ORIGINAL ARTICLE

Identification of male sex-linked DNA sequence of the cultured Pacific bluefin tuna *Thunnus orientalis*

Yasuo Agawa · Mayui Iwaki · Takafumi Komiya · Tomoki Honryo · Kouhei Tamura · Tsukasa Okada · Naoki Yagishita · Toru Kobayashi · Yoshifumi Sawada

Received: 26 February 2014 / Accepted: 19 November 2014 / Published online: 9 December 2014 © Japanese Society of Fisheries Science 2014

Abstract A male-specific marker of a DNA sequence for the Pacific bluefin tuna Thunnus orientalis, Male delta 6 (Md6), was identified by comparative study of the sequences obtained by F3-cultured male and female AFLP-selective DNA amplification products, followed by high-throughput DNA sequencing. Md6 was characteristic in continuous 6-bp nucleotide deletions compared to redundant sequences that could be seen in both sexes. The PCR genotyping primers were developed based on the Md6 sequence, which showed that 29 of 32 F3 males (90.6 %) and 9 of 13 (69.2 %) F2 parental males were genotyping positive, whereas in females, the genotyping test was negative in parental F2 (n = 12), and 1 of 32 (3.1 %) F3 female was Md6-positive. Parentage allocation tests suggested that Md6-positive F2 males were more attendant in spawning than Md6-negative males, suggesting that Md6 was passed from male parents to male progeny under aquaculture conditions.

Electronic supplementary material The online version of this article (doi:10.1007/s12562-014-0833-8) contains supplementary material, which is available to authorized users.

Y. Agawa ($\boxtimes) \cdot M.$ Iwaki \cdot T. Komiya \cdot T. Honryo \cdot K. Tamura \cdot Y. Sawada

Oshima Branch, Fisheries Laboratories, Kinki University, 1790-4 Oshima Kushimoto, Wakayama 649-3633, Japan e-mail: agawa@kindaisuiken.jp

M. Iwaki e-mail: august.16.harry@gmail.com

T. Komiya e-mail: komi5382001@yahoo.co.jp

T. Honryo e-mail: t.honryo@kindaisuiken.jp

K. Tamura e-mail: dhuksi@gmail.com KeywordsPacific bluefin tuna \cdot Male marker DNAsequence \cdot Genotyping \cdot AFLP

Introduction

The bluefin tuna provides favorable food features for consumers, and food market fish demands have been increasing in recent years. However, their natural populations are not large enough to satisfy the need. In fact, the Atlantic bluefin tuna *Thunnus thynnus* was heavily fished in the 1990s, and despite international resource management, is now threatened with extinction [1]. Various resource conservation measures have been implemented, not only for the Atlantic bluefin tuna, but also for the Pacific bluefin tuna (PBF) *Thunnus orientalis*, such as the recent listing of the PBF by the Western and Central Pacific Fisheries Commission, in efforts to collect information on its fishing size and location in order to monitor resource conditions. In addition, the commission decided to reduce the PBF fishing level to below that from 2002 to 2004 [2]. However, effective management

Y. Sawada e-mail: yoshifumisawada@gmail.com

T. Okada Hokkaido System Science Co., Ltd, 1-2-1 Shinkawa-nishi 2 jyo, Kitaku, Sapporo, Hokkaido 001-0932, Japan e-mail: t-okada@hssnet.co.jp

N. Yagishita · T. Kobayashi Department of Fisheries, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara, Nara 631-8505, Japan e-mail: yagi@nara.kindai.ac.jp

T. Kobayashi e-mail: kobayasi@nara.kindai.ac.jp of tuna natural resources is still difficult because of the lack of scientific knowledge regarding its base—for example, the genetic structure of the tuna population over the ocean, spawning ecology, and early life history.

Tuna ranching, which involves the capture of wild fish to use for seeding, has been conducted to generate a market supply, but it is completely dependent on natural resources, and may cause overfishing, as was the case with the Atlantic bluefin tuna [1]. In contrast, PBF full-life-cycle aquaculture from eggs to broodstock is not dependent on wild PBF, and is a possible strategy for conserving their natural resources [3–5]. There are still many problems remaining, however, for the establishment of full-cycle tuna aquaculture technology, among which is the prerequisite stable supply of fertilized eggs for fingerling production.

In red sea bream Pagrus major and striped beakfish Oplegnathus fasciatus, fish broodstock units are organized with a high ratio of females to males in order to produce a massive number of fertilized eggs, as female maturation often becomes a bottleneck of reproduction in cultured fishes. A female-rich broodstock is desirable in PBF aquaculture as well. The spawning season of these species under aquaculture conditions in Kushimoto, Japan, is from June through August. Most males reach sexual maturity during the season, while only 10 % of females achieve maturity [5, 6]. It has also often been observed that female PBF in our sea cage die after the spawning season. This phenomenon has also been reported in the PBF broodstock tank at the Seikai National Fisheries Research Institute in Nagasaki, Japan (personal communication), and in yellowfin tuna (YFT, Thunnus albacares) at the Inter-American Tropical Tuna Commission (IATTC) Achotines Laboratory in the Republic of Panama (personal communication). Therefore, it is desirable to establish a female-enriched PBF broodstock [6]. It is difficult to create a PBF broodstock with a high ratio of females to males because there are no visible differences in their external morphology or in chromosomal features between the sexes in this fish [7]. The sexing of mature female PBFs is practicable by immunological detection of vitellogenin, which is an egg yolk precursor protein expressed in the females [8]. It is also possible to analyze the expression of the vitellogenin gene in the liver and ovaries [9], but the manipulation for a histological examination of internal organs in these sexing sacrifices the treated fish, who die or are greatly damaged. Even if sexing is possible, the grouping of mature tuna is very difficult because of their large body, and this results in a heavy loss of fish. Therefore, new techniques are needed for tuna sexing, and genotyping by differences in DNA sequences enables the sexing of tuna at any age, especially juveniles, which are easily handled. Genotyping requires a fin tip or a drop of blood or mucus to determine the fish sex, which causes minimal damage to the tested fish.

In our previous study, we performed AFLP [10] to find PBF sex-linked DNA, and found a male characteristic fragment [11]. In this study, we report the DNA sequence of the male characteristic fragment and its heredity structure in the cultured Pacific bluefin tuna for future contribution to tuna sex distinction and broodstock management.

Materials and methods

Pacific bluefin tuna

F2 and F3 generations of the Pacific bluefin tuna were artificially hatched and then reared in the Oshima Hatchery, Fish Nursery Center, Kinki University. An ancestral wild fish was caught in 1987 on the Pacific coast of Wakayama, Japan. The PBF F1 generation was born in 1995 and 1996, and the fish cages of both lots were then brought together. The F2 generation was produced in 2002 from the F1 group [4, 12], which produced the F3 generation in 2007 [13]. The average body weight of the fish used in this study was as follows: F2 Oshima: 198.4 kg for 13 males and 151.2 kg for 12 females; F3 Oshima: 47.6 kg for 32 males and 46.2 kg for 32 females; 2005 wild: 112.9 kg for 4 males, 94.2 kg for 5 females; 2007 wild: 80.3 kg for 20 males and 78.7 kg for 20 females. All fishes were large enough for sex distinction by visual examination of the gonads.

DNA material

Whole blood of the F3 tuna was collected, and the DNA was purified based on the method described by Agawa et al. [11]. A part of a fin or the liver was collected from accidentally killed F2 fish, and the DNA was then purified using the DNeasy Blood and Tissue kit (Qiagen, Venlo, Netherlands). The DNA materials subjected to high-throughput sequencing were from one Oshima F3 male and female, and the DNA fragments were selectively amplified using AFLP, with second amplification primers of MseI+CAT 5'-GAT GAGTCCTGAGTAACAT, and EcoRI+AGG 5'-AGACT GCGTACCAATTCAGG, which was performed according to the original protocol [10], with slight modifications in Agawa et al. [11]. The secondary selective amplification was conducted in a total volume of 360 µl in both sexes. After the reaction, the solution was ethanol-precipitated, and then reconstituted in 30 µl of TE buffer. The concentrate was mixed with 7 μ l of 6× loading dye (Nippon Gene Co., Ltd., Tokyo, Japan), and then electrophoresed using a 2.3 % Agarose21 (Nippon Gene) gel at 30 V for 180 min in $1 \times$ TAE buffer. The gel was stained using 10,000-folddiluted SYBR Green I (Takara Bio, Inc., Shiga, Japan) in $1 \times \text{TAE}$ buffer (Fig. 1), then sliced manually under an LED safe blue light (BioTools Inc., Gunma, Japan). Segments of approximately 300–600 bp were sliced, and DNA in the gel was then purified using the QIAquick Gel Extraction Kit (Qiagen) and subjected to high-throughput sequencing.

High-throughput sequencing

An F3 male id. 3 and an F3 female id. 3 (Fig. 3) DNA were subjected to high-throughput sequencing. Briefly, AFLP products of the fishes were processed using the Rapid Library Preparation Kit (F. Hoffmann-La Roche, Basel, Switzerland) with MID (barcoded adaptors), according to the manufacturer's instructions, and resultant libraries were pyro-sequenced using GS Junior. Basecalling and sequence data filtering were performed using GS Run Processor v2.5p1 software (Roche), with default settings, and filtered sequences were subjected to the following analyses. The sequences that satisfied all of the following parameters were subjected to data acquisition: sequences contained MseI+CAT or EcoRI+AGG primer sequence at one end, did not include uncertain Ns, and the nucleotide length was more than 380 bp. The multiple alignments of the obtained sequences were shown using Genetyx ver. 11 software (Genetyx Corporation, Tokyo, Japan).

Genotyping assay

Genotyping was performed in a reaction volume of 20 µl containing 20 ng of genomic DNA, 10 µl of 2× PCR pre-mix, Quick Taq HS DyeMix (TOYOBO Co., Ltd, Osaka, Japan), and 8.0 pmol of forward and reverse primer, with the remaining volume comprising distilled water. For the genotyping PCR of the male characteristic marker Md6, the PBF-Md6-F primer 5'-TTTGTTGTGTGACATGAACGAG and PBF-Md6-R primer 5'-CACACAACAGCTCCTGGACTTG were used. For the internal control PCR, primers of tuna β actin F 5'-ACCCACACAGTGCCCATCTA and tuna β -actin R 5'-TCACGCACGATTTCCCTCT were used [14]. For Md6 and β -actin PCR, the thermal conditions were programmed as follows: 2 min at 94 °C, followed by 30 cycles of 94 °C for 20 s, 60 °C for 25 s, and 72 °C for 20 s, followed by a final extension of 72 °C for 3 min. All of the thermal incubations in this study were performed in a PC818 PCR System (ASTEC Co., Ltd., Fukuoka, Japan). The oligonucleotides used in this study were purchased as Invitrogen[™] (Life Technologies, Carlsbad, CA, USA).

Mitochondrial haplotype analysis

The mitochondrial haplotype was determined with partial D-loop sequencing. The PCR primers for PBF D-loop amplification were developed by Dr. E. Soeda as PBF D-loop F Soe 5'-TACCCCTAACTCCCAAAGCTAGG and PBF D-loop R Soe 5'-GCTTTCTAGGGCCCATCT TAAC. The PCR was conducted in a final volume of 20 µl containing 20 ng of genomic DNA, 10 μ l of 2× PCR premix, EmeraldAmp (Takara Bio, Inc.), and 8.0 pmol of forward and reverse primer, with the remaining volume comprising distilled water. The thermal conditions were programmed as follows: 2 min at 94 °C, followed by 30 cycles of 94 °C for 20 s, 60 °C for 30 s, and 72 °C for 60 s, followed by a final extension of 72 °C for 3 min. PCR products were purified using the OIAquick PCR Purification kit (Qiagen), and then subjected to BigDye labeling using the PBF D-loop F Soe primer. Labeling and sequencing were conducted by Macrogen Japan Corp. (Tokyo, Japan).

Parentage analysis

SSR loci were amplified by PCR using fluorescent *Ttho-1*, *Ttho-8*, *Ttho-21*, *Ttho-34* [15], and *CmrTa-125* primers [16], following the method reported by Nomura et al. [17]. Fragment lengths of SSR were obtained with the ABI 3730 sequencer, and then analyzed using the PARFEX for exclusion method for parentage analysis software [18]. When candidate paternal fish of the F3 male 1 were suggested as F2 male 1, 2, and 3, with the possibility of 0.2, 0.3 and 0.5 (without mismatch marker), they were scored for F2 male 1 as 0.2, 2 as 0.3 and 3 as 0.5. All F2 males were scored as noted below. The scores were then summed and shown as the total score in Tables 2 (mitochondrial haplotype a) and 3 (haplotype b).

Results

Confirmation of the male characteristic DNA fragments by common electrophoresis

In our previous screening of sex-linked DNA fragments, a male characteristic DNA fragment was observed in the AFLP second amplification product that was produced with primers for *Eco*RI+AGG and *Mse*I+CAT in the F3 males [11]. The fragment was detected in a highly sensitive DNA fragment analyzer in the previous study. In this study, a 440 bp candidate male characteristic DNA fragment, confirmed using common agarose gel electrophoresis, was observed in the F3 males but not in females (Fig. 1). The DNA fragment shown by the white dotted squares indicates the regions where the gel was subjected to DNA extraction and then high-throughput sequencing. The arrowhead indicates the male characteristic DNA fragment.

Fig. 1 Gel electrophoresis of amplified fragment length polymorphism (AFLP) secondary selective amplification products of genomic DNA for male and female Pacific Bluefin tuna. The *dotted square* indicates a region subjected to DNA extraction, followed by next-generation sequencing. The *arrowhead* indicates a band observed in male but not female AFLP products.

Sequence analysis of the male characteristic DNA from AFLP products

A total of 35,512 independent reads were obtained from AFLP secondary selective amplification products of an F3 male (Fig. 3, male id. 3), for which perfect matched sequences were collected, and then 17,233 unique contigs were assembled. In an F3 female (Fig. 3, female id. 3), 23,559 independent reads were obtained, and 11,699 unique contigs were then assembled. The nucleotide sequence alignment of the top five most frequent sequences in both sexes were shown (Fig. 2, DDBJ Accession IDs are AB911110 to AB911119), which were equal to 2,852 reads in the male and 2,835 in the female. Interestingly, male contigs in fifth most frequent sequence (AB911114) contained a characteristic 6-bp continuous deletion at nucleotide position 173 (Fig. 2), and we designated this sequence as Male delta-6 (Md6). None of the female sequences of the 23,559 reads contained the 6-bp deletion. All of the five most frequent sequences were nearly identical, and the sequence length varied from 408 to 416 bp. One- or two-nucleotide deletions and substitutions were found throughout the sequences (Figs. 2 and S1).

To further investigate the sequences obtained (Fig. 2), a BLAST [19] search was performed. The PBF genomic sequence *BADN01109032* [20] showed the highest identity through *Md6* sequence 382 of 408 bp, with a high Expect value of 8^{e-139} . The search was also conducted for cDNA of the Atlantic bluefin tuna *Thunnus thynus* [21], and the results indicated that a probable similar **Fig. 2** Nucleotide sequence alignment obtained using high-throughput sequencing. Identical nucleotides are indicated by *dots*, nucleotide deletions are indicated by *hyphens*, and substitutions are written among the *dots* and highlighted by *black boxes*. The five most frequent sequences in both males and females are shown. A 6-bp nucleotide deletion was confirmed at position 173 in male sequence 5, and was not found in any of the female sequences (Fig. S1; Table S1). The primers used for male genotyping PCR are shown on the alignment.

sequence was *EC41822*, in which ovary transcript and nucleotide position 220–274 of *EC41822* was similar to 173–227 of *Md6*, with a low Expect value of 0.014. In addition, the sequences had little similarity to the *Dicentrarchus labrax* chromosome sequence (*FQ310508.3*), with an Expect value of 3^{e-13} , when the BLAST search was conducted in the NCBI Somewhat Similar Sequences (blastn) program (http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearc h&LINK_LOC=blasthome). The nucleotide sequences of *Md6* and redundant sequences showed no significant similarities to known coding genes, which may suggest that the sequences may not represent conserved coding genes, and rather, that the sequences had little similarity to registered microsatellites, especially in the TG repeated sequence.

The Md6 segregation from F2 males to F3 males

Primers were designed to perform male genotyping as follows: one was designed to step over the 6-bp deletion, and another was designed to coincide with the 3' end G/C 245 SNP of the nucleotide alignment expected to be selectable for Md6, as all of the sequences with the 6 bp deletion showed C245, while others showed G245 (Fig. 2; Fig S1). PCR genotyping of Md6 was conducted in each of the 32 males and females of the F3 generation using genomic DNA as a template. In F3 fish, Md6 genotyping showed nearly perfect concordance with the phenotypic sex (Fig. 3), suggesting that Md6 is a part of the male sex chromosome. In addition, the genotyping results coincided with the results of the AFLP study [11]. Genotyping PCR was also conducted for the F2 broodstock fish, and showed that 9 of 13 males were Md6-positive, whereas all of the 12 females tested were negative (Fig. 4), indicating that Md6was passed from the parental male(s) to the male progenies. To confirm the genetic relationship between F2 and F3, we conducted mitochondrial haplotype analysis, which showed that three haplotypes were found in cultured F2 and five in F3 (Fig. S2, DDBJ accession IDs are AB933578 to AB933582), Haplotypes a and b were found in both F2 and F3, while in wild fish, 49 unique sequences were obtained from 49 wild PBF (Table 1, DDBJ Accession IDs are AB933583 to AB933631). These results support the idea that haplotypes a and b are familial, and therefore Md6 was transferred from the F2 to the F3 generation.

			-
>lviale_Seq_1	1	AGACIGCGIACCAAIICAGGICAACAIICAAGIGGGIAAIIAIGAAGIGGAAAAGCIGAAAGCICIGAIAIIIACIGGAI	/9
>Male_Seq_2	1	·····	79
>Male_Seq_3	1	·····	79
>Male_Seq_4	1	G.	80
>Male Seg 5	1		79
>Female Seg 1	1		79
Eemale Seq 2	1		79
>remain_Seq_2	-		00
>Female_Seq_3	1		80
>Female_Seq_4	1	·····	79
>Female_Seq_5	1	·····	79
>Male Seg 1	80	ATGCTGGATTATTGTCAATAACAGTATTTTTGAGCCTCATTCCACCAACTTTGTAATCATGCAGCCGTCTTGATTTGTTG	159
Male Seg 2	80		159
>Nale_Seq_2	00	5	150
>iviale_seq_s	80		123
>Male_Seq_4	81	····	160
>Male_Seq_5	80	··· <u>·</u> ······	159
<pre>>Female_Seq_1</pre>	80		159
>Female Seg 2	80		159
>Female Seq 3	81	e	160
Eemale Seg 4	80		150
>Female_Seq_4	00		109
>Female_Seq_5	80		159
5' - TTT	GTTG	TGTGACATGAACG AG -3' Primer PBT-Y-F	
>Male_Seq_1	160	TGTGACATGAACGCTGGCGAGTTGTAAACATGGGAATCTTTCCCGCCTCTACCATCCCATATGATGTGAACACAGC	239
>Male Seg 2	160		239
>Male Seq 3	160		239
Male Seg 4	161		240
>lviale_Seq_4	1 6 0		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
>Male_Seq_5	100		233
>Female_Seq_1	160		239
>Female_Seq_2	160		239
>Female Seq 3	161		240
>Female Seq 4	160		239
Eemale Seg 5	160		239
remaie seu s	200		202
		3' - GTTCAGGTCCTCGACAACACACAC-5' Primer PBT-Y-R	
>Male_Seq_1	240	3' - GTTCAGGTCCTCGACAACACAC-5' Primer PBT-Y-R ATTAGAGATGAGAAGTCCAGGAGCTGTTGTGTGTTTCTGACATACAGGAAGTATTTAGTTTT	316
>Male_Seq_1 >Male_Seq_2	240 240	3'-GTTCAGGTCCTCGACAACACAC-5' Primer PBT-Y-R ATTAGAGATGAGAAGTCCAGGAGCTGTTGTGTGTGTTTCTGACATACAGGAAGTATTTAGTTTT T	316 318
>Male_Seq_1 >Male_Seq_2 >Male_Seq_3	240 240 240	3'- GTTCAGGTCCTCGACAACACAC-5' Primer PBT-Y-R ATTAGAGATGAGAAGTCCAGGAGCTGTTGTGTGTGTTTCTGACATACAGGAAGTATTTAGTTTT T. T. T.	316 318 318
>Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4	240 240 240 241	3'- GTTCAGGTCCTCGACAACACAC-5' Primer PBT-Y-R ATTAGAGATGAGAAGTCCAGGAGCTGTTGTGTGTTTCTGACATACAGGAAGTATTTAGTTTT T	316 318 318 317
>Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_5	240 240 240 241 234	3' - GTTCAGGTCCTCGACAACACAC-5' Primer PBT-Y-R ATTAGAGATGAGAAGTCCAGGAGCTGTTGTGTGTTTCTGACATACAGGAAGTATTTAGTTTT T	316 318 318 317 317
<pre>>Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_5 >Eemale_Seq_1</pre>	240 240 240 241 234 240	3' - GTTCAGGTCCTCGACAACACAC -5' Primer PBT-Y-R ATTAGAGATGAGAAGTCCAGGAGCTGTTGTGTGTTTCTGACATACAGGAAGTATTTAGTTTT T	316 318 318 317 311 318
<pre>>Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_5 >Female_Seq_1</pre>	240 240 240 241 234 240 240	3' - GTTCAGGTCCTCGACAACACAC-5' Primer PBT-Y-R ATTAGAGATGAGAAGTCCAGGAGCTGTTGTGTGTTTCTGACATACAGGAAGTATTTAGTTTT TT. TTT. TTT. TTT.	316 318 318 317 311 318
<pre>>Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_5 >Female_Seq_1 >Female_Seq_2</pre>	240 240 241 234 240 240	3' - GTTCAGGTCCTCGACAACACAC -5' Primer PBT-Y-R ATTAGAGATGAGAAGTCCAGGAGCTGTTGTGTGTTTCTGACATACAGGAAGTATTTAGTTTT TT. TTT. TTT. TTT. TTT.	316 318 318 317 317 311 318 316
<pre>>Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_5 >Female_Seq_1 >Female_Seq_2 >Female_Seq_3</pre>	240 240 241 234 240 240 240 241	3' - GTTCAGGTCCTCGACAACACAC-5' Primer PBT-Y-R ATTAGAGATGAGAAGTCCAGGAGCTGTTGTGTGTGTGTTTCTGACATACAGGAAGTATTTAGTTTT T. TT. TT. TT. TT. TT.	316 318 317 311 318 316 317
<pre>>Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_5 >Female_Seq_1 >Female_Seq_2 >Female_Seq_3 >Female_Seq_4</pre>	240 240 241 234 240 240 240 241 240	3' - GTTCAGGTCCTCGACAACACAC-5' Primer PBT-Y-R ATTAGAGATGAGAAGTCCAGGAGCTGTTGTGTGTTTCTGACATACAGGAAGTATTTAGTTTT T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.	316 318 317 311 318 316 317 318
<pre>>Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_5 >Female_Seq_1 >Female_Seq_2 >Female_Seq_3 >Female_Seq_4 >Female_Seq_4</pre>	240 240 241 234 240 240 240 241 240 240	3' - GTTCAGGTCCTCGACAACACAC-5' Primer PBT-Y-R ATTAGAGATGAGAAGTCCAGGAGCTGTTGTGTGTTTCTGACATACAGGAAGTATTTAGTTTT T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.	316 318 317 311 318 316 317 318 318
<pre>>Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_5 >Female_Seq_1 >Female_Seq_2 >Female_Seq_3 >Female_Seq_3 >Female_Seq_4 >Female_Seq_5</pre>	240 240 241 234 240 240 241 240 241 240	3' - GTTCAGGTCCTCGACAACACAC-5' Primer PBT-Y-R ATTAGAGATGAGAAGTCCAGGAGCTGTTGTGTTTTCTGACATACAGGAAGTATTTAGTTTT T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.	316 318 317 311 318 316 317 318 318
<pre>>Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_5 >Female_Seq_1 >Female_Seq_2 >Female_Seq_2 >Female_Seq_3 >Female_Seq_4 >Female_Seq_5 >Male_Seq_1</pre>	240 240 241 234 240 240 240 241 240 240 241	3' - GTTCAGGTCCTCGACAACACAC-5' Primer PBT-Y-R ATTAGAGAAGTCCAGGAGCTGTTGTGTGTTTCTGACATACAGGAAGTATTTAGTTTT T. 	316 318 317 311 318 316 317 318 318 318
<pre>>Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_5 >Female_Seq_1 >Female_Seq_2 >Female_Seq_3 >Female_Seq_4 >Female_Seq_4 >Female_Seq_5 >Male_Seq_1 >Male_Seq_1 >Male_Seq_2</pre>	240 240 241 234 240 240 240 240 240 240 240 317 319	3' - GTTCAGGTCCTCGACAACACAC-5' Primer PBT-Y-R ATTAGAGAAGTCCAGGAGCTGTTGTGTTTCTGACATACAGGAAGTATTTAGTTTT TCTCTGGAGTGTTT AT TT	316 318 317 311 318 316 317 318 318 318 395
<pre>>Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_5 >Female_Seq_2 >Female_Seq_2 >Female_Seq_3 >Female_Seq_4 >Female_Seq_5 >Male_Seq_1 >Male_Seq_1 >Male_Seq_2</pre>	240 240 241 234 240 240 240 240 240 240 240 317 319	3' - GTTCAGGTCCTCGACAACACAC-5' Primer PBT-Y-R ATTAGAGATGAGAAGTCCAGGAGCTGTTGTGTGTGTGTGT	316 318 317 311 318 316 317 318 318 318 395 398
<pre>>Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_5 >Female_Seq_2 >Female_Seq_3 >Female_Seq_4 >Female_Seq_4 >Female_Seq_5 >Male_Seq_1 >Male_Seq_2 >Male_Seq_2 >Male_Seq_3</pre>	240 240 241 234 240 240 240 240 240 240 317 319 319	3' - GTTCAGGTCCTCGACAACACAC-5' Primer PBT-Y-R ATTAGAGATGAGAAGTCCAGGAGCTGTTGTGTGTGTGTGT	316 318 317 311 318 316 317 318 318 318 395 398
<pre>>Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_5 >Female_Seq_2 >Female_Seq_2 >Female_Seq_3 >Female_Seq_4 >Female_Seq_1 >Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4</pre>	240 240 241 234 240 240 240 240 240 240 317 319 319 318	3' - GTTCAGGTCCTCGACAACACAC-5' Primer PBT-Y-R ATTAGAGATGAGAAGTCCAGGAGCTGTTGTGTGTGTGTGT	316 318 317 311 318 316 317 318 317 318 318 395 398 397 396
<pre>>Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_5 >Female_Seq_1 >Female_Seq_2 >Female_Seq_3 >Female_Seq_4 >Female_Seq_5 >Male_Seq_1 >Male_Seq_2 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_5</pre>	240 240 241 234 240 240 240 240 240 240 317 319 319 318 312	3' - GTTCAGGTCCTCGACAACACAC-5' Primer PBT-Y-R ATTAGAGATGAGAAGTCCAGGAGCTGTTGTGTGTGTGTGT	316 318 317 311 318 316 317 318 318 395 398 397 396 390
<pre>>Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_5 >Female_Seq_1 >Female_Seq_2 >Female_Seq_4 >Female_Seq_4 >Female_Seq_5 >Male_Seq_1 >Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_3 >Male_Seq_4 >Male_Seq_5 >Female_Seq_1</pre>	240 240 241 234 240 241 240 240 240 317 319 319 319 318 312 319	3' - GTTCAGGTCCTCGACAACACAC-5' Primer PBT-Y-R ATTAGAGATGAGAAGTCCAGGAGCTGTTGTGTGTTCTGACATACAGGAAGTATTTAGTTTT T	316 318 317 311 318 316 317 318 316 317 318 318 395 398 397 396 390 397
<pre>>Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_5 >Female_Seq_1 >Female_Seq_2 >Female_Seq_3 >Female_Seq_4 >Female_Seq_1 >Male_Seq_1 >Male_Seq_3 >Male_Seq_4 >Female_Seq_4 >Female_Seq_1 >Male_Seq_4</pre>	240 240 241 234 240 240 240 240 240 240 317 319 319 318 312 319 317	3' - GTTCAGGTCCTCGACAACACAC-5' Primer PBT-Y-R ATTAGAGATGAGAAGTCCAGGAGCTGTTGTGTGTGTGTGT	316 318 317 311 318 316 317 318 316 317 318 318 395 398 397 396 390 397 395
<pre>>Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_5 >Female_Seq_2 >Female_Seq_2 >Female_Seq_4 >Female_Seq_4 >Female_Seq_1 >Male_Seq_1 >Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_4 >Female_Seq_4 >Female_Seq_5 >Female_Seq_4 >Female_Seq_5 >Female_Seq_6 >Fema</pre>	240 240 241 234 240 240 240 240 240 240 317 319 318 312 319 318 312 319 317 318	3' - GTTCAGGTCCTCGACAACACAC-5' Primer PBT-Y-R ATTAGAGATGAGAAGTCCAGGAGCTGTTGTGTGTGTGTGT	316 318 317 311 318 317 318 317 318 317 318 397 396 397 396 397 395 396
<pre>>Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_5 >Female_Seq_2 >Female_Seq_2 >Female_Seq_4 >Female_Seq_4 >Female_Seq_1 >Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_3 >Male_Seq_4 >Female_Seq_4 >Female_Seq_4 >Female_Seq_5 >Female_Seq_2 >Female_Seq_2 >Female_Seq_2 >Female_Seq_3 >Female_Seq_4 >Female_Seq_4 >Female_Seq_4 >Female_Seq_5 >Female_Seq_4 >Fema</pre>	240 240 241 234 240 241 240 240 240 240 317 319 318 319 318 312 319 317 318	3' - GTTCAGGTCCTCGACAACACAC-5' Primer PBT-Y-R ATTAGAGATGAGAAGTCCAGGAGCTGTTGTGTGTGTGTGT	316 318 317 311 318 317 318 318 317 318 395 396 397 395 396 397 395
<pre>>Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_5 >Female_Seq_2 >Female_Seq_2 >Female_Seq_4 >Female_Seq_4 >Female_Seq_1 >Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_3 >Male_Seq_4 >Female_Seq_2 >Female_Seq_4 >Female_Seq_3 >Female_Seq_1 >Female_Seq_2 >Female_Seq_3 >Female_Seq_2 >Female_Seq_3 >Female_Seq_3 >Female_Seq_4 >Female_Seq_3 >Female_Seq_4 >Female_Seq_3 >Female_Seq_4 >Fema</pre>	240 240 241 234 240 241 240 240 240 240 317 319 319 312 319 317 318 319	3' - GTTCAGGTCCTCGACAACACAC-5' Primer PBT-Y-R ATTAGAGATGAGAAGTCCAGGAGCTGTTGTGTGTGTGTGT	316 318 318 317 311 318 316 317 318 318 317 318 318 395 398 397 396 390 397 395 396
<pre>>Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_5 >Female_Seq_2 >Female_Seq_2 >Female_Seq_4 >Female_Seq_4 >Female_Seq_1 >Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_4 >Male_Seq_5 >Female_Seq_2 >Female_Seq_2 >Female_Seq_3 >Female_Seq_3 >Female_Seq_3 >Female_Seq_4 >Female_Seq_3 >Female_Seq_4 >Female_Seq_5 >Female_Seq_4 >Female_Seq_5 >Female_Seq_4 >Female_Seq_5 >Female_Seq_4 >Female_Seq_5 >Fema</pre>	240 240 241 234 240 241 240 240 240 240 317 319 319 312 319 317 318 319 319 319	3' - GTTCAGGTCCTCGACAACACAC-5' Primer PBT-Y-R ATTAGAGAAGAAGAAGAAGTGTGTGTGTGTGTGTGTGTG	316 318 317 311 318 316 317 318 317 318 317 318 395 396 397 395 396 397 395 396 398 397
<pre>>Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_5 >Female_Seq_1 >Female_Seq_2 >Female_Seq_4 >Female_Seq_1 >Male_Seq_1 >Male_Seq_1 >Male_Seq_2 >Male_Seq_4 >Male_Seq_4 >Male_Seq_5 >Female_Seq_4 >Female_Seq_2 >Female_Seq_2 >Female_Seq_1 >Female_Seq_2 >Female_Seq_2 >Female_Seq_3 >Female_Seq_3 >Female_Seq_3 >Female_Seq_4 >Female_Seq_4 >Female_Seq_5 >Female_Seq_4 >Female_Seq_5 >Female_Seq_4 >Female_Seq_5 >Female_Seq_4 >Female_Seq_5 >Female_Seq_4 >Female_Seq_5 >Female_Seq_5 >Female_Seq_4 >Female_Seq_5 >Female_Seq_4 >Female_Seq_5 >Female_Seq_4 >Female_Seq_5 >Female_Seq_5 >Female_Seq_5 >Female_Seq_5 >Female_Seq_6 >Male_Seq_5 >Female_Seq_6 >Male_Seq_6 >Female_Seq_6 >Female_Seq</pre>	240 240 241 234 240 240 240 240 240 240 317 319 319 318 312 319 317 318 319 319 319 319	3' - GTTCAGGTCCTCGACAACACAC-5' Primer PBT-Y-R ATTAGAGAAGTCCAGGAGCTGTTGTGTGTGTGTGTGTGTG	316 318 317 311 318 316 317 318 318 395 398 397 395 396 390 397 395 398 397
<pre>>Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_5 >Female_Seq_1 >Female_Seq_2 >Female_Seq_4 >Female_Seq_2 >Male_Seq_1 >Male_Seq_1 >Male_Seq_3 >Male_Seq_4 >Male_Seq_5 >Female_Seq_2 >Female_Seq_2 >Female_Seq_1 >Female_Seq_2 >Female_Seq_3 >Male_Seq_4 >Male_Seq_5 >Female_Seq_2 >Female_Seq_3 >Female_Seq_3 >Female_Seq_3 >Female_Seq_4 >Female_Seq_3 >Female_Seq_4 >Female_Seq_3 >Female_Seq_4 >Female_Seq_5 >Female_Seq_4 >Female_Seq_5 >Male_Seq_5 >Male_S</pre>	240 240 241 234 240 240 240 240 240 240 317 319 319 318 312 319 317 318 319 319 319 326	3' - GTTCAGGTCCTCGACAACACAC-5' Primer PBT-Y-R ATTAGAGAAGTGCAGGAGTCGTTGTGTGTGTGTGTGTGTG	316 318 318 317 311 318 316 317 318 317 318 395 397 395 396 390 390 390 395 396 397 395 396 397 413
<pre>>Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_5 >Female_Seq_2 >Female_Seq_2 >Female_Seq_4 >Female_Seq_1 >Male_Seq_1 >Male_Seq_1 >Male_Seq_2 >Male_Seq_4 >Gemale_Seq_4 >Female_Seq_4 >Female_Seq_5 >Female_Seq_4 >Female_Seq_1 >Female_Seq_2 >Female_Seq_3 >Female_Seq_1 >Female_Seq_4 >Female_Seq_5 >Female_Seq_4 >Female_Seq_5 >Male_Seq_1 >Male_Seq_1</pre>	240 240 241 234 240 240 240 240 240 240 317 319 318 312 319 317 318 319 317 318 319 317 318 319 319 319	3' - GTTCAGGGTCCTCGACAACACAC-5' Primer PBT-Y-R ATTAGAGATGAGAAGTCCAGGAGCTGTTGTGTGTGTGTGT	316 318 318 317 311 318 316 317 318 316 317 318 317 317 318 317 318 317 318 317 318 317 318 317 317 318 317 317 318 317 317 318 317 317 318 317 317 318 317 317 318 317 317 318 317 317 318 317 317 317 317 317 317 318 317 317 317 317 317 317 317 317 317 317
<pre>>Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_5 >Female_Seq_2 >Female_Seq_2 >Female_Seq_4 >Female_Seq_4 >Female_Seq_2 >Male_Seq_1 >Male_Seq_1 >Male_Seq_2 >Male_Seq_4 >Female_Seq_4 >Female_Seq_4 >Female_Seq_4 >Female_Seq_5 >Female_Seq_1 >Female_Seq_2 >Female_Seq_3 >Female_Seq_3 >Female_Seq_4 >Female_Seq_3 >Female_Seq_4 >Female_Seq_3 >Female_Seq_4 >Female_Seq_3 >Female_Seq_4 >Female_Seq_3 >Male_Seq_1 >Male_Seq_1 >Male_Seq_3 >Male_Seq_3 >Female_Seq_4 >Female_Seq_3 >Female_Seq_3 >Female_Seq_3</pre>	240 240 241 234 240 240 240 240 240 240 319 319 319 319 317 318 319 319 319 319 319 319 319 319 319 319	3' - GTTCAGGGTCCTCGACAACACAC-5' Primer PBT-Y-R ATTAGAGATGAGAAGTCCAGGAGCTGTTGTGTGTGTGTGT	316 318 318 317 311 318 316 317 318 317 318 317 318 317 318 317 318 317 318 317 318 317 318 317 318 317 318 317 318 317 318 317 318 317 318 317 318 318 317 317 318 317 318 317 318 317 318 317 318 317 318 317 317 318 317 317 318 317 317 318 317 317 318 317 317 317 318 317 317 317 317 317 317 317 317 317 317
<pre>>Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_5 >Female_Seq_2 >Female_Seq_2 >Female_Seq_4 >Female_Seq_1 >Male_Seq_1 >Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Female_Seq_3 >Ale_Seq_4 >Female_Seq_2 >Female_Seq_2 >Female_Seq_3 >Female_Seq_3 >Female_Seq_3 >Female_Seq_4 >Female_Seq_3 >Female_Seq_3 >Female_Seq_4 >Female_Seq_3 >Female_Seq_4 >Female_Seq_3 >Male_Seq_1 >Male_Seq_2 >Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_3 >Male_Seq_4</pre>	240 240 241 234 240 241 240 240 240 240 317 319 319 319 319 319 319 319 319 319 319	3' - GTTCAGGTCCTCGACAACACAC-5' Primer PBT-Y-R ATTAGAGATGAGAAGTCCAGGAGCTGTTGTGTGTGTGTGT	316 318 318 317 311 318 316 317 318 317 317 318 317 318 317 318 317 318 317 318 317 317 318 317 317 317 318 317 317 318 317 317 318 317 317 317 317 317 317 317 317 317 317
<pre>>Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_5 >Female_Seq_2 >Female_Seq_2 >Female_Seq_4 >Female_Seq_1 >Male_Seq_1 >Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_4 >Female_Seq_2 >Female_Seq_2 >Female_Seq_1 >Female_Seq_2 >Female_Seq_3 >Female_Seq_3 >Female_Seq_4 >Female_Seq_3 >Female_Seq_4 >Female_Seq_3 >Female_Seq_3 >Male_Seq_1 >Male_Seq_2 >Male_Seq_1 >Male_Seq_3 >Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_3 >Male_Seq_3 >Male_Seq_4 >Male_Seq_3</pre>	240 240 241 234 240 241 240 240 240 317 319 319 318 319 317 318 319 319 319 319 319 319 319 319 319 319	3' - GTTCAQGTCCTCGACAACACAC-5' Primer PBT-Y-R ATTAGAGAAGACGAGAGTGTTGTGTGTGTGTGTGTGTGTG	316 318 318 317 311 318 316 317 318 317 317 318 317 317 318 317 317 317 317 317 317 317 317 317 317
<pre>>Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_5 >Female_Seq_4 >Female_Seq_4 >Female_Seq_1 >Female_Seq_1 >Male_Seq_1 >Male_Seq_1 >Male_Seq_2 >Male_Seq_4 >Male_Seq_4 >Male_Seq_5 >Female_Seq_4 >Female_Seq_2 >Female_Seq_3 >Male_Seq_4 >Female_Seq_3 >Female_Seq_3 >Female_Seq_3 >Female_Seq_4 >Female_Seq_5 >Female_Seq_1 >Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_3 >Male_Seq_4 >Male_Seq_3 >Male_Seq_4 >Male_Seq_3 >Male_Seq_4 >Male_Seq_3 >Male_Seq_4 >Male_Seq_5 >Female_Seq_4 >Male_Seq_5 >Female_Seq_4 </pre>	240 240 241 234 240 241 240 240 240 240 317 319 318 312 319 317 318 312 319 317 318 319 319 319 319 319 319 319 319 319 319	3' - GTTCAGGTCCTCGACAACACAC-5' Primer PBT-Y-R ATTAGAGATGAGAAGTCCAGGAGCTGTTGTGTGTGTGTGT	316 318 317 311 318 316 317 318 318 395 397 395 396 397 395 396 397 395 396 397 413 416 415 414
<pre>>Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_5 >Female_Seq_2 >Female_Seq_2 >Female_Seq_4 >Female_Seq_1 >Male_Seq_1 >Male_Seq_1 >Male_Seq_2 >Male_Seq_4 >Female_Seq_3 >Male_Seq_4 >Female_Seq_2 >Female_Seq_1 >Female_Seq_2 >Female_Seq_3 >Female_Seq_3 >Female_Seq_4 >Female_Seq_5 >Female_Seq_4 >Female_Seq_5 >Female_Seq_3 >Male_Seq_4 >Female_Seq_5 >Female_Seq_1 >Male_Seq_5 >Female_Seq_1 >Male_Seq_5 >Female_Seq_2 >Male_Seq_1 >Female_Seq_5 >Female_Seq_5 >Female_Seq_2 >Male_Seq_1 >Male_Seq_5 >Female_Seq_5 >Female_Seq_5 >Female_Seq_6 >Male_Seq_7 >Male_Seq_7 >Male_Seq_7 >Male_Seq_7 >Male_Seq_7 >Male_Seq_7 >Male_Seq_7 >Male_Seq_7 >Female_Seq_7 >Fe</pre>	240 240 241 234 240 240 240 240 240 240 317 319 319 318 312 319 319 319 319 319 319 319 319 319 319	3' - GTTCAGGICCTCGACAACACAC-5' Primer PBT-Y-R ATTAGAGATGAGAAGTCCAGGAGCTGTTGTGTGTGTGTGT	316 318 317 311 318 316 317 318 316 317 318 395 397 395 396 390 397 395 396 397 395 396 397 395 396 397 395 396 397 395 396 397 395 396 397 395 396 397 397 396 397 397 397 397 397 397 397 397 397 397
<pre>>Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_5 >Female_Seq_2 >Female_Seq_2 >Female_Seq_4 >Female_Seq_2 >Male_Seq_1 >Male_Seq_1 >Male_Seq_2 >Male_Seq_4 >Male_Seq_4 >Male_Seq_4 >Male_Seq_4 >Aale_Seq_4 >Aale_Seq_4 >Aale_Seq_4 >Female_Seq_2 >Female_Seq_2 >Female_Seq_3 >Female_Seq_4 >Female_Seq_3 >Female_Seq_4 >Female_Seq_5 >Male_Seq_1 >Male_Seq_1 >Male_Seq_2 >Male_Seq_1 >Male_Seq_2 >Male_Seq_1 >Aale_Seq_1 >Aale_Seq_2 >Male_Seq_1 >Female_Seq_2 >Male_Seq_1 >Aale_Seq_2 >Male_Seq_1 >Male_Seq_3 >Male_Seq_1 >Male_Seq_5 >Female_Seq_4 >Male_Seq_5 >Female_Seq_4 >Male_Seq_5 >Female_Seq_6 >Male_Seq_6 >Female_Seq_6 >Female</pre>	240 240 241 234 240 240 240 240 240 240 317 319 318 312 319 317 318 312 319 317 318 319 317 318 319 319 319 319 319 319 319 319 319 319	3' - GTTCAGGTCCTCGACAACACAC-5' Primer PBT-Y-R ATTAGAGATGAGAAGTCCAGGAGCTGTTGTGTGTGTGTGT	316 318 318 317 311 318 316 317 318 317 317 318 317 317 318 317 317 318 317 317 318 317 317 318 317 317 317 317 318 317 317 318 317 317 317 317 317 317 317 317 317 317
<pre>>Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_5 >Female_Seq_2 >Female_Seq_2 >Female_Seq_4 >Female_Seq_1 >Male_Seq_1 >Male_Seq_1 >Male_Seq_2 >Male_Seq_4 >Female_Seq_4 >Female_Seq_4 >Female_Seq_4 >Female_Seq_4 >Female_Seq_2 >Female_Seq_1 >Female_Seq_2 >Female_Seq_3 >Female_Seq_4 >Female_Seq_3 >Female_Seq_4 >Female_Seq_2 >Male_Seq_1 >Male_Seq_1 >Male_Seq_1 >Male_Seq_2 >Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_3 >Male_Seq_3 >Male_Seq_4 >Female_Seq_2 >Female_Seq_3 >Male_Seq_4 >Male_Seq_5 >Female_Seq_4 >Male_Seq_5 >Female_Seq_1 >Female_Seq_2 >Female_Seq_4 >Male_Seq_5 >Female_Seq_4 >Male_Seq_5 >Female_Seq_2 >Female_Seq_3 >Male_Seq_3 >Female_Seq_3 >Female_Seq_4 >Female_Seq_3 >Female_Seq_4 >Fema</pre>	240 240 241 234 240 241 240 240 240 240 240 319 319 319 319 317 318 319 319 319 319 319 319 319 319 319 319	3'-GTTCAGGTCCTCGACAACACAC-5' Primer PBT-Y-R ATTAGAGAAGAAGTCCAGGAAGTGTTGTGTGTGTGTGTGT	316 318 318 317 311 318 316 317 318 317 317 318 317 317 318 317 317 318 317 317 318 317 317 317 317 317 317 317 317 317 317
<pre>>Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Male_Seq_5 >Female_Seq_2 >Female_Seq_2 >Female_Seq_4 >Female_Seq_4 >Female_Seq_2 >Male_Seq_1 >Male_Seq_1 >Male_Seq_2 >Male_Seq_4 >Female_Seq_3 >Male_Seq_4 >Female_Seq_2 >Female_Seq_3 >Female_Seq_3 >Female_Seq_4 >Female_Seq_2 >Female_Seq_3 >Female_Seq_4 >Female_Seq_2 >Female_Seq_3 >Female_Seq_1 >Male_Seq_2 >Male_Seq_1 >Male_Seq_2 >Male_Seq_1 >Male_Seq_2 >Male_Seq_3 >Male_Seq_4 >Female_Seq_3 >Female_Seq_4 >Male_Seq_4 >Male_Seq_5 >Female_Seq_1 >Female_Seq_2 >Female_Seq_4 >Male_Seq_4 >Male_Seq_5 >Female_Seq_4 >Female_Seq_2 >Female_Seq_4 >Male_Seq_5 >Female_Seq_4 </pre>	240 240 241 234 240 241 240 240 240 240 317 319 319 319 319 319 319 319 319 319 319	3'- GTTCAGGTCCTCGACAACACAC-5' Primer PBT-Y-R ATTAGAGATGAGAAGTCCAGGAGCTGTTGTGTGTGTGTGT	316 318 318 317 311 318 316 317 318 317 317 317 318 317 317 318 317 317 318 317 317 318 317 317 318 317 317 318 317 317 318 317 317 318 317 317 318 317 317 317 318 317 317 317 317 317 317 317 317 317 317

Fig. 3 Genotyping PCR and mitochondrial haplotype analysis of F3 Pacific bluefin tuna, a males and b females. m.h., mitochondrial haplotype and id., individual numbers are indicated at the top of the electrophoresis images. m molecular size marker and n.c. negative control without template DNA. PCR products for Md6 (approximately 120 bp) and the internal control β -actin (180 bp) were shown

m.h.

Md6

 β -actin

Md6

B-actin

m.h.

Md6

β-actin

а

10 id.

а m.h.

b

30 id.

20 id.

Fig. 4 Genotyping PCR and mitochondrial haplotype analysis of F2 Pacific bluefin tuna a males and b females; m.h. mitochondrial haplotype and *id*, individual *numbers* are indicated at the *top* of the electrophoresis images. m molecular size marker, n.c. negative control without template DNA. PCR products for Md6 and the internal control β -actin are shown

Results suggested that cultured PBF stock may have a male heterozygous sex chromosome system, as indicated by the male-dominant marker of Md6 detected in F2 and F3 males (Figs. 3, 4). However, this was not seen frequently, one female progeny carried Md6, which may be the result of meiotic recombination between Md6 and a null allele, with a frequency of approximately 3.4 % (1 of 29). These results suggest that Md6 is linked to a male sex chromosome in cultured PBF but not in wild fish (Table 1), and that *Md6* is not directly associated with sex determination.

Parentage allocation of the cultured fishes

To further confirm the Md6 segregation of F2 to F3 males, parentage allocation was conducted [15-18]. In mitochondrial haplotype a (Figs. 3, 4), the best candidate paternal fish was F2 male id. 2 (Table 2, supplemental Table 2), the second was F2 male id. 13, and the third candidate was F2 male id. 12, all of which were were Md6-positive (Fig. 4). Interestingly, F2 male id. 3 and 11 were Md6-negative, with a 0 score of less possibility to be paternal fish of F3. F2 male id. 6 and 7 were also Md6-negative, and there was little possibility that the F2 male id. 6 was a paternal fish. This was implied in the result showing that only two F2 (male id. 5 and 6) among all F2 fishes had Ttho-1 allele 180 bp, and one of 48 F3 haplotype a (id. Female 14) had *Ttho-1* allele 180 bp (supplemental Table 2). These results indicate that more than one male were attendant in spawning. The best candidate maternal fish haplotype a was suggested as a F2 female id. 2 (Table 2).

In haplotype b, the top three candidate parental fishes were F2 male id. 1, 8, and 10 of the Md6-positive, with similar score values. Among the four F2 Md6-negative males, only F2 male id. 6 had little possibility of participation in the spawning event (Table 3). In maternal fish of haplotype b, we think it is likely that the fish other than the F2 female id. 1 and 9 contributed significantly to the spawning (Table 3). The Ttho-8 295 bp allele was observed in 9 of 13 F3 haplotype b fishes; however, none of the F2 male and F2 haplotype b females had the Ttho-8 295 bp (supplemental Table 3).

Table 1Summary of the*Md6* genotyping results ofaquacultured and wild PBF

	Ν	Male							Female					
	Positive		Negative		Total (r	ı) Posi (tota	Positive (total %)		e Neg	gative	Total (n) Po (to	Positive (total %)	
Fish group														
2002 F2 cultured		9	4		13	54.5		0	12		12	0		
2007 F3 cultured		9	3		32	90.6		1	31		32	3.1		
2004 Wild		0	4		4	0		2	3		5	40.	.0	
2007 Wild		2	18		20	10.0)	6	14		20	30	.0	
Haplotype a														
$\frac{1}{\text{F2 male id.}}$	1	2	3	4	5	6	7	8	9	10	11	12	13	
Total score	3.62	10.91	0	2.37	2.65	3.45	4.44	4.98	3.02	1.17	0	4.99	5.75	
F2 female id.	2	3	4	5	6	7	8	10	11	12	Others	5		
Total score	1.77	15.96	3.91	1 4.5	54 4.36	5 3.82	3.1	5 3.82	3.99	0.62	2			
Hanlotyne h														
	1	2	2	4	~			0	0	10	11	10	12	
F2 male 1d.	1	2	3	4	3	6	/	8	9	10	11	12	13	
Total score	2.15	0.83	0	0	1.41	0.25	0	2.32	1.50	2.00	0	1.50	0.99	
F2 female id.	1	9	Oth	Others										
Total score	2.00	5.00	6.0	0										

Total score indicates sum of the possibilities.

Table 2Summary of theparentage allocation of culturedPBF mitochondrial haplotype ausing the exclusion method

Table 3 Summary of theparentage allocation of culturedPBF mitochondrial haplotype busing the exclusion method

Total score indicates the sum of the possibilities.

Discussion

We would like to note the characteristics of the Md6. We first performed sequence analysis of the male characteristic fragment obtained with AFLP using a standard method of T-A cloning, followed by dye terminator labeling. However, we could not obtain clear electropherograms because those generated from the candidate fragment became complex at position 173, corresponding to the 6-bp deletion (Fig. 2). With the use of pyrosequencing, the nucleotide length of Md6 was identified as 408 bp, whereas the male characteristic fragment amplified by AFLP was observed at 440 bp (Fig. 1) [11], using non-denaturing gel electrophoresis. This discrepancy was likely the result of the reduced electromobility of the Md6 fragment caused by a heteroduplex formation with redundant sequences, as their sequences were nearly identical to the Md6 without 6-bp deletion (Fig. 2), and few substitutions and deletions. The heteroduplex may be formed during the later cycles of AFLP secondary selective PCR amplification. The decreased electromobility of the heteroduplex fragment has been reportedly utilized for the rapid detection of nucleotide substitution and/or small deletions in known sequences [22, 23]. The heteroduplex formation of Md6 and redundant sequences was supported by the read count of the sequences generated using high-throughput sequencing. In the male sequences, the five most frequent sequences comprised 2,852 reads, among which Md6 comprised 419, resulting in an Md6 total read ratio of 14.6 %. This read count ratio was nearly the same even when the 30 most frequent sequences in males were counted, where Md6 comprised 1,023 reads among a total of 7,932 reads, resulting in a ratio of 12.8 % (Table S1). The abundance ratio of the male characteristic fragment of 440 bp relative to the redundant 420 bp fragment observed in automatic non-denature electrophoresis was estimated at 11 % in our previous study [11], and this was nearly identical to above-mentioned ratios. In addition, in this study, we analyzed AFLP products that were amplified with the FAM-labeled MseI+CAT primer using an ABI Prism 3130 analyzer, and the male characteristic fragment was observed at 408 bp in male individuals (data not shown). These results indicate that the major feature of the nucleotide sequence of the male characteristic fragment was 6-bp deletion polymorphism compared to the redundant sequences.

The nucleotide sequence of Md6 and redundant sequences were nearly identical (Fig. 2, S1). Such a feature of sex chromosome-linked sequence was reported in the

medaka fish *O. hubbsi* W chromosome repetitive heterochromatic region [24]. In addition, we performed a BLAST search of *Md6* in genomic sequencing of PBF [20], with the results indicating the highest score for the *BADN01109032* sequence, which was 2,210 bp in length and shared 90 % sequence identity with *Md6*. The longest contig reported for PBF was 79,504 bp, with an average of 3,813 bp [20]; *BADN01109032* may be restricted for assembly due to the repetitive region.

In determining the heterogenesis of Md6 (Figs. 3, 4), we found that Md6 was likely enriched after successive generations during aquaculture. In F2 males, 9 of 13 (69 %) were Md6-positive, and it was appeared that most of the sperm was provided by Md6-positive F2 males, which was supported by the parental allocation study (Tables 2, 3). Some candidate paternal F2 fish were Md6-positive, while Md6negative F2 males were less possible than Md6-positive. This can be explained by the spawning ecology of PBF, which is reported as multiple males participating in the event ([12] and our observations), and the sperm supply in the event was not equal. This could mean that males carrying Md6 were culture-selected. Details will be determined in future studies, but Md6 males likely have advantages in surviving and growing or spawning under aquaculture conditions.

A molecular marker of *Md6* was expected to be effective for the F4 male marker, as we first obtained F4 fingerlings in 2012, and 53 % (n = 81) were *Md6*-positive, although gonad sex phenotypes were not known at that time (data not shown). However, we should note that *Md6* genotyping included 6.2 % (4/64) error in F3; three of 32 males were negative, and one of 32 females was positive (Fig. 3).

Genetic sex markers are very important for the genetic management and reproduction in aquaculture fish populations. In the last decade, identification of sex-linked DNA markers were enhanced in several aquaculture fish species. For example, a linkage map of the rainbow trout Oncorhynchus myskiss was constructed primarily using microsatellites, and its sex-linked marker was identified [25]. Halfsmooth tongue sole Cynoglossus semilaevis females grow faster than males, and therefore, female monosex production is useful. The fish female DNA marker was identified using AFLP analysis that showed the fish has a female heterozygous sex chromosome [26]. Yellowtail Seriola quinqueradiata is also a very important commercial fish in Japan. Microsatellite linkage analysis was conducted in the fish, and a W chromosome-specific DNA marker was identified [27]. Recently, in addition to sex markers, sex-determining genes have been identified, and it was suggested that these genes are involved in the TGF-B signaling pathway [28]. It is uncertain whether known sex-determining genes or genes associated with TGF- β signaling are close to Md6; therefore, our next step is to find conserved genes around *Md6* as molecular bait. If we can find coding genes linked to *Md6*, well-studied fish genomic data will be quite useful for comparative study, such as in the expectation of synteny. This may contribute to the identification of much more concrete DNA markers for sex genotyping of tuna, and also may enhance PBF broodstock management.

It was worth noting the sex-determining locus of our PBF. We performed *Md6* genotyping in F2 and F3 (Figs. 3, 4). In F3 fish, 29 of 32 males were *Md6*-positive, and 1 of 32 females was positive. If we infer that the ratio of the sperm provided from *Md6*-positive and null males was roughly 29:3 when F2 spawned, the ratio may be same in F3 females. We could then that see one F3 female was *Md6*-positive, and therefore the recombination rate would be 1 in 29 (3.4 %) in F2 males. We would then assume that the putative sex-determining locus or gene would be roughly a 3.4 % recombination rate distant from *Md6*.

Acknowledgments The authors thank Dr. E. Soeda and Ms. A. Kazama for assistance with AFLP analysis and PBF D-loop primer design. The authors also thank all the staff of the Oshima branch, especially Mr. S. Hayashi, Mr. N. Tsuro, Mr. Y. Hamaguchi, Mr. M. Nakatani, and Mr. T. Okada, for assistance with establishing the PBF blood and DNA specimen bank. This study was supported by a grant from the Japan Science and Technology Agency (JST) SATREPS program and Grant-in-Aid for Young Scientists B #25870937 provided from the Japan Society for the Promotion of Science (JSPS).

References

- Fromentin JM, Powers JE (2005) Atlantic bluefin tuna: population dynamics, ecology, fisheries and management. Fish 6:281–306
- Anonymous (2011) Conservation and management measure for Pacific bluefin tuna. WCPFC 7th regular session available online (http://www.wcpfc.int/node/3407)
- Miyashita S, Murata O, Sawada Y, Okada T, Kubo Y, Ishitani Y, Seoka M, Kumai H (2000) Maturation and spawning of cultured bluefin tuna, *Thunnus thynnus*. Suisanzoshoku 48:475–488 (in Japanese, with English abstract)
- Sawada Y, Okada T, Miyashita S, Murata O, Kumai H (2005) Completion of the Pacific bluefin tuna *Thunnus orientalis* (Temminck et Schlegel) life cycle. Aquacult Res 36:413–421
- 5. Normile D (2009) Persevering researchers make a splash with farm-bred tuna. Science 324:1260–1261
- Masuma S, Takebe T, Sakakura Y (2010) A review of the broodstock management and larviculture of the Pacific northern bluefin tuna in Japan. Aquaculture 315:2–8
- Ida H, Oka N, Terashima H, Hayashizaki K (1993) Karyotypes and cellular DNA contents of three species of the family Scombridae from Japan. Nippon Suisan Gakkaishi 59:1319–1323
- Susca V, Corriero A, Bridges CR, De Metrio G (2001) Study of the sexual maturity of female bluefin tuna: purification and partial characterization of vitellogenin and its use in an enzyme-linked immunosorbent assay. J Fish Biol 58:815–831
- Pousis C, De Giorgi C, Mylonas CC, Bridges CR, Zupa R, Vassallo-Agius R, de la Gándara F, Dileo C, De Metrio G, Corriero A (2011) Comparative study of liver vitellogenin gene expression and oocyte yolk accumulation in wild and captive Atlantic bluefin tuna (*Thunnus thynnus L*.). Anim Reprod Sci 123:98–105

121

- Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414
- Agawa Y, Komiya T, Honryo T, Kurata M, Okada T, Murata O, Kumai H, Sawada Y (2011) Screening of the male characteristic DNA fragment using AFLP analysis in Pacific bluefintuna, *Thunnus orientalis*. Nippon Suisan Gakkaishi 77:639–646 (in Japanese, with English abstract)
- Kumai H, Miyashita S, Sakamoto W, Ono S (eds) (2012) Full-life cycle aquaculture of the Pacific bluefin tuna. Agriculture and Forestry Statistics Publishing Inc, Tokyo, pp 6–24
- 13. Seoka M, Kurata M, Tamagawa R, Biswas AK, Biswas BK, Yong ASK, Kim YS, Ji SC, Takii K, Kumai H (2008) Dietary supplementation of salmon roe phospholipid enhances the growth and survival of Pacific bluefin tuna *Thunnus orientalis* larvae and juveniles. Aquaculture 275:225–234
- 14. Adachi K, Kato K, Yamamoto M, Ishimaru K, Kobayashi T, Murata O, Kumai H (2008) Pulsed expression of growth hormone mRNA in the pituitary of juvenile Pacific bluefin tuna under aquacultured conditions. Aquaculture 281:158–161
- Takagi M, Okamura T, Chow S, Taniguchi N (1999) PCR primers for microsatellite loci in tuna species of the genus *Thunnus* and its application for population genetic study. Fish Sci 65:571–576
- Appleyard SA, Grewe PM, Innes BH, Ward RD (2001) Population structure of yellowfin tuna (*Thunnus albacares*) in the western Pacific Ocean, inferred from microsatellite loci. Mar Biol 139:383–393
- Nomura S, Kobayashi T, Agawa Y, Margulies D, Scholey V, Sawada Y, Yagishita N (2014) Genetic population structure of the Pacific bluefin tuna *Thunnus orientalis* and the yellowfin tuna *Thunnus albacares* in the North Pacific Ocean. Fish Sci. doi:10.1007/s12562-014-0789-8
- Sekino M, Kakehi S (2012) PARFEX v1.0: an EXCELTM-based software package for parentage allocation. Conservation Genet Resour 4:275–278
- Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
- 20. Nakamura Y, Mori K, Saitoh K, Oshima K, Mekuchi M, Sugaya T, Shigenobu Y, Ojima N, Muta S, Fujiwara A, Yasuike M,

Oohara I, Hirakawa H, Chowdhury VS, Kobayashi T, Nakajima K, Sano M, Wada T, Tashiro K, Hattori M, Ikeo K, Kuhara S, Gojobori T, Inouye K (2013) Evolutionary changes of multiple visual pigment genes in the complete genome of Pacific bluefin tuna. Proc Natl Acad Sci USA 110(27):11061–11066

- Chini V, Cattaneo AG, Rossi F, Bernardini G, Terova G, Saroglia M, Gornati R (2008) Genes expressed in Blue Fin Tuna (*Thunnus thynnus*) liver and gonads. Gene 29 410(1):207–213
- 22. Gangury A, Rock MJ, Prockop DJ (1993) Conformation-sensitive gel electrophoresis for rapid detection of single-base differences in double- stranded PCR products and DNA fragments: evidence for solvent-induced bends in DNA heteroduplexes. Proc Natl Acad Sci USA 90:10325–10329
- Delwart EL, Sheppard HW, Walker BD, Goudsmit J, Mullins JI (1994) Human immunodeficiency virus type 1 evolution in vivo tracked by DNA heteroduplex mobility assays. J Virol 68:6672–6683
- 24. Takehana Y, Naruse K, Asada Y, Matsuda Y, Shin-I T, Kohara Y, Fujiyama A, Hamaguchi S, Sakaizumi M (2012) Molecular cloning and characterization of the repetitive DNA sequences that comprise the constitutive heterochromatin of the W chromosomes of medaka fishes. Chromosome Res 20:71–81
- 25. Sakamoto T, Danzmann RG, Gharbi K, Howard P, Ozaki A, Khoo SK, Woram RA, Okamoto N, Ferguson MM, Holm LE, Guyomard R, Hoyheim B (2000) A microsatellite linkage map of rainbow trout (*Oncorhynchus mykiss*) characterized by large sex-specific differences in recombination rates. Genetics 155:1331–1345
- 26. Chen SL, Li J, Deng SP, Tian YS, Wang QY, Zhuang ZM, Sha ZX, Xu JY (2007) Isolation of female-specific AFLP markers and molecular identification of genetic sex in half-smooth tongue sole (*Cynoglossus semilaevis*). Mar Biotechnol 9:273–280
- Fuji K, Yoshida K, Hattori K, Ozaki A, Araki K, Okauchi M, Kubota S, Okamoto N, Sakamoto T (2010) Identifications of the sex-linked locus in yellowtail, *Seriola quinqueradiata*. Aquaculture 308:S51–S55
- Kamiya T, Kai W, Tasumi S, Oka A, Matsunaga T, Mizuno N, Fujita M, Suetake H, Suzuki S, Hosoya S, Tohari S, Brenner S, Miyadai T, Venkatesh B, Suzuki Y, Kikuchi K (2012) A transspecies missense SNP in *Amhr2* is associated with sex determination in the tiger pufferfish, *Takifugu rubripes* (Fugu). PLoS Genet 8(7):e1002798. doi:10.1371/journal.pgen.1002798