The results presented here indicate that these edible carnivorous sea snails would be excellent sources of vitamin B_{12} for humans.

Acknowledgments This work was supported by JSPS KAKENHI Grant number 25450168 (FW).

References

- Watanabe F (2007) Vitamin B₁₂ sources and bioavailability. Exp Biol Med 232:1266–1274
- Yoshino K, Inagawa M, Oshima M, Yokota K, Umesawa M, Endo M, Yamagishi K, Tanigawa T, Sato S, Shimamoto T, Iso H

(2005) Trends in dietary intake of folate, vitamin B_6 , and vitamin B_{12} among Japanese adults in two rural communities from 1971 through 2001. J Epidemiol 15:29–37

- Herbert V (1996) Vitamin B12. Present knowledge in nutrition, 7th edn. International Life Sciences Institute Press, Washington, pp 191–205
- Watanabe F, Katsura H, Takenaka S, Fujita T, Abe K, Tamura Y, Nakatsuka T, Nakano Y (1999) Pseudovitamin B₁₂ is the predominant cobamide of an algal health food, Spirulina tablets. J Agric Food Chem 47:4736–4741
- Tanioka Y, Takenaka S, Furusho T, Yabuta Y, Nakano Y, Watanabe F (2014) Identification of vitamin B₁₂ and pseudovitamin B₁₂ from various edible shellfish using liquid chromatography– electrospray ionization/tandem mass spectrometry. Fish Sci 80:1065–1071
- Watanabe F, Katsura H, Takenaka S, Enomoto T, Miyamoto E, Nakatsuka T, Nakano Y (2001) Characterization of vitamin B₁₂ compounds from edible shellfish, clam, oyster, and mussel. Int J Food Sci Nutr 52:263–268
- Miyamoto E, Tanioka Y, Nakao T, Barla F, Inui H, Fujita T, Watanabe F, Nakano Y (2006) Purification and characterization of a corrinoid-compound in an edible cyanobactrium *Aphanizomenon* flos-aquae as nutritional supplementary food. J Agric Food Chem 54:9604–9607
- Ministry of Education, Culture, Sports, Science and Technology (2010) Report of the subdivision of resources. In: Standard tables of food composition in Japan, 2010. The council for Science and Technology, Ministry of Education, Culture, Sports, Science and Technology, Tokyo, pp 170–173 (in Japanese)
- Watanabe F, Takenaka S, Abe K, Tamura Y, Nakano Y (1998) Comparison of a microbiological assay and fully automated chemiluminescent system for the determination of vitamin B₁₂ in foods. J Agric Food Chem 46:1433–1436
- 10. Yamada S, Shibata Y, Takeyama M, Narita Y, Sugawara K, Fukuda M (1996) Content and characteristics of vitamin B_{12} in some seaweeds. J Nutr Sci Vitaminol 42:497–505
- Shibata K, Fukuwatari T, Imai E, Hayakawa H, Watanabe F, Takimoto H, Watanabe T, Umegaki K (2013) Dietary reference intakes for Japanese 2010: water-soluble vitamins. J Nutr Sci Vitaminol 59:S67–S82