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Abstract Crustaceans produce complex yolk proteins to

meet the substrate and energy requirements of embryonic

development. Early electron microscopic investigations

point to a biphasic yolk synthesis, first within the ovary,

followed by heterosynthesis at extra-ovarian sites. Recent

advances in molecular techniques have enhanced our

understanding of the genetic control of yolk synthesis in

crustaceans. Amino acid sequencing of crustacean vitello-

genin (Vg) has enabled the elucidation of the cDNA

sequence associated with it, the identification of genes, and

the examination of their expression patterns in different

tissues. Yolk processing in crustaeans involves cleavage of

the pro-Vg at consensus sites by subtilisin-like endopro-

teases within the hepatopancreas, hemolymph and oocytes.

The structural elucidation of crustacean yolk proteins, as

well as the comparison of amino acid sequences of vitel-

logenins from various crustacean species, has revealed

molecular phylogenetic relationships not only among them

but also with other large lipid transfer lipoproteins of dis-

parate function. The combinatorial effects of eyestalk

neuropeptides and a variety of trophic hormones achieve

the hormonal coordination of molting and reproduction.

Biogenic amines secreted by the central nervous system

may also play an integrative role by stimulating neuro-

peptide secretion.
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Introduction

Many malacostracan crustaceans produce large numbers of

yolk-laden eggs and brood them externally for extended

periods. Hence, vitellogenesis, the process of yolk forma-

tion, is central to oogenesis. In Crustacea, vitellogenesis is

a biphasic event consisting of autosynthesis and hetero-

synthesis [1]. This contention is supported by recent

molecular studies demonstrating yolk protein gene

expression both in ovary and hepatopancreas. Receptor-

mediated endocytosis of the yolk precursor molecule,

vitellogenin (Vg), into growing oocytes has been estab-

lished in crustaceans [2]. The molecular transformation of

Vg into final yolk products for deposition in the mature

oocyte is another crucial event in vitellogenesis.

A defining feature in the endocrine regulation of vitel-

logenesis in Crustacea is the occurrence of inhibitory hor-

mones in the neurosecretory cells of the X-organ/sinus gland

complex within the eystalk. Conversely, many hormonal

factors as diverse in nature as methyl farnesoate (MF) and

vertebrate steroidal hormones have been implicated in the

stimulation of vitellogenesis. However, we are far from

having achieved a clear understanding of the exact regula-

tory mechanisms relating to the vitellogenic processes in

Crustacea, mainly because of the species-specific nature of

the effector molecules. Yet, recent molecular studies on the

primary structure of the major vitellin molecules, as well as

the deciphering of their gene sequences and the elucidation

of their synthetic sites, are paving the way to an under-

standing of the transcriptional control of the vitellogenin

gene in light of what is already known about insect and

vertebrate vitellogenesis. Homology searches and molecular

phylogenetic analysis of various crustacean Vgs have

revealed unexpected results on their closer relationship with

several members of the large lipid transfer lipoprotein

T. Subramoniam (&)

Marine Biotechnology Division,

National Institute of Ocean Technology, Velachery,

Tambaram Road, Pallikaranai, Chennai 600 100, India

e-mail: thanusub@yahoo.com

123

Fish Sci (2011) 77:1–21

DOI 10.1007/s12562-010-0301-z



superfamily as compared to their own orthologous Vg

molecules. This review undertakes a critical analysis of the

various mechanisms involved in the vitellogenic process and

their hormonal control.

Vitellogenesis

Molecular composition of crustacean yolk proteins

Crustacean yolk proteins, referred to as lipovitellin, are

complex molecules comprising a high-density lipoprotein

(HDL) conjugated to carbohydrates and carotenoid

pigments [3]. Crustacean lipovitellin differs from that of

vertebrates in that it lacks protein phosphates and has high

lipid content. In the mole crab Emerita asiatica, purified

lipovitellin contains neutral lipids, glycolipids and phos-

pholipids, among which phospholipids are the dominant

lipid class, with phosphatidyl choline and phosphatidyl

serine being the major species [4, 5]. However, the propor-

tion of lipid to protein seems to be higher in the precursor

protein, Vg. Crustacean lipovitellin characteristically con-

tains a variety of carotenoid pigments. They include beta-

carotene, astaxanthin, canthaxanthin and cis-canthaxanthin,

among other minor intermediary metabolites [1]. Crustacean

lipovitellin also possesses a higher carbohydrate content

than vertebrate vitellins. In E. asiatica, most protein-bound

carbohydrates found in lipovitellin are hexosamines and

hexoses [5]. Emerita lipovitellin also contains galactos-

amine as well as O-linked oligosaccharides with N-acetyl

hexosamine as the terminal residue, whereas sialic acid is

specifically absent. Khalaila et al. [6] have identified the

glycosylation sites in the vitellogenin of the crayfish Cherax

quadricarinatus and characterized the glycan moieties.

Besides providing an important source of carbohydrates for

the developing embryos, the glycosylation of Vg has an

important role in the folding and subunit assembly of these

molecules. The glycan moieties may also play an equally

important role in the recognition of the Vg membrane

receptor during yolk accumulation. After uptake into the

oocytes, they may also be involved in packaging and com-

pressing the yolk precursor proteins into the yolk bodies [5].

Biogenesis of yolk

In Crustacea, vitellogenesis occurs in two stages: a primary

vitellogenesis or previtellogenic phase characterized by the

differentiation of endoplasmic reticulum and the formation

of endogenous yolk stored in vesicles; and a secondary

vitellogenesis corresponding to an intensive phase of

uptake and storage of exogenous yolk precursor molecules,

which accumulate into large yolk globules [7]. Early

electron microscopic investigations point to this biphasic

yolk synthesis, first within the ovary, followed by a het-

erosynthetic yolk formation in somatic tissues such as the

hepatopancreas or subepidermal fat body [1].

Support for autosynthetic yolk formation came from in

vitro incubation studies using ovaries of crayfish Pro-

cambarus sp. and of the crab Pachygrapsus crassipes [8].

In the shrimp, the yolk content of the egg is meager, and

hence oocytes may be in a position to synthesize most of

them, with only a very limited contribution deriving from

extra-ovarian sites. In the kuruma prawn Marsupenaeus

japonicus, under in vitro conditions, only the ovary

incorporated radioactive amino acids into a protein

immunologically identical to lipovitellin [9]. Similar in

vitro studies on the vitellogenic ovaries of another shrimp

Penaeus semisulcatus also revealed that the ovary is the

primary organ of vitellin synthesis [10].

Egg maturation in penaeid shrimp is characterized by

vitellogenesis and cortical rod protein (CRP) formation. In

M. japonicus, Kim et al. [11] showed that CRP mRNA is

highly expressed before the onset of vitellogenesis and that

Vg mRNA exhibited high expression during intense vitel-

logenesis, suggesting that different genes are involved in

the ovarian synthesis of CRP and Vg proteins. Okumura

et al. [12] provided further evidence that eyestalk ablation

induced both Vg and CRP synthesis within the ovary.

Khayat et al. [13] demonstrated high levels of Vg mRNA in

the vitellogenic ovary of P. semisulcatus, as evidenced by

its ability to direct the cell-free synthesis of large amounts

of Vg. However, unlike the other decapods, where auto-

synthesis of yolk has been shown to occur within the

oocytes [8], in penaeid shrimp, the ovarian synthesis of

yolk probably takes place in the follicle cells. Thus, in

M. japonicus, an immunofluorescence study with anti-

vitellin IgG was suggestive of yolk protein synthesis by the

follicular epithelium rather than by the oocytes. Northern

blot analysis and in situ hybridization have revealed that

mRNA encoding vitellogenin was expressed in the follicle

cells of the vitellogenic females [14]. Tsang et al. [15] also

showed the expression of the vitellogenin gene, MeVg1, in

the ovary and hepatopancreas of Metapenaeus ensis, sug-

gesting equal contributions from both tissues.

In recent years, several gene expression studies, using

quantitative real-time PCR techniques, have demonstrated

that the ovary remains the principal organ that synthesizes

yolk proteins in several penaeid shrimp species. Interest-

ingly, in species such as M. japonicus and P. semisulcatus,

one and the same Vg is expressed in the ovary and hepato-

pancreas [16, 17]. However, in other species, such as

Litopenaeus merguiensis, M. ensis and P. monodon, more

than one Vg may be involved in the tissue-specific expres-

sion of the gene in both the ovary and hepatopancreas

[18–20]. Especially in L. merguiensis, the patterns of Vg

mRNA expression between the hepatopancreas and ovary
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differ in that the expression level in the hepatopancreas is

much lower than that in the ovary at all stages of ovarian

development [18]. Evidently, the relative contributions of

the ovary and hepatopancreas to overall yolk production

may differ among various shrimp species.

Vitellogenin

In addition to being the precursor of ovarian lipovitellin,

crustacean vitellogenin is considered to be an important

transporter of lipids to the ovary from the hemolymph during

vitellogenesis. In general, lipid transport through the hemo-

lymph is accomplished by two HDLs and a very high-density

lipoprotein (VHDL) [21, 22]. Female-specific vitellogenin is

one of the HDLs, with its production being correlated with

ovarian development in female crustaceans, whereas the other

HDL as well as VHDL are found in both males and females.

In the penaeid shrimp, P. semisulcatus, the non-sex-specific

hemolymph lipoprotein, LP I, consists of one 110-kDa pep-

tide unit, whereas the sex-specific LP II consists of 3 subunits

of 200, 120, and 80 kDa [23]. Interestingly, the same subunits

were also present in the lipovitellin of this shrimp. Further-

more, the lipid compositions of these two HDLs in P. semi-

sulcatus also differ: LP II (Vg) has a lower lipid content than

does LP I, in addition to differences found in lipid classes

linked to the apolipoprotein. Apparently, vitellogenin and

lipovitellin have similar protein structures, but show differ-

ences in their lipid contents, with the lipovitellin having more

percentage lipid acquired through adsorption within the

oocytes. LP I is also different from LP II in its protein com-

position, as the former does not cross-react with anti-vitellin

antiserum. In the crayfish Cherax quadricarinatus, Yehezkel

et al. [24] observed that the hemolymph lipoprotein II,

equivalent to Vg, appears only at the onset of secondary

vitellogenesis. In the mole crab E. asiatica, Subramoniam and

Gunamalai [25] have described three hemolymph lipopro-

teins: LP1, LP2, and LP3. LP1 is non-sex-specific, but is

accumulated into the oocytes along with LP2, which is the

female-specific Vg. LP3, which appears only during the

premolt of male and female crabs, plays a role in the transport

of lipids to the epidermis for the purposes of cuticle forma-

tion. In addition to transporting a variety of lipophilic

compounds such as triglycerides and phospholipids, crusta-

cean Vgs are known to transport steroidal hormones like

ecdysteroids and vertebrate steroids, including estradiol 17b
and progesterone [26, 27]. These hormones are stored within

the oocytes as conjugates of yolk proteins and serve regula-

tory functions during embryogenesis.

Site of vitellogenin synthesis

Initial electrophoretic and isotope tracer studies have

implicated several organs such as the hemocytes in crabs

[28, 29], the fat body in isopods and the amphipods

[30, 31], and the subepidermal adipose tissue in Palaemon

serratus [32], and Scylla serrata [33] as the synthetic sites

of Vg. However, the hepatopancreas has proven to be the

most important organ synthesizing Vg outside of the ovary

in the majority of crustacean species analyzed. The crus-

tacean hepatopancreas is the functional homolog to the fat

body in insects and the liver in vertebrates. Subsequent

investigations employing molecular techniques have

revealed that the hepatopancreas is the sole site of Vg

synthesis in the giant freshwater prawn, Macrobrachium

rosenbergii. Chen et al. [34] cloned a cDNA fragment

encoding Vg in this species and found its expression in the

hepatopancreas of the vitellogenic female. In addition,

Yang et al. [35] obtained cDNA fragments for four vitel-

lins; using these cDNA fragments as probes, they found the

exclusive expression of Vg mRNAs for the four vitellins in

the hepatopancreas of vitellogenic female M. rosenbergii.

Using quantitative real-time PCR techniques, Jayasankar

et al. [36] measured the expression levels of mRNA in the

hepatopancreas of this species and also determined Vg

levels using enzyme immunoassay. Vg mRNA expression

in the hepatopancreas and hemolymph Vg levels showed a

gradual increase concomitant with increasing gonadoso-

matic index. Vg mRNA expression was, however, negli-

gible in the ovary, confirming that the hepatopancreas is

the principal site of Vg synthesis in M. rosenbergii. In

general, Vg expression may occur at multiple sites, but

expression patterns nevertheless vary according to species.

That one and the same gene for vitellin and Vg can be

simultaneously expressed both in the ovary and hepato-

pancreas was shown in P. semisulcatus [37]. Multiple

genes may also show tissue-specific expression of Vg in the

ovary and hepatopancreas, as demonstrated in another

penaeid shrimp, Metapenaeus ensis, where two Vgs

(MeVg1 and MeVg2) have been identified [15]. The

MeVg1 gene is expressed equally in the ovary and hepa-

topancreas, whereas MeVg2 is expressed only in the

hepatopancreas. Furthermore, the MeVg2 gene gives rise to

smaller transcripts, resulting in the production of many

smaller MeVg2 subunits destained for ovarian uptake [19].

Evidently, the ovary is the primary site of yolk synthesis

in penaeid shrimp, as indicated by gene expression studies

enumerated above; on the contrary, large-bodied decapods

such as crabs and lobsters seem to rely largely on extra-

ovarian organs such as the hepatopancreas for the synthesis

of Vg. Using molecular techniques, Li et al. [38] have

demonstrated that in the Chinese crab Eriocheir sinensis,

the hepatopancreas is the main site of Vg synthesis,

although immunocytochemical studies have suggested a

parallel role for ovary. However, in the red crab Charybdis

feriatus, northern blot analysis revealed that the crab

expresses the Vg precursor only in the hepatopancreas.
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In addition to the major 8.0-kb transcript, a large propor-

tion of smaller C. feriatus Vg-specific transcripts are also

detected in the hepatopancreas. These transcripts most

likely result from the alternative splicing and alternative

use of promoter and/or termination signals [39]. The

occurrence of many Vg subunits in the crab hemolymph

may also result from autoproteolysis due to intrinsic pro-

tease activity in Vg itself [40]. In a recent study using

quantitative real-time PCR techniques, Zmora et al. [41]

found evidence that Vg is primarily expressed in the

hepatopancreas of the vitellogenic females, with only

minor expression in the ovary of the blue crab C. sapidus.

Furthermore, Vg expression in the hepatopancreas of this

brachyuran anecdysic crab is correlated with ovarian mat-

uration, with a remarkable 8000-fold increase in expression

from stage 3 to 4 of ovarian development. Recent cloning

and expression studies on the Vg in the lobster Homarus

americanus also adduced further evidence that the hepa-

topancreas is the primary organ for yolk precursor syn-

thesis in lobsters [42]. The lobster HaVg1, expressed

mainly in the hepatopancreas, comprises 14 introns and 15

exons. This study also revealed that the sizes and locations

of the exons and introns of Vg are conserved among

crustaceans. The HaVg1 precursor contained the lipopro-

tein domain at the N-terminus, followed by a domain of

unknown function in the middle. The von Willebrand

factor type-D domain is located at the C-terminus of the

precursor. A unique feature of crustacean Vg is that it

contains several cleavage sites, resulting in increased

subunit composition. More numbers of Vg subunits may

also arise from smaller transcripts, as reported for the crab

C. feriatus [43].

All these studies lead to the compelling conclusion that

the hepatopancreas is the principal site of Vg synthesis in

brachyuran crabs, lobsters, and probably other representa-

tive species under the suborder Pleocyamata. Conversely, in

Dendrobranchiata, including mainly the penaeid shrimp,

both the hepatopancreas and ovary provide equal contribu-

tions towards Vg synthesis. The Vg synthesized at extra-

ovarian sites such as the hepatopancreas undergoes several

modifications, such as glycosylation and lipid addition,

bringing about changes in molecular weight when compared

with the final yolk products accumulated within the ovary

[41]. To sum up, besides being the precursor protein mole-

cule that supplies the amino acid pool for the developing

embryo, vitellogenin can also serve other subfunctions, such

as the transport of a variety of organic and inorganic mole-

cules required for embryonic development.

Phylogenetic analysis of crustacean vitellogenin

Crustacean Vg is a multidomain apolipoprotein that is

cleaved into distinct yolk proteins. Multiple alignments of

all known crustacean Vg sequences have revealed almost

similar cleavage sites. ClustalW alignment of M. rosen-

bergii Vg with that of 17 other crustacean species has

shown that the first common cleavage site RXRR occurs at

amino acid residues 707–710, and the homology for the

first segment is high when compared with the rest of

the module. The results from BLAST searches indicate that

the N-terminal region of crustacean Vgs is conserved, as in

the apolipoproteins that are involved in lipid transport. This

property is in accord with the fact that Vg, insect apo-

lipophorin II/I, apoB, and MTP are members of the same

multigene superfamily of large lipid transfer proteins

(LLTP) [44]. Next to the N-terminal segment, the middle

segment is comparable to a lipovitellin domain of unknown

function called DUF1943. The C-terminal domain of

M. rosenbergii Vg harbored a von Willebrand-factor type

D domain (YGP4) found in mammals. Similarity in amino

acid sequence of the von Willebrand factor at the C-ter-

minal region has also been reported for another LLTP

protein, the insect apolipophorin [45].

A phylogenetic tree constructed based on the alignment

of amino acid sequences of 18 crustacean Vgs using the

ClustalW programme shows six distinct lineage groups:

Penaeidea (A), Brachyura (B), Astacidea (C), Caridea (D),

Copepoda, and Brachiopoda (E), and Thalassinidea (F)

(Fig. 1; Table 1). The Vgs of the penaeidian species seem

to be highly homogeneous, with [92% identity in amino

acid sequence, except in the case of M. ensis. In M. ensis,

the two Vgs (MeVg1 and MeVg2), identified by Tsang

et al. [15] and Kung et al. [19], are expressed indepen-

dently in the ovary and hepatopancreas, with only a

sequence identity of 56% between them. These MeVgs also

showed less homology with Vgs of other penaeid shrimp,

revealing a greater evolutionary distance from other pen-

aeid species [46]. As seen from Fig. 1, Upogebia major,

representing Thalassinidea, has taken a separate lineage

near the Brachyura. In addition to all the above decapods,

the two copepods and a branchiopod, Daphnia, formed a

separate clad in-between Caridia and Thalassinidea in the

radial tree.

The structural elucidation of Vg from different crusta-

cean species has also been helpful in solving phylogenetic

relationships with other arthropod groups. In a primitive

brachiopod, Daphnia magna, two Vgs, DmagVg1 and

DmagVg2, have been isolated. Interestingly, the lipid

transport module in the N-terminal region of DmagVg1 is

more closely related to those of insect Vgs than to those of

decapod crustacean Vgs [47]. Yet again, the intergenic

region of the two genes contains sequences resembling

juvenile hormone-responsive and ecdysone-responsive

elements, typical of insect Vgs [48]. The close homology

found between Daphnia and insect LLT Vg modules may

be due to either divergence or convergence.
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In relation to other invertebrates, crustacean Vg has shown

homology in amino acid sequence with molluscan and coral

Vgs [49, 50], although homology among the coral Vg, GfVg,

and the shrimp Vg (L. vannamei) is much closer. These

homology studies purportedly point to the emergence of Vg as

an egg protein precursor before the cnidarian–bilaterian

divergence. The origin and evolutionary progression of Vgs

from a common ancestral molecule at the cnidarian–bilatrian

divergence denotes a landmark interception in crustacean

arthropods, giving rise to other lipid-carrying apolipopro-

teins that perform disparate physiological functions. Even

among crustaceans, we find a number of lipoproteins, such

as crustacean clotting proteins and hemocyanin, that show

limited amino-acid sequence homology with vitellogenin [2].

The inclusion of crustacean Vg among other LLTP

proteins is also justified by the immunological relatedness

found between Vg of the crab S. serrata and apoB, the

major protein component of LDL and VLDL [40]. Warrier

and Subramoniam [40] demonstrated the recognition of Vg

by antibodies to apoB-containing mammalian lipoproteins

LDL and VLDL, and not to HDL (Fig. 2). Furthermore, the

apoB antibodies reacted with greater efficacy to S. serrata

Vg, thereby providing corroborative evidence for the

structural identity of apoB with Vg.

Avarre et al. [51] conducted a homology study between

crustacean Vgs and other members of the LDL superfamily

of lipoproteins, and arrived at the conclusion that crusta-

cean Vgs are closer to mammalian LDL and insectan

apolipophorins. However, the vertebrate apo-lipo B line of

proteins is thought to have diverged from the vertebrate Vg

line, which, in turn, arose from the ancient egg yolk storage

proteins of invertebrates [52]. The closer relationship

between apoB and crustacean Vg discussed above not

only indicates the high conservancy in the lipid-binding

domains of both these proteins, but may also point to the

evolutionary derivation of vertebrate apo-lipo B proteins at

the crustacean Vg level.

Vitellogenin receptors and yolk protein uptake

In crustaceans, only a few studies have been carried out

with reference to Vg receptors. In the giant freshwater

A

D
E

F

B
C

Fig. 1 Phylogenetics of eighteen crustacean Vgs with two dominant

domains, (A) penaeoidean and (B) brachyuran, at both ends of the

radial tree. Other major domains such as Astacidea (C) and Caridea

(D) are found on either side of the tree. Copepods and brachiopods

form a common grouping (E) along the brachyuran side. Thalassin-

idea (F) also has a separate lineage along the brachyuran crabs. The

protein sequence accession numbers for all the Vgs are given in

Table 1
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prawn M. rosenbergii, Jugan and Soyez [53] demonstrated

Vg uptake by the oocytes by employing colloidal gold-

conjugated vitellin. The labeling was visualized in the

microvilli, coated pits, and intraooplasmic vesicles. These

authors further observed that a sinus gland neuropeptide

inhibited vitellogenin endocytosis, possibly by blocking the

membrane receptors. Laverdure and Soyez [54] solubilized

the vitellogenin receptor from the oocyte membrane of

H. americanus, and characterized it using an enzyme-

linked immunosorbent assay. Binding of Vg with the sol-

ubilized receptors increased at the onset of vitellogenesis,

but decreased in older oocytes of the freshwater crayfish

Orconectus limosus [55]. The solubilized oocyte mem-

brane receptor with a molecular weight of 28–30 kDa

binds specifically to Vg of O. limosus. Warrier and Subr-

amoniam [56] purified the vitellogenin receptor in the mud

crab Scylla serrata using HPLC and found a still higher

molecular weight of 230 kDa. In direct binding studies

using 125I-labeled Vg, crab VgR was observed to have

increased affinity to its ligand in the presence of Ca2? and

was inhibited by suramin, a polysulfated polycyclic

Table 1 Vg accession numbers of 18 crustaceans, along with their taxonomic classifications

Species Accession no. Systematics

Penaeus monodon ABB89953.1 Malacostraca; Eumalacostraca; Eucarida; Decapoda; Dendrobranchiata;

Penaeoidea; Penaeidae; Penaeus

Fenneropenaeus chinensis ABC86571.1 Malacostraca; Eumalacostraca; Eucarida; Decapoda; Dendrobranchiata;

Penaeoidea; Penaeidae; Fenneropenaeus

Fenneropenaeus merguiensis AAR88442.2 Malacostraca; Eumalacostraca; Eucarida; Decapoda; Dendrobranchiata;

Penaeoidea; Penaeidae; Fenneropenaeus

Litopenaeus vannamei AAP76571.2 Malacostraca; Eumalacostraca; Eucarida; Decapoda; Dendrobranchiata;

Penaeoidea; Penaeidae; Litopenaeus

Marsupenaeus japonicus BAD98732.1 Malacostraca; Eumalacostraca; Eucarida; Decapoda; Dendrobranchiata;

Penaeoidea; Penaeidae; Marsupenaeus

Metapenaeus ensis AAT01139.1 Malacostraca; Eumalacostraca; Eucarida; Decapoda; Dendrobranchiata;

Penaeoidea; Penaeidae; Metapenaeus

Homarus americanus ABO09863.1 Malacostraca; Eumalacostraca; Eucarida; Decapoda; Pleocyemata;

Astacidea; Nephropoidea; Nephropidae; Homarus

Cherax quadricarinatus AAG17936.1 Malacostraca; Eumalacostraca; Eucarida; Decapoda; Pleocyemata;

Astacidea; Parastacoidea; Parastacidae; Cherax

Portunus trituberculatus AAX94762.1 Malacostraca; Eumalacostraca; Eucarida; Decapoda; Pleocyemata;

Brachyura; Eubrachyura; Portunoidea; Portunidae; Portunus

Callinectes sapidus ABC41925.1 Malacostraca; Eumalacostraca; Eucarida; Decapoda; Pleocyemata;

Brachyura; Eubrachyura; Portunoidea; Portunidae; Callinectes

Charybdis feriatus AAU93694.1 Malacostraca; Eumalacostraca; Eucarida; Decapoda; Pleocyemata;

Brachyura; Eubrachyura; Portunoidea; Portunidae; Charybdis

Scylla serrata ACO36035.1 Malacostraca; Eumalacostraca; Eucarida; Decapoda; Pleocyemata;

Brachyura; Eubrachyura; Portunoidea; Portunidae; Scylla serrata

Macrobrachium rosenbergii BAB69831.1 Malacostraca; Eumalacostraca; Eucarida; Decapoda; Pleocyemata;

Caridea; Palaemonoidea; Palaemonidae; Macrobrachium

Pandalus hypsinotus BAD11098.1 Malacostraca; Eumalacostraca; Eucarida; Decapoda; Pleocyemata;

Caridea; Pandaloidea; Pandalidae; Pandalus

Upogebia major BAF91417.1 Malacostraca; Eumalacostraca; Eucarida; Decapoda; Pleocyemata;

Thalassinidea; Callianassoidea; Upogebiidae; Upogebia

Daphnia magna BAE94324.1 Branchiopoda; Diplostraca; Cladocera; Anomopoda; Daphniidae;

Daphnia

Lepeophtheirus salmonis ABU41135.1 Maxillopoda; Copepoda;Siphonostomatoida; Caligidae; Lepeophtheirus

Tigriopus japonicus ABZ91537.1 Maxillopoda; Copepoda; Neocopepoda; Podoplea; Harpacticoida;

Harpacticidae; Tigriopus; Tigriopus japonicus

Fig. 2 Dot blot analysis of crab Vg (1), rat LDL (2), VLDL (3), and

HDL (4) using anti-crab Vg antibodies (dilution 1:2000). Anti-Lv

antibodies are seen to react well with Vg, LDL, and VLDL, but there

is no reaction with HDL (from Warrier and Subramoniam [40])
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hydrocarbon. These authors also showed an immunological

relatedness between VgR of S. serrata and LDLR by virtue

of the ability of VgR to bind rat LDL and VLDL.

In a recent study, the cloning and characterization of a

cDNA encoding a putative Vg receptor from the tiger

prawn P. monodon (PmVgR) has been reported [57].

PmVgR has a molecular weight of 211 kDa, and is ovary

specific. It consists of conserved cysteine-rich domains,

EGF-like domains and YWTD motifs, similar to the

mammalian LDL receptor as well as to the Vg receptors of

insects and vertebrates. PmVgR expression in the ovary

coincides with the rapid pace of Vg production by the

hepatopancreas. Immunological detection of PmVgR in the

oocyte membrane during intense vitellogenesis has also

been done in this prawn. Further, PmVgR expression was

knocked down in animals after they were injected with

PmVgR dsRNA, leading to a decrease in vitellin content in

the ovary, and at the same time elevating the levels of

hemolymph Vg. A similar molecular characterization of

VgR has also been reported for the kuruma prawn

M. japonicus [58]. The expression dynamics of MjVgR

during vitellogenesis have been found to be similar to those

of P. monodon. Furthermore, structural analysis of the VgR

of this shrimp also reconfirmed its inclusion in the LDLR

superfamily. The results of these studies are comparable

with those of S. serrata with respect to molecular weight

and functional characteristics [56]. It would be of interest

to know whether crustacean VgR also facilitates the

endocytosis of other hemolymph lipoproteins into the

ovary, similar to avian VgRs [59] and insectan lipophorin

receptor [60].

Receptor-mediated internalization of Vg into the

oocytes has been demonstrated by an immunogold elec-

tron microscopic study using anti-Vg as the primary

antibody in S. serrata [56]. Immunogold labeling against

Vg antibody was first visualized in the coated pits found

on the plasma membrane of the vitellogenic oocytes. This

is followed by their appearance in the pinched-off coated

vesicles as well as in early endosomes, which fuse toge-

ther to form the mature electron-dense late endosomes

(Figs. 3, 4). Such an endocytotic entry of Vg into the

oocytes to form the yolk body is similar to that described

for insects [61]. In P. monodon, after the binding of Vg

with VgR, the complex moves into the oocyte cytoplasm,

aided by internalization signals present in VgR [57].

Interestingly, the VgR of P. monodon has two putative

internalization signals (i.e., FANPGFG and FENPFF)

found in vertebrate VgRs as well as several IL and LI

sites characterizing the insect VgR and Drosophila yolk

peptide receptors [57]. This redundancy with the inter-

nalization signals present in the shrimp oocytes could

increase the efficiency of receptor-ligand binding during

crustacean vitellogenesis.

Yolk processing

In general, Vg undergoes post-translational proteolytic

cleavage at the site of synthesis (e.g., insects [61]) or after

sequestration into the ovary (e.g., amphibians [62]). In crus-

taceans, SDS-PAGE analysis of hemolymph and ovary yolk

proteins has indicated the occurrence of varying numbers of

Vg and vitellin (Vn) fractions, suggesting that Vgs are already

fragmented at the time of endocytotic uptake into the ovary.

In the isopod Armadillidium vulgare, four female-specific

glycoprotein bands in hemolymph, detected on SDS-PAGE,

Fig. 3 Immunogold labeling of Vg in ultrathin sections of the ovary

of Scylla serrata, examined with a Philips CM10 transmission

electron microscope to demonstrate the endocytosis of Vg. Vg

labeling is seen along the luminal surface of the coated vesicle (cv),

which fuses into a mature endosome. Electron-dense particles

representing Vg molecules are densely packed within the endosomes.

Scale bar 0.5 lm (from Warrier and Subramoniam [56])

Fig. 4 Immunogold labeling of Vg in ultrathin sections of the ovary

of Scylla serrata. In this micrograph, fusion of an early endosome (ee)

with a mature endosome is observed (indicated by an arrow).

Electron-dense particles of Vg are extensively labeled in the mature

endosome compared to the early endosome. The mature endosomes

finally form the yolk bodies. Scale bar 0.5 lm (from Warrier and

Subramoniam [56])
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were found to be the same in the ovarian extract [63]. In this

isopod, an anion-exchange HPLC separation has yielded 6

vitellins from the ovary, ranging in molecular weight from

112 to 205 kDa [64]. The N-terminal sequencing of these

proteins showed identical amino acids except for the 112 and

59 kDa proteins. PCR-assisted cloning of the 50 region of a

cDNA encoding Vg revealed the presence of an amino-ter-

minal sequence identical to those of the 112 and 122 kDa yolk

proteins, suggesting that the Vg gives rise to the Vn fractions

by cleavage either in the hemolymph or ovary.

In M. rosenbergii, Vg, after being synthesized as a single

precursor protein, undergoes initial cleavage at amino acids

707–710 by a subtilisin-like endoprotease to give rise to two

subunits, A and pro-B, within the hepatopancreas [65]. After

secretion into the hemolymph, subunit A is sequestered as is

into the ovary, whereas pro-B is cleaved by another processing

enzyme to give rise to subunits B and C/D (Fig. 5). The ovary

subsequently takes them up to give rise to the yolk proteins,

VnA, VnB, and VnC/D. Examination of subunit composition

of Vg in hemolymph and Vn into the ovary by SDS-PAGE and

western blotting has also supported the above sequence of Vg

conversion to Vn fractions. Furthermore, identity in the

N-terminal amino acid sequences of these Vg and vitellin

fractions that appear in hemolymph and ovary has also pro-

vided final support to the scheme of Vg processing in this

freshwater prawn [65]. Further studies on the processing of

other decapod crustacean vitellogenins have revealed conser-

vancy in the first cleavage site at amino acids 707–710,

although the subsequent cleavage sites may differ among

many species. In Litopenaeus vannamei, Raviv et al. [66]

predicted an N-terminal sequence of 78 kDa, with the first

cleavage site occurring at an RTRR consensus cleavage for

subtilisin-like endoprotease. These authors isolated five HDL

polypeptides of masses 179,113, 78, 61, and 42 kDa from the

ovary and found that all of these polypeptides are derived from

the 179 kDa second fraction of the premature Vg of L. van-

namei. These results are in accord with those described for

M. rosenbergii yolk protein processing. In a recent study on the

mud shrimp, Upogebia major, belonging to the infraorder

Thalassinidea of Decapoda, Kang et al. [67] found three

polypeptides in the oocytes. These subunits were found to be

derived from a single long polypeptide translated from the Vg

transcript in the hepatopancreas. This precursor polypeptide of

289 kDa is cleaved to produce two Vg subunits at the con-

sensus cleavage site, RLRR, which is recognized by subtilisin-

like endoproteases. These two subunits are also suggested to

undergo further processing upon or immediately after incor-

poration into oocytes.

Evidence for the secondary cleavage of vitellogenin after

its uptake into the ovary is given in other decapods such as

the freshwater crayfish, Ibacus ciliates [68]. A low-density

lipoprotein isolated from the ovary of this crayfish degraded

Vg into apolipoprotein fragments, which are similar to the

lipovitellin subunits of the egg. Furthermore, the Vg diges-

ted by LDL exhibited proteinase activity whereas the native

Vg did not have it. The instability of Vg and its susceptibility

to undergo proteolytic cleavage may be a general feature,

but in a brachyuran crab Scylla serrata, Vg itself possesses

proteinase activity [40]. Warrier and Subramoniam [40]

demonstrated that conformational changes in the native Vg

could bring about such proteolytic cleavage, as indicated in a

study using urea as a destabilizer. Whereas Vg showed a

spectral change with 8 M-urea treatment due to exposure of

the hydrophobic core containing aromatic residues

(absorption at 274 nm), lipovitellin did not show such a

spectral shift. Clearly, Vg is a relatively unstable lipopro-

tein, but the ovarian lipovitellin is more stable.

Yolk utilization

Yolk proteins primarily evolved to supply both energy as

well as organic building blocks to support embryonic

Fig. 5 Schematic representation of synthesis and processing of

vitellogenin in Macrobrachium rosenbergii. Vg is synthesized as a

single precursor molecule, A–B–C/D, in hepatopancreas, which is

then cleaved into two subunits, A and proB. Subunits A and proB are

released into the hemolymph, and proB is cleaved to form two

subunits B and C/D. The three processed subunits A, B, and C/D are

incorporated into the ovary. (From Okuno et al. [65])
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growth in oviparous animals. Understandably, yolk utili-

zation is the central event of embryogenesis, and is

accomplished by a host of hydrolytic enzymes acting on

the complex yolk molecules. Subramoniam [69] has

reviewed the existing information on crustacean embryonic

nutrition from the perspective of yolk utilization. During

yolk utilization, the complex lipovitellins are dismantled

by esterases, proteases and glycosidases, resulting in the

release of conjugated steroidal hormones [70]. The regu-

lated release of active ecdysteroids from their conjugates

by nonspecific esterases at specific times in embryogenesis

may not only trigger embryonic cuticle formation but may

also accomplish larval molting and egg hatching [26, 71].

Direct utilization of lipovitellins in the egg by way of

proteolytic cleavage in the developing embryos has also

been documented in the blue crab C. sapidus [72].

As much as the yolk proteins meet the metabolic

demands of embryonic development, they are also used in

early larval development. In an extreme case of cirripede

development, a new protein is expressed during the non-

feeding cypris stage of the barnacles. This protein, called

cypris major protein, is interestingly related to the heavy

chain of barnacle yolk protein both structurally and

immunologically [73]. Another glycoprotein, called set-

tlement-inducing protein complex (SIPC), which is found

in juvenile and cyprid larvae of the barnacle Balanus

amphitrite, also showed immunological and peptide

sequence similarity with cirripede yolk proteins [74].

Evidently, cirripede larval storage protein and the SIPC

may share a common ancestor with yolk protein. Alterna-

tively, crustacean yolk protein genes would have under-

gone duplication to give rise to different proteins necessary

for larval metamorphosis and gregarious larval settlement

in these sessile barnacles.

Endocrine regulation of vitellogenesis

In most malacostracan crustaceans, except the diecdysic

crabs, vitellogenic activities are sandwiched between two

molt cycle stages. Such an inextricable linkage between

molting and vitellogenesis is accomplished by a delicate

multihormonal interaction unique to crustaceans. Egg

brooding within the pleopods of several malacostracans

provides another intervention in the coordinated control of

molting and reproductive cycles. Essentially, the hormonal

controlling mechanisms enabling the temporal separation of

these two processes involve principally the inhibitory neu-

ropeptides—vitellogenesis-inhibiting hormone (VIH) and

molt-inhibiting hormone (MIH)—originating from the

X-organ/sinus gland complex in the optic ganglia. Thus, the

hormonal coordination of both molting and vitellogenesis

becomes vital to accomplishing continued body growth and

increased fecundity [75]. The endocrine factors that control

vitellogenesis can be considered under two categories:

gonad-inhibiting and gonad-stimulating hormones.

Gonad-inhibiting hormones

Gonad-inhibiting hormones of Crustacea mainly reside in

the eyestalk X-organ/sinus gland complex. The crustacean

hyperglycemic hormone (CHH) superfamily of neuropep-

tides that mainly originate from this neuronal complex

include important regulatory molecules to control somatic

growth and reproduction. CHHs themselves play a pivotal

role in the regulation of glucose metabolism. However, they

also exhibit considerable cross-functional activities with

other peptides such as MIH, VIH, and mandibular organ

inhibitory hormone (MOIH). The application of peptide

sequencing as well as PCR-based cloning techniques has

resulted in the isolation of many cDNA sequences of CHH

family members involved in diverse regulatory functions. In

addition, these investigations have facilitated sequence

homology studies to establish structural relationships among

them. Their neuronal distribution outside eyestalk ganglia

implicates other parts of CNS such as supraesophageal

ganglia, thoracic ganglia and ventral nerve cord in the reg-

ulatory roles of molting and reproduction.

Vitellogenesis-inhibiting hormone

Vitellogenesis-inhibiting hormone belongs to the CHH

family of neuropeptides, and shows inhibitory effects on

ovarian growth and vitellogenesis. Our present under-

standing of endocrine regulation of crustacean vitellogene-

sis per se is mainly based on experimental studies involving

the removal of VIH by way of eyestalk extirpation. VIH was

first characterized in the American lobster H. americanus as

a 78-residue peptide that exists as two enantiometric iso-

forms, both of which have a molecular mass of 9135 Da, an

amidated C-terminus and a free N-terminus [76, 77]. How-

ever, the vitellogenesis-inhibiting effect was found in only

one isoform when tested with an in vivo heterologous assay

developed in the grass shrimp Palaemonetes varians. VIH

has been subsequently isolated and characterized from many

malacostracans, and has been shown to play a prominent role

in the regulation of reproduction, especially vitellogenesis

[78]. Amino acid sequence homology studies on the VIH of

several crustacean species have uncovered considerable

similarities with other CHH family peptides such as MIH

and MOIH, claiming a separate subgroup (Type II) from the

CHH molecules [79].

Bioassay studies to test VIH activity have been carried

out either using an ovarian growth index [80, 81] or by

in vitro culturing of ovarian tissue and monitoring

the inhibition of protein synthesis [82, 83]. Inhibition of

Fish Sci (2011) 77:1–21 9

123



gold-labeled vitellin binding to oocyte microvilli in incu-

bation medium containing sinus gland extract is another

bioassay method that was followed by Jugan and Soyez

[53]. Another in vivo bioassay system involving the mea-

surement of vitellogenin levels in the hemolymph by a

highly sensitive sandwich enzyme-linked immunosorbent

assay was employed to quantify Vg in eyestalk-ablated P.

monodon [84]. In this species, only two of the HPLC-

purified eyestalk peptide fractions were found to reduce

hemolymph Vg concentrations in a time-dependent manner,

suggesting their direct inhibitory effect on Vg synthetic

sites. In H. americanus females, the highest hemolymph

levels of VIH were observed during the immature and

previtellogenic stages [85]. Edomi et al. [79] isolated two

VIH sequences from the eyestalk of the Norway lobster

Nephrops norvegicus. Interestingly, mRNA expression of

VIH in this lobster was detected not only in the eyestalks

but also in the supraoesophageal ganglia. In a recent study

using double-stranded RNA (GIH-dsRNA), Treerattrakool

et al. [86] knocked down GIH expression both in the eye-

stalk ganglia and abdominal nerve cord in P. monodon. This

resulted in a conspicuous increase in Vg transcript level in

the ovary of GIH-knockdown shrimp, although Vg

expression in the hepatopancreas was less significant.

The inhibitory effects of eyestalk hormones with par-

ticular reference to VIH were further investigated by

Tsutsui et al. [16] in another penaeid shrimp species,

M. japonicus. Using a quantitative real-time PCR system,

Vg mRNA expression levels were measured both in the

hepatopancreas and the ovary in normal and eyestalk-

ablated adult shrimp. Their study indicated a significant

increment in mRNA levels in the ovary but not hepato-

pancreas, suggesting that VIH exerts its effects primarily

through vitellogenin gene expression in the ovary.

Hepatopancreatic gene expression may not be significantly

affected by VIH, although in this shrimp, vitellogenin

cDNA from the hepatopancreas is identical to that isolated

from the ovary [14]. In a more recent study, Tsutsui et al.

[87] isolated as many as six sinus gland peptides with

vitellogenesis-inhibiting activities in the whiteleg shrimp

L. vannamei. These VIHs caused varying degrees of inhi-

bition in Vg mRNA expression in ovarian fragments of

M. japonicus incubated in vitro. Marco et al. [88] have

predicted that the presence of a C-terminal amide in two

CHHs of J. lalandii could be responsible for VIH activity,

based on tests done using a P. semisulcatus ovarian incu-

bation system. Recently, Ohira et al. [89] produced a

recombinant VIH from the American lobster H. americanus

and tested its inhibitory activity on ovarian fragments of

M. japonicus in a culture system. The amidated C-terminus

of this recombinant neuropeptide has also been shown to be

responsible for its vitellogenesis-inhibiting activity. In

M. japonicus, cyclic nucleotides such as cAMP and cGMP,

Ca2?, and protein kinase C appear to serve as second mes-

sengers in mediating Vg mRNA synthesis in the ovary [90].

Cyclic AMP and cGMP probably mediate the action of VIH

on Vg synthesis in the follicle cells of the ovary. In this

shrimp, the responsiveness of the ovary to VIH is

high during previtellogenesis, compared to the vitellogenic

ovary [91].

Eyestalk ablation affecting Vg synthesis has also been

demonstrated in the hepatopancreas of the giant freshwater

prawn M. rosenbergii. In the adult female, Vg mRNA

expression increases significantly in the hepatopancreas,

with concurrent elevations in hemolymph Vg levels as well

as gonadosomatic index [36]. More significantly, such

increases in mRNA levels in the hepatopancreas, increased

levels of Vg in the hemolymph, and elevated gonadoso-

matic index have been shown in eyestalk-ablated juvenile

female prawns [92]. In the eyestalk-less isopod Armadil-

lidium vulgare, VIH suppressed Vg synthesis in incubated

fat body tissues [93]. Taken together, the above results are

indicative of the fact that VIH acts on the target tissues

such as ovary, hepatopancreas and fat body that are

involved in Vg synthesis in all species investigated thus far.

Androgenic gland hormone

Vitellogenin is a female-specific hemolymph protein, and

in a sense, can be said to be a secondary sexual charac-

teristic in the reproducing female. In many submammalian

vertebrates such as amphibians and fishes, Vg expression

can be induced in the male liver by exogenous estrogen

[94]. In crustaceans too, Vg induction has been shown in

the fat body of androectomized male isopods [30, 95].

These studies have demonstrated yet another Vg-inhibiting

factor that resides in the androgenic gland of male crusta-

ceans. The VIH-like effects of androgenic gland hormone

are well known in the protandric hermaphrodites. In the

hermaphroditic caridean prawn Pandalus hypsinotus, Vg is

not expressed in males and immature females, but becomes

detectable from the late male phase associated with the

degeneration of the androgenic glands and the appearance

of vitellogenic oocytes in testicular tissues [96]. In another

sexually plastic crustacean, the freshwater crayfish

C. quadricarinatus, Vg is not expressed in intersex indi-

viduals, while transcription of the gene is induced in the

hepatopancreas when the androgenic glands are removed

[97, 98]. Evidently, the androgenic gland plays an essential

role in negatively regulating the expression of the female-

specific Vg gene in intersex individuals.

Mandibular organ inhibitory hormone

Just as the glandular Y-organ is controlled by MIH from the

X-organ/sinus gland, and with the analogy of allatostatins
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controlling juvenile hormone synthesis by the corpora allata

in insects, the synthesis of crustacean juvenoid, MF, in the

mandibular organs (MOs) is inhibited by an eyestalk neu-

ropeptide named MOIH [99]. First described in the spider

crab Libinia emarginata, MOIH exists in three forms, all of

which repress MF synthesis to a degree of 70–80% [100].

However, the crude extract of the sinus gland showed more

than 90% inhibition, suggesting that there is a combined

effect of a group of neuropeptides from the eyestalk that

controls MF synthesis. MOIH isoforms of L. emarginata

have a molecular weight of 8,400 Da, while sharing other

features of CHH family peptides, including N-terminal

blockade by pyroglutamic acid [100]. MOIH was also

characterized biochemically in the shore crab Cancer

pagurus by Wainwrite et al. [101], who identified two iso-

forms (MOIH I and MOIH II) with almost identical amino

acid sequences, except for the replacement of Lys in MOIH I

with Glu at position 33 of MOIH II. In this crab, the sensi-

tivity of MO to MOIH I is high at the beginning of vitello-

genesis and declines drastically during peak vitellogenesis,

indicating a stage-specific role for MF on Vg synthesis

[102]. The mechanism of MOIH action on MF synthesis

involves the inhibition of farnesoic acid O-methyltransfer-

ase (FAOHeT), the enzyme that catalyzes the final step of

MF biosynthesis in the MOs, by affecting the methylation of

FA to produce MF. In C. pagurus, high MF titers occur

before or during early vitellogenesis, and coincide with or

are preceded by elevated levels of putative FAOMeT mRNA

in the MOs [103]. Sequence studies on MOIH I and II

peptides of C. pagurus have revealed their close identity

with MIH and VIH, although none of the CHH peptides

exhibited MOIH activity in this crab [103]. On the other

hand, in the spider crab L. emarginata, all the three isoforms

of MOIH exhibited CHH activity when injected into the

eyestalk-ablated fiddlercrab Uca pugilator [100]. Inhibition

of MF synthesis by MOIH and other CHHs assumes greater

physiological significance in view of the dual role that the

MOs play in the regulation of both reproduction and molting

in decapod crustaceans.

Vitellogenesis-stimulating hormones

It is possible that crustaceans employ multiple hormonal

factors to positively control vitellogenesis. They may be

species specific or combinatorial in action, and they are

varied in chemical nature. They include (1) the neurose-

cretory hormones from the brain/thoracic ganglia, (2)

methyl farnesoate, a structural homolog of insect juvenile

hormone III, and farnesoic acid (FA), secreted by the

mandibular organs, (3) ecdysteroids, and (4) a variety of

steroidal hormones, including estrogen and progesterone of

uncertain origin. Biogenic amines secreted from the central

nervous system also seem to play a pivotal role in the

control of female reproduction by influencing the secretion

of both gonad-stimulatory and -inhibitory neuropeptides.

Although much experimental evidence exists to implicate

these hormonal factors in vitellogenesis, the action of these

hormones at the level of gene transcription in Crustacea is

only beginning to be understood.

Gonad-stimulating hormones

The first evidence for a gonad/vitellogenesis-stimulating

principle in the central nervous system of Crustacea was

obtained by Otsu [104], who noticed precocious ovarian

development in the crab Potamon dehaani after the

implantation of thoracic ganglia. Following this discovery,

several attempts have been made to implant brain and tho-

racic ganglia or to inject their extracts to stimulate vitello-

genesis in different crustacean species [105–107]. In this

context, the role of differing biogenic amines in influencing

the release of neurosecretary peptides from different

neurosecretory neurons is relevant to understanding their

integrative role in crustacean vitellogenesis. That the

administration of serotonin (5-hydroxytryptamine; 5-HT) is

effective at stimulating ovarian maturation was indicated

first in the fiddler crab, Uca pugilator [108]. Subsequently,

Sarojini et al. [109, 110] demonstrated in the freshwater

crayfish Procambarus clarkii that dopamine (DA) inhibits

5-HT-stimulated ovarian maturation by inhibiting the

release of gonad-stimulating hormone (GSH) from the brain

or thoracic ganglia, or enhancing the release of VIH from the

eyestalk neurosecretory centers. The opposing effects of

5-HT and DA on vitellogenesis were demonstrated in sev-

eral other crustacean species, including the Indian spiny

lobster Panulirus homarus [111]; but in the giant freshwater

prawn M. rosenbergii, Chen et al. [112] provided experi-

mental evidence that the site of action of DA is at the tho-

racic ganglia through the inhibition of the release of GSH,

and not by the enhancement of VIH secretion.

Crustacean hyperglycemic hormones secreted from the

X organ/sinus gland complex of the American lobster

H. americanus are shown to have multiple functions,

including molt inhibition and gonad stimulation [113]. In

this lobster, CHH exists as two isoforms, CHH-A and

CHH-B. Interestingly, both GIH and CHHs are produced in

the same neuroendocrine cells. mRNA levels as well as

CHH titers in the hemolymph indicate that CHH-B

expression in particular peaks during intense vitellogenesis

[113]. Furthermore, the hemolymph levels of GIH are high

when CHH is low, and vice versa. CHH-A and CHH-B are

also present in parts of the nervous system other than the

optic ganglia, raising the question of whether they are the

same substances as the so-called gonad-stimulating hor-

mones of the brain and thoracic ganglia.
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Molt-inhibiting hormone

The cross-functional role of the CHH family of peptides is

also found with MIH of several decapod crustaceans [114].

MIH exists in two isoforms, MIH-A and MIH-B, in the

penaeid shrimp M. ensis. Interestingly, MIH-B is expressed

not only in the X-organ/sinus gland, but also in the ventral

nerve cord, thoracic ganglia, and brain during vitellogen-

esis. The levels of MIH-B mRNA transcript in the eyestalk

decrease in the initial phase of gonad maturation and

increase towards the end of maturation, suggesting a

stimulatory role for this neuropeptide in the initiation of

vitellogenesis. Further, the injection of rMIH-B delayed the

molting cycle of the maturing female [114] and increased

levels of Vg mRNA expression and Vg synthesis in the

ovary and hepatopancreas of this shrimp [115]. Injection of

MeMIH-B dsRNA into female shrimp also caused a

decrease in MeMIH-B transcript levels in the thoracic

ganglia and eyestalks. Similarly, in C. sapidus, Zmora et al.

[116] recently found that MIH titers are significantly higher

in the mid-vitellogenic stages rather than in the early

vitellogenic stages. While high MIH levels during inter-

molt suppress molt hormone synthesis by the Y-organs in

the anecdysic blue crab C. sapidus [117], the specific ele-

vation of MIH coincides with mid-vitellogenesis, when Vg

transcription and translation is intense, which is noteworthy

[117]. The stimulatory role of MIH in Vg synthesis is

further substantiated by the specific binding to its receptors

in the hepatopancreas followed by the modulation of a

cAMP pathway involved in the Vg synthesis of C. sapidus.

In contrast, the mode of action of MIH on the Y-organs

occurs via binding to high-affinity receptors and increasing

the levels of cGMP in C. maenas [118]. Actinomycin D

blocks the stimulatory effects of MIH on Vg mRNA and

Vg synthesis, while cycloheximide lowers only Vg levels,

confirming the role of MIH in Vg transcription and trans-

lation [117]. In this way, MIH and GIH have important

roles in the integrative control and coordination of molting

and reproduction in decapod crustaceans. In the anecdysic

crab C. sapidus, as well as the penaeid shrimp M. ensis,

MIH achieves this coordination by stimulating Vg

synthesis and, at the same time, extending the intermolt

conditions, making it favorable for vitellogenic activities.

Gonadotropin-releasing hormone

The recent discovery of the neuropeptide gonadotropin-

releasing hormone (GnRH) in the central nervous system

(CNS) of M. rosenbergii gives further evidence that verte-

brate-like steroidal control of vitellogenesis is possible in

crustaceans [119]. GnRH is a well-known decapeptide ini-

tiating hormonal induction in the brain–pituitary–gonadal

axis in vertebrates [120]. Several studies have reported on

the occurrence of GnRH or GnRH-like peptides in diversi-

fied invertebrate phyla ranging from corals to prochordates.

In many invertebrates, especially the molluscs, the synthesis

of GnRH is related to reproductive activities [119]. GnRH

peptides have been demonstrated by immunocytochemistry

in the CNS of the giant freshwater prawn M. rosenbergii;

however, interestingly enough, they are also found in the

previtellogenic as well as early vitellogenic oocytes, sug-

gestive of a specific role in ovarian maturation in this prawn

[119]. Likewise, in the tiger prawn P. monodon, GnRH-I

immunoreactivity was also localized to the follicular cells of

proliferative, vitellogenic, and mature ovaries [121]. As

expected, ir-GnRH in shrimp was more closely related to

octGnRH and lGnRH-III than to other forms. Hepatopan-

creatic extract from P. monodon could induce luteinizing

hormone (LH) release from rat anterior pituitary glands in

vitro, demonstrating the potential role of LH in crustacean

reproductive function [122]. In M. rosenbergii and

P. monodon, immunoreactivity for GnRH has also been

found in the neurons as well as the nerve fibres innervating

such neurons in thoracic ganglia, suggesting that they reg-

ulate the synthesis and release of serotonin, as well as of

GSH neuropeptides that are involved in the stimulation of

oocyte maturation. Moreover, their occurrence in late pre-

vitellogenic and early vitellogenic oocytes could imply a

stimulatory role for GnRH in the synthesis and release of sex

steroids in the ovaries of these decapods, as reported in the

protochordate Ciona intestinalis [123]. Alternatively, they

could be involved in the control of ovarian maturation and

ovulation, as in mollusks [124]. With this preliminary data, it

is not possible to postulate a mechanism for GnRH action in

gonadal control in Crustacea, especially in the absence of a

verterbrate-like pituitary in these invertebrates. However,

an early report is suggestive of the stimulation of oogenesis

in the sand shrimp Crangon crangon by a human gonado-

tropin [80].

Methyl farnesoate and farnesoic acid

Hinsch [125] first revealed a functional role for MF from her

observations that the active MO implants stimulated ovarian

growth in the immature female spider crab Libinia emargi-

nata. Subsequent measurement of MF levels in the hemo-

lymph and MOs demonstrated increased synthesis and

secretion of MF during vitellogenesis in this crab, suggest-

ing a role in crustacean reproduction [126]. In the blue crab

Cancer pagurus, MF concentrations in the hemolymph

varied throughout ovarian development, exhibiting a peak at

the beginning of secondary vitellogenesis (140 lg/ml) and

falling to basal levels thereafter [102]. Rodriguez et al. [127]

showed the positive effects of MF on oocyte growth when

MF was injected alone or in combination with 17b-estradiol

in the crayfish Procambarus clarkii. In addition, a higher
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level of incorporation of labeled leucine was also induced by

MF in isolated pieces of ovary. Obviously, MF has a positive

influence on vitellogenic activity within the ovary of this

crayfish. Interestingly, crayfish ovary has been repeatedly

shown to engage in the autosynthesis of yolk proteins, unlike

many other decapod crustaceans [1]. That MF has an influ-

ence on Vg uptake into the ovary was also revealed in the

finding that MF injection activated protein kinase C, an

isoenzyme involved in Vg uptake by oocytes and follicle

cells of the crayfish Cherax quadricarinatus [128].

However, recent studies have indicated that MF has no

effects on Vg gene expression in the hepatopancreas of

shrimp (M. ensis), lobster (H. americanus), and crab (Cha-

rybdis feriatus) [19, 42, 43]. Using in vitro explant culture,

the above studies showed that the treatment of hepatopan-

creas fragments with FA, a precursor to MF, resulted in the

enhanced expression of the Vg gene. In a more recent study

on H. americanus, Tiu et al. [129] revealed that the com-

bined use of FA and 20E increased HaVg1 gene expression

synergistically in the hepatopancreas.

Previous studies indicated three major physiological

effects of MF: regulation of reproduction, molting [130–

132], and juvenile development [133]. Hence, in many of

the reported results on reproduction, MF’s effect may result

from its action as a juvenilizing or molting hormone.

Hence, the physiological status of the experimental animal

is a significant factor in deciding its effect. However, in a

recent report on the shrimp Penaeus monodon, Marsden

et al. [134] indicated an inhibitory role for MF in the late

stage of ovary development, which is unlikely to be due to

its molting or juvenilizing effect. MF also has a purported

role in male reproduction and sexual behavior [135–137].

Nevertheless, recent gene expression studies (reviewed

above) may indicate a combinatorial effect of FA with 20E

on Vg synthesis in the hepatopancreas of several decapods.

Crustaceans do not produce juvenile hormone (JH), but

several workers have used exogenous JHs to induce vitel-

logenesis in decapod crustaceans. The effects of JH on

crustacean vitellogenesis vary greatly among species. For

example, methoprene inhibited vitellogenesis in the xant-

hid crab Rhithropanopeus harrisii [138], but seemed to

promote vitellogenesis in the spider crab Libinia emargi-

nata [127]. In the field crab Paratelphusa hydrodromous,

Sasikala and Subramoniam [139] found a stimulatory

effect of injected JH on vitellogenesis. Despite the non-

occurrence of JH in crustaceans, a JH-responsive element

has been recently reported in the promoter region of the

Vg gene of a cladoceran, Daphnia magna [48]. These

authors showed the occurrence of a nucleotide sequence,

in-between two Vg genes, that resembled juvenile

hormone-responsive and ecdysone-responsive elements in

D. magna. When JH agonists, such as pyriproxyfen and

fenoxycarb were injected, there was a strong repression of

the Vg gene expression in D. magna. The occurrence of

JH-responsive elements in Daphnia Vg may be only a

remnant of the progressive evolution to other hormonal

effector molecules that developed later in crustaceans.

Steroidal control of vitellogenesis

Ecdysteroids

Ecdysteroids are the principal hormonal factors in the

inducement of molting in all arthropods. They also play a

definitive role in the transcriptional activation of the Vg

gene in dipteran insects and certain ticks and mites [140].

Although a similar role for ecdysteroids in crustacean

vitellogenesis is inconclusive, several reports implicate its

role in female reproductive activity. For example, Arvy

et al. [141] found evidence that there is a rise in hemo-

lymph ecdysteroids coincident with the initial stages of

gametogenesis, e.g., oogonial and spermatogonial mitoses

in the shore crab Carcinus maenas. In amphipods and

isopods, hemolymph Vg levels parallel ecdysteroid titers

during the vitellogenic cycle, suggesting a role in Vg

synthesis [142]. In the shrimp Lysmata seticaudate, vitel-

logenin synthesis occurs under a high titer of ecdysone

[143]. Similarly, in the freshwater prawn M. nipponense,

Okumura et al. [144] found a close correlation between

hemolymph ecdysteroid titer and the corresponding ovar-

ian maturation stages during the reproductive molt cycle.

Similarly, in the crab E. asiatica, the 20-hydroxy ecdysone

(20E) titer in the hemolymph showed a gradual rise in the

intermolt stage corresponding to ovarian maturation,

whereas there was a rapid increase in 20E levels during the

premolt stage [71]. In the lobster H. americanus, 20E could

also stimulate HaVg1 gene expression in the ovary alone or

in combination with FA [42]. Notwithstanding these posi-

tive effects of ecdysteroids on vitellogenesis, Demeusy

[145] showed the total noninvolvement of ecdysteroids in

vitellogenesis of the shore crab Carcinus maenas, as

Y-organ removal did not halt this process. In the anecdysic

oxyrhynchan crab Acanthonyx lunulatus, the Y-organ

degenerates at the pubertal molt, and there are then two

more vitellogenic cycles that are completed in the absence

of ecdysteroids [146]. In M. rosenbergii and P. monodon,

both hemolymph and ovarian ecdysteroid levels declined

from the immature to the late vitellogenic ovarian stages

[147, 148].

The question of ecdysteroid control of vitellogenin syn-

thesis in Crustacea can be resolved only by molecular

studies pertaining to their receptor activities. In crustaceans,

ecdysteroid receptor (EcR) has been identified in the blas-

timal tissues of regenerating limbs of Uca pugilator, but it

dimerizes with retinoid X receptor (RXR) [149]. In another
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study, Durica et al. [150] found the coexpression of these

two receptors (UpEcR and UpRXR) in the ovary of

U. pugilator during the ovarian cycle, suggesting that the

ovary is a potential target tissue for ecdysteroid action.

Further work is necessary to ascertain whether this receptor

activity is related to the ovarian synthesis of yolk protein.

Interestingly, Tokishita et al. [48] have recently described

the occurrence of an ecdysone-responsive element in the

upstream of the vitellogenin gene in a cladoceran, Daphnia

magna. This, along with other binding sites for E74, E75,

and those for GATA factors in the D. magna genome, sug-

gest that ecdysteroids activate the transcription of D. magna

Vg genes, as in insects [151], although this activation is

antagonized by JH agonists [152]. It should be noted here

that there is significant sequence homology between

D. magna and insect Vgs (see above).

Vertebrate steroids

Vertebrate steroids such as estradiol and progesterone, toge-

ther with their metabolic products, have been identified in the

ovary and hepatopancreas of several decapod crustacean

species [78]. These steroid hormones exhibit characteristic

fluctuations during gonadal maturation, indicating a role in

the control of reproduction. In the tiger prawn Penaeus

monodon, both 17b-estradiol- and progesterone in free and

conjugated forms increase in the ovary during vitellogenesis,

but fall in the post-vitellogenic stages [153]. Two of their

metabolic precursors, pregnenolone and dehydroepiandros-

terone, also show a peak during the major vitellogenic stages

within the ovary, suggesting that a biosynthetic pathway is

operational in the crustacean ovary, in a similar manner to that

of vertebrates. In P. monodon, 17b-estradiol and progesterone

levels in the hemolymph, hepatopancreas and ovary were also

shown to fluctuate closely with those of serum vitellogenin

levels during ovarian maturation [154]. Similar fluctuations

of these hormones during the ovarian cycle have also been

reported in several decapods such as the brachyuran crab

S. serrata [28], the spiny lobster P homarus [155], the

anomuran crab E. asiatica [156], and the giant freshweater

prawn M. rosenbergii [156]. In M. rosenbergii, such hor-

monal fluctuations were found only during the reproductive

molt cycle, whereas during the nonreproductive molt char-

acterized by a nondeveloping inactive ovary, the level of

estradiol in the hemolymph was not detectable at any molt

stage. The immature ovary and hepatopancreas showed only

basal levels of estrogen during the nonreproductive molt

cycle, and progesterone levels were totally undetectable.

These studies suggest that estradiol potentially plays a role in

crustacean vitellogenesis, either by upregulating Vg synthesis

as in vertebrates, or by stimulating certain metabolic path-

ways initiated during vitellogenesis, such as lipogenesis and/

or ion transport.

Further evidence of the influence of vertebrate steroids on

vitellogenesis has been adduced from the injection of

exogenous hormones. In Penaeus japonicus, injection of

progesterone and 17a-hydroxyprogesterone induced ovarian

maturation in M. ensis [157] and stimulated Vg secretion in

P. japonicus [158]. In vitro culture of previtellogenic ovary

of immature M. japonicus with 17b-estradiol resulted in the

inducement of Vg synthesis into the medium, as well as the

appearance of primary vitellogenic oocytes [159]. Simi-

larly, explants of hepatopancreas of M. ensis, incubated in

vitro with 17b-estradiol and progesterone stimulated Vg

mRNA synthesis in the early vitellogenic ovary of the

crayfish Cherax albidus [160]. Thus, 17b-estradiol and

progesterone have positive effecte on Vg synthesis both in

the ovary and hepatopancreas in these species. In the am-

phipods, a vitellogenesis-stimulating ovarian hormone

(VSOH) has been proposed to induce Vg synthesis in the fat

body [161]. With the knowledge that the ovary is the site of

synthesis of the vertebrate sex steroids that stimulate Vg

synthesis, could these steroids then be the VSOH suggested

for amphipods?

Injection of exogenous estradiol resulted in the stimula-

tion of vitellogenesis in the ovary of premature female sand

crab E. asiatica, in addition to eliciting a new Vg fraction in

the hemolymph. Significantly, M. rosenbergii in the

nonreproductive molt cycle also initiated vitellogenesis

following estradiol injection (unpublished observation).

In oviparous vertebrates, the synthesis of vitellogenin is

tighhtly controlled by an estrogen hormone signal trans-

duction pathway, which is mediated by estrogen receptor

and heat shock protein 90 (Hsp90) [162]. A recent report by

Wu and Chu [163] on the Hsp90 activity during vitello-

genesis in M. ensis has indicated a strong correlation

between estrogen hormones and Hsp90 expression,

suggesting that the expression of Vg may be under the

regulation of estrogen through a mechanism similar to that in

vertebrates.

The occurrence of nuclear receptors for both proges-

terone (PR) and estrogen (ER) has recently been reported

in the freshwater crayfish Austropotamobius pallipes [164].

By using immunohistochemistry and western blotting

approaches, these authors showed the presence of PR in the

ovary and hepatopancreas and ER only in the hepatopan-

creas of this crayfish. Whereas ER has a direct role in the

transcriptional control of Vg gene in hepatopancreas, the

presence of PR in the hepatopancreas of A. pallipes sug-

gests that progesterone plays a genomic role mediated by

its receptor, as opposed to the hypothesized function of

progesterone as a precursor of estradiol necessary for

vitellogenesis [165]. EST analysis of the cDNA library

established from vitellogenic ovary of P. mondon revealed

the expression of a progesterone receptor-releated protein

P23 (Pm-p23) during vitellogenesis. In situ hybridization
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also indicated that Pm-p23 was localized in the ooplasm of

previtellogenic oocytes [166].

Future perspectives

A proper understanding of all aspects of vitellogenesis is

necessary to formulate control measures to increase egg

production in commercially important decapod crusta-

ceans. Recent molecular and immunological approaches to

the study of crustacean vitellogenesis have appreciably

improved our understanding of the mechanism and control

of yolk formation. Gene expression studies relating to

vitellogenin synthesis in different organs including the

ovary have shed new light on resolving the problem of yolk

precursor synthetic sites. A general consensus that has

emerged from gene expression studies is that penaeid

shrimp produce yolk both in ovary and hepatopancreas,

whereas in many other decapods such as crabs and lobsters,

vitellogenin synthesis is restricted to the hepatopancreas.

Yolk synthesis within the ovary may be considered an

earlier evolutionary feature in marine shrimp in view of

scanty yolk in the egg combined with the reproductive

behavior of free spawning and the occurrence of nauplius

larvae. Conversely, crabs and other species belonging to

the suborder Pleocyemata lay numerous yolk-laden eggs

and incubate them in a brood until the eggs hatch into

advanced zoea larvae. These forms naturally rely on the

hepatopancreas for increased yolk precursor production.

Our knowledge of the hormonal control of vitellogenesis

is mainly based on experimental studies involving the

extirpation or implantation of endocrine organs of decapod

crustaceans. With the advent of gene expression studies on

Vg synthesis using in vitro culture systems, verification of

hormonal influence at the transcriptional control level

becomes possible. In this respect, the cross-functional

activities of the CHH family of peptides have revealed their

multiple controlling effects on both vitellogenesis and

molting. Furthermore, hormone receptor expression studies

during vitellogenesis have also adduced evidence on

Fig. 6 A hypothetical model of the neuroendocrine control of

vitellogenesis in decapod crustaceans. Different endocrine pathways

included in this diagram reveal the involvement of various hormonal

factors operating in different crustacean species (see main text for

details). The existence of inhibitory peptides may be unique to

crustaceans, but their cross-functional activity likely fine-tunes the

regulation of vitellogenic activities. PVO previtellogenic ovary,

Vg vitellogenin, MF methyl farnesoate, FA farnesoic acid, 20E
20-hydroxyecdysone, VSOH vitellogenesis-stimulating ovarian hor-

mone, GnRH gonadotropin-releasing hormone. Solid line stimulatory,

broken line inhibitory
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proximate endocrine factors controlling yolk precursor

synthesis in several crustacean species. Vitellogenin gene

expression occurring under the specific influence of FA

secreted by the MOs and 20E in the hepatopancreas as well

as the ovary provides direct evidence that these two organs

are involved in yolk synthesis in shrimp species and to a

certain extent lobsters. Analysis and identification of the

hormone-responsive elements occuring in the Vg gene

regulatory regions are expected to throw more light on this

aspect. The identification of DNA sequences comparable to

these insect hormone-responsive elements in the brachiopod

Daphnia not only points to this possibility, but also indicates

the relatedness of the hormonal regulation of vitellogenesis

between insects and crustaceans. In addition, vertebrate sex

steroids have been thought to have a role in the control of

vitellogenesis in as much as the same hormones control egg

maturation in vertebrates. Expression profiles of estrogen

receptor and progestrone receptor in reproductive tissues

during vitellogenesis in the freshwater crayfish lend support

to the transcriptional control of Vg synthesis by estrogen in

these crustaceans. Evidently, crustaceans employ multiple

hormonal factors often synergistically in the control of

vitellogenesis and related reproductive phenomena in order

to successfully accomplish egg production without affecting

somatic growth. Figure 6 depicts the hypothetical hormonal

controlling mechanisms operating in typical decapod crus-

taceans. The occurrence of multiple hormonal factors in

crustaceans to control reproduction obviously arises from

the condition that both molting and reproduction occur

either sequentially or in an overlapping manner in various

species. Nonetheless, the evolution of endocrine regulatory

mechanisms to control Vg gene expression appears to occur

in the insectan line. It seems promising to imagine that the

common ancestor of insects and crustaceans possessed all

these hormonal factors. Whereas insects went on to use JH

and 20E as the chief gonadotropic hormones in egg pro-

duction, crustaceans experimented with a variety of hor-

monal effector molecules, probably in an attempt to

augment yolk production to meet the enormous demands of

embryonic nutrition. Incidentally, the use of steroidal hor-

mones in Vg gene regulation by vertebrates would have

originated from invertebrates. With all the recent advance-

ments in understanding the endocrine control of crustacean

reproduction, it is now time for the reproductive endocri-

nologists to use such information in their efforts to control

the reproduction of commercially significant crustaceans.
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