
Vol.:(0123456789)

Statistics in Biosciences
https://doi.org/10.1007/s12561-024-09430-z

1 3

ORIGINAL PAPER

The Bayesian Group‑Sequential Predictive Evidence Value 
Design for Phase II Clinical Trials with Binary Endpoints

Riko Kelter1   · Alexander Schnurr1

Received: 14 August 2023 / Revised: 19 March 2024 / Accepted: 25 March 2024 
© The Author(s) 2024

Abstract
In clinical research, the initial efficacy of a new agent is typically assessed in a phase 
IIA study. Bayesian group-sequential designs are often based on predictive prob-
ability of trial success. In this paper, the novel Bayesian group-sequential predictive 
evidence value design is introduced, and we prove that the predictive probability 
approach is a special case of it. A comparison with Simon’s two-stage and com-
peting Bayesian designs based on phase IIA cancer trials is provided. Results show 
that the novel design can improve operating characteristics such as the false-posi-
tive rate, probability of early stopping for futility and expected sample size of the 
trial. Given these advantages, the predictive evidence value design constitutes an 
important addition to the biostatistician’s toolbelt when planning a phase IIA trial 
the Bayesian way, in particular, when small sample sizes and a large probability for 
early termination under the null hypothesis are desired.

Keywords  Phase II trial · Binary endpoints · Group-sequential design · Stopping for 
futility · Bayesian statistics

1  Introduction

Bayesian group-sequential phase II designs for clinical trials have received 
increasing attention in the last years [4, 6, 7, 9, 30]. According to a recent review 
of [13], Bayesian adaptive designs have attracted keen interest in various dis-
ciplines, from a theoretical and practical viewpoint. This is partially due to the 
increased flexibility which Bayesian analysis offers over frequentist designs [38], 
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and partially due to the availability of software solutions which simplify the 
application for practitioners [1, 32].

After preliminary information is obtained about the safety profile and dose of a 
new drug in a phase I trial, the next step consists of determining whether the drug 
has sufficient efficacy to justify further development [1]. In phase IIA studies, the 
primary endpoint often is binary and measures response or no response, respec-
tively failure or no failure. For example, in cancer trials the clinical response can 
be defined as complete or partial response, measured based on tumor volume 
shrinkage, for details see the RECIST criteria in solid tumors [5, 46]. While the 
definition of response or no response varies in different contexts, phase IIA stud-
ies share the idea that the initial efficacy assessment is often designed as an open-
label single-arm study which recruits between 40 to 100 patients in a multi-stage 
setting [1, 33]. The general idea behind multi-stage designs is to stop the trial 
early if no efficacy can be found based on an interim data analysis. The trial is 
thus monitored after recruiting new patients and is possibly stopped for futility 
or efficacy depending on the observed data. The approach of multi-stage designs 
goes back to [12], who proposed Gehan’s design for cancer drug development, 
and other approaches are Simon’s two-stage designs [41]. Both of these are two-
stage designs, that is, a first stage of patient recruiting is observed which ensures 
a minimum sample size, and then a second stage of data accrual follows depend-
ing on the interim analysis results of the available data. One possible benefit of 
two-stage designs is that if the treatment shows no efficacy in the first stage, the 
trial can be stopped early for futility to avoid wasting time and resources. How-
ever, there are also sequential parallel comparison designs which are not designed 
to stop early.

Traditional frequentist two-stage designs such as Simon’s optimal design were 
constructed to minimize the expected or maximum sample size under the null 
hypothesis that the treatment is ineffective. Let p ∈ [0, 1] denote the unknown prob-
ability of response to the treatment, henceforth called the response rate, and p0 
is a predefined threshold for judging the efficacy of the new drug. If p ≤ p0 , the 
null hypothesis H0 is true and the drug is considered ineffective for practical pur-
poses. As a consequence, the trial can be stopped for futility. Based on the result 
obtained in the first stage with n enrolled patients – out of which x show a response 
– the optimal design specifies when to stop the trial for futility (when X is small 
enough, that is, X ≤ r1 for some positive r1 ) while simultaneously controlling the 
type I error � and type II error � at a prespecified level. The values of n and x in 
turn depend on the required restrictions for � and � . Also, an operating characteristic 
which is usually of interest is the probability of early termination (PET), which is 
PET(p0) = P(Early termination|H0) = P(X ≤ r1|H0) . Another operating character-
istic of relevance is the expected sample size �[N|p0] under H0 and �[N|p1] under 
H1 , where N denotes the random variable which measures the number of patients 
enrolled in the trial. These are upper bounds on the required sample size of the trial: 
When p < p0 , fewer patients will be required to stop for futility compared to when 
p = p0 . When p > p1 , fewer patients will be required to stop early for efficacy com-
pared to when p = p1 . Among all designs which fulfill a prespecified type I error 
rate � and type II error rate � , Simon’s optimal two-stage design minimizes �[N|p0] 
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and Simon’s minimax two-stage design minimizes Nmax , the maximum number of 
patients that can be enrolled in the trial.

1.1 � Setting

In this paper, we focus on the hypothesis testing framework of a phase IIA clinical 
trial which is designed to test

for some p0 ∈ (0, 1) where p0 represents a prespecified response rate of the current 
standard treatment. In practice, p1 denotes a desired target response rate of a new 
treatment under consideration, where p1 > p0 [36]. Thus, (a lower boundary of) the 
power is calculated for p1 . We assume that the trial is designed to fulfill the follow-
ing requirements:

for some prespecified false-positive and false-negative rates � and � . When the ine-
qualities (1) and (2) hold, we speak of a calibrated design.1 Furthermore, we assume 
that given the probabilities p0, p1 , the following trial operating characteristics are 
of interest: (1) the probability of early termination (PET) under H0 and H1 ; (2) the 
expected sample size �[N|p0] and �[N|p1] of the trial under H0 and H1 . We denote 
by PET(p0) the probability to stop early for futility when H0 holds, and by PET(p1) 
the probability to stop early for efficacy when H1 holds. Next to (1) and (2), interest 
lies in robustness to deviations from the study protocol. The latter includes false-
positive control at the required level when a different number of interim analyses is 
carried out as previously planned. With regard to (2) it is of particular interest how 
many patients on average are required under H1 until one can state with certainty 
that the drug works, if the trial is conducted as planned until the end.

1.2 � Outlook

In this paper, we introduce a novel response-adaptive design for clinical trials with 
binary endpoints based on Bayesian evidence values. Therefore, the next section 
first outlines the predictive probability approach. The following section then outlines 
the theory of Bayesian evidence values. Bayesian evidence values have recently 

H0 ∶ p ≤ p0 versus H1 ∶ p > p1

(1)P(Accept new treatment|H0) ≤ �

(2)P(Reject new treatment|H1) ≤ �

1  We stress that due to computational reasons, Bayesian designs sometimes do not fully exhaust the 
boundary (1), as the tradeoff between runtime to calibrate a given design and resulting false-positive 
rate must be considered in practice. This is similar to frequentist tests such as Fisher’s exact test and the 
�2-test for contingency tables, where the former is conservative and the latter fully exhausts the false-
positive rate due to the asymptotic �2-distribution of its test statistic.
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been proposed as a unified approach for Bayesian hypothesis testing and parameter 
estimation.

The section afterwards shows that the predictive probability approach is a special 
case of using Bayesian evidence values for stopping the trial early for futility (or 
efficacy). Theoretical results are provided which clarify the relationship between the 
predictive probability and Bayesian evidence value approach. After that, we intro-
duce the design which makes use of Bayesian evidence values, henceforth called the 
predictive evidence value (PEV) design.

The subsequent section then compares the PEV design to existing approaches, 
including the PP design and Simon’s two-stage design. Therefore, two illustrative 
examples of phase IIA studies are detailed.

The following section investigates the robustness of the PEV design to deviations 
from the trial protocol, including running a different number of interim analyses 
than planned, and unplanned early stopping of the trial. Furthermore, a systematic 
comparison with competing trial designs is provided.

A discussion and outlook for future work concludes the article.

2 � Predictive Probability Approach for Binary Endpoints

In this section, the standard Bayesian group-sequential design based on predictive 
probability is outlined for binary endpoints. Continuous monitoring of trial results 
in a two-stage design in phase II trials with stopping for futility or efficacy is widely 
used, see [4, 8, 45] and [16] for examples.

The null hypothesis H0 ∶ p ≤ p0 is tested against the alternative H1 ∶ p > p1 , 
where p0, p1 ∈ [0, 1] , p0 ≤ p1 and p0 is a predefined threshold for determining 
the minimum clinically important effect [20]. For simplicity, assume a Beta prior 
p ∼ B(a0, b0) is selected for the response rate p, which offers a broad range of flex-
ibility in terms of modeling the prior beliefs about p.

Let Nmax be the maximum number of patients which is possibly recruited during 
the study, and let X be the random variable which measures the number of responses 
in the current n enrolled patients, where n ≤ Nmax . A reasonable assumption is 
that X follows a binomial distribution with parameters n and p, X ∼ Bin(n, p) . The 
B(a0, b0) distribution is a conjugate prior for the binomial likelihood, and thus the 
posterior Pp|X is also Beta-distributed [17]:

The idea of the predictive probability approach consists of analyzing the interim data 
to project whether the trial will result in a conclusion that the drug or treatment is 
effective or ineffective. When n patients have been enrolled in the trial out of which 
X = x show a response, there remain m = Nmax − n patients which can be enrolled 
in the trial. Denote by Y the number of responses in the remaining m = Nmax − n 
patients. If out of these remaining m exactly i respond to the treatment, and the 
conditional probability Pp|X,Y (p > p0|X = x, Y = i) is larger than a prespecified 

p|X = x ∼ B(a0 + x, b0 + n − x)
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threshold �T , say, �T = 0.95 , this will be interpreted as the drug being effective. Effi-
cacy is thus declared when the posterior probability fulfills the constraint

for some threshold �T ∈ [0, 1] . However, as the number Y of responses in the 
remaining m = Nmax − n patients which can be enrolled in the trial is uncer-
tain, this uncertainty must be modeled, too. Marginalizing out p of the binomial 
likelihood yields the posterior predictive distribution which is Beta-Binomial, 
Y ∼ Beta-Binom(m, a0 + x, b0 + n − x) . Additionally, from the conjugacy of the beta 
prior we have the posterior Pp|X,Y (X = x, Y = i) ∼ B(a0 + x + i, b0 + Nmax − x − i) , 
and the expected predictive probability of trial success – henceforth abbreviated 
PP – can now be calculated by weighting the posterior probability of trial success 
Pp|X,Y (p > p0|X = x, Y = i) > 𝜃T when observing X = x and Y = i with the prior 
predictive probability PY|X(Y = i|X = x) of observing Y = i responses in the remain-
ing m = Nmax − n patients, after X = x responses have been observed in the current 
n patients:

where

is an indicator which measures whether the evidence against H0 ∶ p ≤ p0 is large 
enough – that is, Pp|X,Y (p > p0|X = x, Y = i) > 𝜃T – conditional on X = x and Y = i 
or not. The predictive probability PP thus quantifies the expected predictive prob-
ability of trial success. Figure 1 visualizes the PP design.

To employ the approach in practice, futility and efficacy thresholds �L and �U out of 
[0, 1] must be fixed, so that the value of PP can be compared to these thresholds based 
on available interim data X = x . Then, if PP < 𝜃L or PP > 𝜃U , the trial can be stopped 
early for futility or efficacy. Algorithm 1 shows the PP group-sequential design, see 
also [1]. Note that in practice, �U = 1.0 is often preferred because if the drug is effec-
tive one does not want to stop the trial. However, 𝜃L > 0 is important to stop the trial in 
case the drug or treatment is not effective to avoid a waste of resources.

Algorithm 1   Phase IIA predictive probability (PP) design

(3)Pp|X,Y (p > p0|X = x, Y = i) > 𝜃T

(4)

PP = �

[
1Pp|X,Y (p>p0|X,Y)>𝜃T |x

]
= ∫

Y

1Pp|X,Y (p>p0|X,Y)>𝜃T dPY|X=x

=

m∑

i=0

PY|X=x(i) ⋅ 1Pp|X,Y (p>p0|X=x,Y=i)>𝜃T

1Pp|X,Y (p>p0|X=x,Y=i)>𝜃T ∶=

{
1, if Pp|X,Y (p > p0|X = x, Y = i) > 𝜃T
0, if Pp|X,Y (p > p0|X = x, Y = i) ≤ 𝜃T
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Require: n < Nmax recruited patients and X = x observed responses
If PP < θL, stop the trial and reject the alternative hypothesis H1 : p > p0
If PP > θU , stop the trial and reject the null hypothesis H0 : p · p0

Otherwise recruit the next patient until reaching Nmax patients

3 � The Bayesian Evidence Value (BEV)

The last section outlined the Bayesian group-sequential Phase IIA predictive prob-
ability (PP) design. In this section, the theory of Bayesian evidence values is briefly 
outlined and illustrated with an example. The next section then proposes a novel 
Bayesian group-sequential design based on Bayesian evidence values.

The Bayesian evidence value (BEV) was recently proposed as a unification of 
Bayesian hypothesis testing and parameter estimation, which generalizes the Full 
Bayesian Significance Test (FBST). Details on the FBST can be found in [35] and 
[21–23], while the BEV was proposed by [24]. The BEV can be computed in any 
standard parametric statistical model, where 𝜃 ∈ Θ ⊆ ℝ

p is a (possibly vector-val-
ued) parameter of interest, p(y|�) is the likelihood and p(�) is the density of the 
prior distribution ℙ� for the parameter � , and y ∈ Y denote the observed sample 
data, Y being the sample space.

Fig. 1   Structure of the predictive probability (PP) design: The probability to obtain Y = i successes 
is weighted with the probability of success Pp|X,Y (p > p0|X = x,Y = i) > 𝜃T for each i = 0,m . This 
weighted sum is the predictive probability of trial success, should the trial be continued until the maxi-
mum trial size Nmax
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3.1 � Statistical Information, Surprise and the Bayesian Evidence Interval

A natural measure from a Bayesian perspective to quantify the surprise in the 
observed data Y = y is the Bayesian surprise function which compares the posterior 
density and a suitable reference function at a given parameter value � ∈ Θ:

Definition 1  (Bayesian surprise function) Let (Θ,G,P�) be the prior model, P on 
(Y,B) be the statistical model and (Θ,G, {P�|Y ∶ y ∈ Y}) be the posterior model. Let 
� be a �-finite dominating measure on P , and denote by p(�|y) ∶= dP�|Y (�)∕d� the 
corresponding Radon-Nikodým �-density of the posterior distribution P�|Y . Then, 
the Bayesian surprise function s ∶ Θ × Y → [0,∞) is defined as

where r ∶ Θ → [0,∞) is called the reference function.

The inverse of surprise is defined as the Bayesian information as follows:

Definition 2  (Bayesian information function) In the setting of Definition 1, the 
Bayesian information function I ∶ Θ × Y → [0,∞) is defined as

If r(�) ∶≡ 1 , the surprise is smallest for the maximum a posteriori parameter 
value �MAP . Equivalently, the information provided by the maximum a posteriori 
value is largest. A common choice for the reference function r(�) is the prior den-
sity p(�) ∶= dP�(�)∕d� [35]. Then, the Bayesian information function quantifies the 
ratio between prior and posterior density. Importantly, the definition of information 
as given in Definition 2 can be derived as the probabilistic explication of informa-
tion from only few very general axioms, see [14], and is motivated by connections to 
information theory [29, 40]. The Bayesian evidence interval is based on the informa-
tion function I as follows:

Definition 3  (Bayesian Evidence Interval) In the setting of Definition 1, let 
I(�) ∶= p(�|y)∕r(�) be the Bayesian information function for a given reference func-
tion r ∶ Θ → [0,∞) , � ↦ r(�) . The Bayesian evidence interval EIr(�) with reference 
function r(�) to level � is defined as

[24] showed that commonly used Bayesian interval estimates are special cases 
of the EI, and that the EI thus provides an encompassing generalization of various 
Bayesian interval estimates. For r(�) ∶= p(�) and � ∶= k , the EIr(�) evidence inter-
val recovers the support interval as a special case, which was proposed by [47] and 

(5)s(�) ∶=
r(�)

p(�|y)

(6)I(�) ∶=
p(�|y)
r(�)

(7)EIr(�) ∶=

{
� ∈ Θ

||||
p(�|y)
r(�)

≥ �

}
.
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includes the parameter values which have been corroborated by a factor of at least 
k. That is, all � ∈ Θ are included which fulfill p(�|y)∕p(�) ≥ k . Also, for r(�) ∶= 1 
and � ∶= ��% , the EIr(�) evidence interval recovers the standard Bayesian �%-HPD 
interval as a special case if the posterior distribution is symmetric where ��% is the 
�%-quantile of the posterior distribution P�|Y.

3.2 � The Bayesian Evidence Value

It is well known that Bayesian hypothesis tests and parameter estimation can yield 
contradictory results [47]. Although this is seldom the case, the duality between fre-
quentist Neyman-Pearson tests and the corresponding confidence intervals removes 
this separation between testing and estimation for frequentists [2], and the Bayesian 
evidence value was introduced to close this gap. The Bayesian evidence value incor-
porates the Bayesian evidence interval and provides a theory which unifies Bayesian 
hypothesis testing and parameter estimation.

Definition 4  (Bayesian Evidence Value) Let H0 ∶= Θ0 and H1 ∶= Θ ⧵ Θ0 be a null 
and alternative hypothesis with Θ0 ∈ Θ . For a given Bayesian evidence interval 
EIr(�) with reference function r(�) to level � , the Bayesian Evidence Value (BEV) 
EvEIr(�)(H0) for the null hypothesis H0 is defined as:

The corresponding BEV EvEIr(�)(H1) for the alternative hypothesis H1 is defined as:

The BEV EvEIr(�) is inspired by the general approach to consider a (small) inter-
val hypothesis instead of a point-null hypothesis, which was first proposed by [18] 
from a frequentist perspective. Furthermore, the BEV provides a generalization of 
the FBST which champions the e-value as a Bayesian version of frequentist p-values 
[35]. As shown by [3], e-values asymptotically recover frequentist p-values under 
Bernstein-von-Mises regularity conditions, and [24, Theorem  2] showed that the 
BEV EvEIr(�)(H0) includes the e-value of the FBST as a special case. Thus, BEVs 
are, under certain regularity conditions, asymptotically, valid frequentist p-values. 
The test based on EvEIr(�)(H0) is also called the Full Bayesian Evidence Test (FBET), 
or simply Bayesian evidence test. Also, the FBET obtains a widely used decision 
rule for interval hypothesis testing based on the region of practical equivalence 
(ROPE) [27, 28] as a special case, see [24]. Now, the BEV depends on three quanti-
ties: (i) the choice of the hypothesis H0 ⊂ Θ , (ii) the reference function r(�) which 
is used for calculation of the Bayesian evidence interval EIr(�) and (iii) the evidence 
threshold � that is used for deciding which values are included in the Bayesian evi-
dence interval EIr(�).

(8)EvEIr(�)(H0) ∶= ∫EIr(�)∩Θ0

p(�|y)d�

(9)EvEIr(�)(H1) ∶= ∫EIr(�)∩Θ1

p(�|y)d�
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Figure 2 shows two examples of the BEV. The left panel shows X = 4 responses 
out of 10 patients in the illustrative example, and the probability mass colored in 
blue equals the BEV in favor of H1 . The right panel shows the same situation but 
uses a positive evidence threshold � = 1 instead of � = 0 , and as a consequence, 
less probability mass counts as evidence in favor of H1 . The BEV is implemented in 
the R package fbst, which is available on https://​cran.r-​proje​ct.​org/​web/​packa​ges/​
brada/​index.​html and detailed in [21].

4 � The Predictive Evidence Value (PEV) Design

The last section outlined the theory of Bayesian evidence values and the Full Bayes-
ian Evidence Test. Returning to the context of group-sequential Bayesian trial 
designs based on predictive probability PP , this section now introduces a modified 
design based on Bayesian evidence values.

We return to the PP approach, and again consider the competing hypotheses 
H0 ∶ p ≤ p0 and H1 ∶ p > p1 . The novel Bayesian group-sequential design based on 
Bayesian evidence values modifies PP as follows into PPe:

where

Note that the indicator 1EvEIr (𝜈)(H1)>𝜃T
 depends on the value Y = i as well as X = x as 

the evidence interval EIr(�) depends on the observed data. Depending on the value 
of i, the evidence interval thus looks as follows:

(10)

PPe = �

[
1EvEIr (𝜈)(H1)>𝜃T

|x
]
= ∫

Y

1EvEIr (𝜈)(H1)>𝜃T
dPY|X=x

=

m∑

i=0

PY|X=x(i) ⋅ 1EvEIr (𝜈)(H1)>𝜃T

1EvEIr (𝜈)(H1)>𝜃T
∶=

{
1, if EvEIr(𝜈)(H1) > 𝜃T
0, if EvEIr(𝜈)(H1) ≤ 𝜃T
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Fig. 2   Visualization of Bayesian evidence values EvEIr (�)(H1) in the illustrative example based on X = 4 
responses in n = 10 patients, a vague B(1.1, 1.1) prior and H1 ∶ p ∈ (p0, 1] for p0 = 0.2 . Left: Evidence 
threshold � ∶= 0 and flat reference function r(p) ∶= 1 ; Right: Evidence threshold � ∶= 1 and reference 
function r(p) selected as the prior density of the B(1.1, 1.1) prior distribution

https://cran.r-project.org/web/packages/brada/index.html
https://cran.r-project.org/web/packages/brada/index.html
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where y� ∶= {X = x, Y = i} is the observed data of x responses in the n enrolled 
patients and i responses in the remaining m ∶= Nmax − n patients to be possibly 
recruited. Now, PPe differs from the basic predictive probability approach as follows: 

1.	 The reference function r and the evidence threshold � ≥ 0 influence the result
2.	 The posterior probability Pp|X,Y (p > p0|X = x, Y = i) > 𝜃T condition for effectivity 

is replaced by the predictive evidence value condition EvEIr(𝜈)(H1) > 𝜃T for trial 
success, that is, effectivity of the treatment.

PPe thus is a weighted average of the Bayesian evidence expressed by EvEIr(�)(H1) 
in favor of the alternative hypothesis of efficacy and the probability of observing 
Y = i responses in the remaining m = Nmax − n patients when currently n patients 
are enrolled in the trial. Algorithm  2 shows the phase IIA predictive evidence 
value (PEV) design.

Algorithm 2   Phase IIA predictive evidence value (PEV) design

Require: n < Nmax recruited patients and X = x observed responses
If PPe < θL, stop the trial and reject the alternative hypothesis H1 : p > p1
If PPe > θU , stop the trial and reject the null hypothesis H0 : p · p0

Otherwise recruit the next batch of patients until reaching Nmax patients

5 � Relationships Between Both Designs

The last section introduced the PEV design. This section presents new results 
which demonstrate that the PP design is a special case of the PEV design. Theo-
rem 1 establishes this fact:

Theorem 1  If � ∶= 0 and r(p) ∶= 1 , then the predictive evidence value design and 
predictive probability design are equivalent.

Proof  See Appendix A.

Theorem 1 shows that for any Nmax , �T , �L , and any number and time points of 
interim analyses, the PP design is a special case of the PEV design. The follow-
ing Corollary states that due to Theorem 1, the operating characteristics of the PP 
and PEV design coincide under identical priors and when a flat reference function 
r(p) ∶= 1 with evidence threshold � ∶= 0 is used in the PEV design:

(11)EIr(�) ∶=

{
� ∈ Θ

||||
p(�|y�)
r(�)

≥ �

}
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Corollary 1  Let � ∶= 0 and r(p) ∶= 1 and denote �PP and �PPe and �PP and �PPe as the 
false-positive and false-negative rates under H0 ∶ p ≤ p0 for the predictive probabil-
ity and predictive evidence value designs. Then,

Proof  See Appendix A.

Note that Corollary 1 does not require to specify how a Bayesian false-positive error 
is defined.

No matter how one specifies a false-positive error that contributes to �PP (or �PPe ), 
Corollary 1 guarantees that these false-positive error rates will coincide whenever a 
flat reference function and evidence threshold � ∶= 0 are used. The same holds for the 
associated false-negative error rates �PP and �PPe.

A consequence of Theorem 1 is that the above property also translates to other oper-
ating characteristics such as the probability of early termination or the expected sample 
size until early stopping:

Corollary 2  Under the conditions of Theorem 1, the operating characteristics of the 
PP and PEV designs are identical. The latter include the probability of early stop-
ping (PET) and the expected sample size until early stopping as well as their associ-
ated variances, both under H0 and H1.

Proof  Follows from Theorem 1 like Corollary 1.

Theorem 2 below now shows under which conditions the false-positive error rate in 
the PEV design can be reduced so that it is smaller than the one of the PP design.

Theorem 2  Let r(p) ∶≡ 1 . If 𝜈 > 0 , then

Proof  See Appendix A.

6 � Calibration of the PEV Design

The last section provided insights about how the false-positive rate of the PP design 
can be improved by using the PEV design. Theorem 2 yields the key condition which 
we use in this section to propose a default way to calibrate the PEV design. Therefore, 
two choices must be made, the choice of the reference function r and the choice of the 
evidence threshold �.

(12)�PP = �PPe and �PP = �PPe

(13)�PPe ≤ �PP
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6.1 � Choice of the Reference Function

The first choice deals with the reference function r(p). Based on the definition of 
the evidence value, we propose to use a flat reference function r(p) ∶≡ 1 . This has 
two advantages: First, using r(p) ∶≡ 1 implies that the evidence interval measures 
highest-posterior-density regions, because

Thus, for any positive 𝜈 > 0 the evidence interval includes only a highest-posterior-
density region and is equivalent to a highest-posterior-density interval. The larger 
𝜈 > 0 , the smaller this interval will be. This motivates how to choose � as explained 
below.

6.2 � Choice of the Evidence Threshold

Picking 𝜈 > 0 seems reasonable to measure evidence in terms of highest-posterior-
density regions.

Theorem 2 shows that when 𝜈 > 0 holds, the false-positive rate �PPe can decrease 
compared to �PP . Now, Theorem  2 can be made applicable to calibrate the PEV 
design through the following corollary:

Corollary 3  There exists a value � ∈ ℝ+ , so that setting � ∶= � implies that

Proof  See Appendix A.

Corollary 3 shows that we can calibrate the PEV design as follows: Pick a flat 
reference function r(p) ∶≡ 1 and increase � to a large enough positive value. Then, 
the false-positive rate �PPe of the PEV design will – for large enough 𝜈 > 0 – become 
smaller than the false-positive rate of the PP design, �PP.

6.3 � The Four‑Step Calibration

The following four-step calibration algorithm is proposed for the PEV design:

•	 Step 1: Pick values of �T and �U for which the false-positive rate is slightly above 
the desired level �.

•	 Step 2: Increase � until the false-positive rate �PPe of the design decreases below 
the required upper threshold � . Store the smallest evidence threshold for which 
this holds as �c.

•	 Step 3: Check the false-negative rate of the calibrated design with � = �c . If the 
false-negative rate �PPe is above the required threshold � , decrease �L until the 

EIp(�) ∶ =

{
� ∈ Θ

||||
p(�|y)
r(�)

≥ �

}
=

{
p ∈ [0, 1]

||||
p(p|y)
r(p)

≥ �

}
r(p)∶≡1
=

{
p ∈ [0, 1]

||||
p(p|y) ≥ �

}
.

(14)𝛼PPe < 𝛼PP
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false-negative rate decreases below � , and store the largest value of �L for which 
this holds as �c . If this step fails increase Nmax by one batchsize and repeat (or 
return to Step 1, if the resulting Nmax is judged as too large).

•	 Step 4: Analyze the false-positive and false-negative rate of the resulting design 
with � = �c and �L = �c . If the false-positive rate 𝛼PPe > 𝛼 or the false-negative 
rate 𝛽PPe > 𝛽 increase Nmax and return to Step 2 (or return to Step 1, if the result-
ing Nmax is judged as too large).

A few comments are required regarding the above four-step calibration. First, step 
one is usually simple as picking starting values is often easy when Nmax , ninit and 
�U are fixed as specified in Table 1. Here, we denote by ninit the number of enrolled 
patients after which the first interim analysis is performed.

With respect to step 2, the calibrate function of the brada ®package 
– which is outlined in a separate section below—does this automatically.

Step 3 is also automatically done via the calibrate function of the brada 
®package. However, it may happen that for the specified Nmax it is not possible to 
achieve the desired false-positive and false-negative rates. This is also observed in 
some cases considered by [31] for the PP design, and a simple solution is to increase 
Nmax slightly in those situations. We experienced that whenever the sum of false-
positive and false-negative rates �PPe + �PPe ≤ � + � held in Step 1, this problem 
does not occur.

The last step ensures that the calibrated design really achieves the desired operat-
ing characteristics.

6.4 � Runtime and Computational Efficiency

i
The key advantage of the above four-step calibration algorithm is its (1) compu-

tational efficiency and (2) differences in the resulting operating characteristics of the 
design.

The computational efficiency of calibrating the PEV design is understood best 
when compared with the calibration of the PP design. To calibrate the PP design one 

Table 1   Overview of the design parameters for the PEV design

Interpretation Parameter How to choose

Maximum trial size Nmax Take Nmax of Simon’s minimax design
Sample size of first interim analysis ninit Take value of Simon’s minimax design
Threshold to declare trial success �T Calibration parameter
Threshold to stop for futility �L Calibration parameter
Threshold to stop for efficacy �U Default value �U ∶= 1

Number of interim analysis - Domain knowledge
Time points of interim analysis - Domain knowledge / equal-spaced
Reference function r(p) Flat reference function r(p) ∶≡ 1

Evidence threshold � 𝜈 > 0 to reduce false-positive rate
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usually has to search the (�L, �T ) space with a linear search and find combinations of 
�L and �T for which the resulting false-positive rate and false-negative rates result in 
the desired specifications.

In the original paper of [31], this requires to search a grid 
[0.001, ..., 1.000] × [0.001, ..., 1.000] with 10002 points. Making use of �L, �T ≥ 0.5 
which is a reasonable assumption still leaves a grid [0.001, ...0.499] × [0.501, ...1.000] 
of 249001 points. At each of these points a Monte Carlo simulation is required to 
study (A) the false-positive rate under p0 and (B) the false-negative rate under p1 . 
The Monte Carlo simulations also must include enough repetitions m to achieve 
a small enough Monte Carlo standard error of the false-positive and -false-neg-
ative rates, compare [34]. Suppose m = 1000 Monte Carlo repetitions suffice. 
Then 249001 ⋅ 1000 ⋅ 2 = 498002000 trials must be simulated for the PP design. 
Depending on Nmax and the number of interim analysis and first interim analysis 
time point the runtime of a single repetition varies, and under the assumption that 
m = 1000 Monte Carlo repetitions take ≈ 5 seconds (which is optimistic, even 
under full parallelization using multiple cores based on the implementation in the 
brada package detailed below), the PP grid-search calibration takes approximately 
250000 ⋅ 2 ⋅ 5 ≈ 2490010 seconds, which is equal to 28.82 days. Shifting to a high-
performance-computing cluster with, say, 10 nodes each fully parallelized then 
reduces the runtime to about 3 days, which is still very long. In contrast, the calibra-
tion of the PEV design via the four-step calibration can be achieved in usually less 
than an hour.

Concerning point (2), the trial operating characteristics which result from the 
PEV calibration algorithm differ compared to the characteristics obtained via cali-
brating the PP design via a grid-search. The two examples in the next section illus-
trate these differences in detail.

6.5 � Overview of the Design Parameters

In closing this section, we present an overview about the parameters that can be 
used to calibrate the PEV design in Table 1.

As noted by [31], the calibration parameters �T and �L have the following effects: 
Increasing �T decreases the false-positive rate and power to stop for efficacy, 
decreasing �T increases the false-positive rate and power to stop for efficacy. In con-
trast, decreasing �L decreases the false-negative rate and power to stop for efficacy, 
and increasing �L increases the false-negative rate and power to stop for efficacy.

Table  1 shows that we adopt Nmax and ninit from Simon’s minimax two-stage 
design, and set �U to 1 by default (as we usually do not stop the trial when the drug 
works). The number of interim analyses must be chosen from domain knowledge. 
However, in practice it is often unrealistic to monitor after each patient and a realis-
tic number of interim analysis possibly spans from 1 − 4 . This is due to logistic and 
administrative reasons.

The key calibration parameters that remain are �L, �T and � as the rest of the 
parameters have sensible default choices. Note that we always use the flat reference 
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function, so in the PEV design essentially adds one calibration parameter compared 
to the PP design, namely �.

7 � Comparison Between Predictive Probability, Predictive Evidence 
and Simon’s Two‑Stage Design

7.1 � Competing Designs

We select the predictive probability design, Simon’s minimax two-stage design 
(except for Example 2) and the BOP2 design as competing designs to which we 
compare the calibrated PEV design. Details on other possible competitors and the 
BOP2 design are provided in the supplementary material.

7.2 � Example 1—A Lung Cancer Trial

First, we use the lung cancer trial example also used by [31]. The primary objec-
tive of the study was to assess the efficacy of a combination therapy as front-line 
treatment in patients with advanced nonsmall cell lung cancer. The study involved 
the combination of a vascular endothelial growth factor antibody plus an epidermal 
growth factor receptor tyrosine kinase inhibitor. The primary endpoint is the clinical 
response rate, that is, the rate of complete response and partial response combined, 
to the new treatment.

The current standard treatment yields a response rate of ≈ 20% , so we have 
p0 = 0.2 . The target response rate of the new regimen is 40% , so p1 = 0.4.

First, Simon’s two-stage design is applied. Therefore, we follow [31] in specify-
ing � ≤ 0.1 and � ≤ 0.1 both for the minimax and optimal design.

For the calibrated PP design we use the values Nmax = 36 which is also the maxi-
mum sample size of Simon’s two-stage minimax design, perform the first interim 
analysis after 10 patients and consistently monitor the result after each new patient. 
We investigate deviations from this unrealistic monitoring plan in a separate sec-
tion below. Note also that Simon’s two-stage minimax design makes the interim 
analysis after 10 patients, too. We use the B(0.2, 0.8) prior for p that is also used by 
[31] to allow for a fair comparison of both designs. The thresholds �T , �L are then 
taken from the grid-search that is performed by [31] which results in �T = 0.922 and 
�L = 0.001 . Using these values is simple, finding them is not. Finding these values 
requires a computationally very expensive grid-search as discussed above.

Calibration of the PEV design proceeds by following the four-step calibration 
algorithm outlined in the last section. An R package has been created to facilitate 
application of the PEV and PP designs, the R package brada. The abbrevia-
tion brada stands for Bayesian response-adaptive design analysis, and currently 
includes the group-sequential PP and PEV designs. It automatically sets up a 
cluster to make full use of multicore environments and parallelizes and vectorizes 
computations automatically. This achieves efficient runtimes in practice and the 
package allows to fit a trial design with the brada function, plot and summarize 
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the results with plot and summary functions, and calibrate the PEV design via 
the four-step algorithm via the calibrate function. Details on the package can 
be found in the accompanying Quarto file provided at the Open Science Founda-
tion under https://​osf.​io/​zmfyn/?​view_​only=​34806​7ed1c​cc498​da7e4​a11d9​49c84​
df. Further information is also provided in the separate section on the package.

We implement the four-step calibration algorithm as follows with the help of 
the brada ®package:

•	 Step 1: To calibrate the PEV design with the brada package we start with 
liberal thresholds �T = 0.8 and �L = 0.1 . We investigate the false-positive and 
false-negative rates with a call to the brada function of the brada R pack-
age, call the plot function in R for the resulting object and obtain Fig. 3.

The standard output when plotting a brada object in the brada package is a 
plot which shows the simulated trial trajectories together with the percentages of 
how many trials stopped early for futility or efficacy, and a boxplot which shows 
the distribution of the sample size of the trial. The horizontal black lines in the 
trajectory plot are the thresholds �U = 1 and �L = 0.1 where the trial is stopped for 
efficacy and futility. Note that due to �U = 1 , the trial is never stopped for efficacy. 
As a consequence, the percentage of trials which is stopped for efficacy accord-
ing to the plot is actually the percentage of trials which finishes at Nmax . Under 
H0 , this percentage can be interpreted as a false-positive because the trial finishes 
although it should be stopped for futility. Under H1 , this percentage can be inter-
preted as the power to reject H0 , because the trial finishes and is not stopped for 
futility.

The dashed-blue vertical line in the trajectory plots (at the 35th patient) visual-
ize the time of the last interim analysis. If a trajectory has not passed �L or �U at 
this point, the advantage of a group-sequential design has vanished because Nmax 
patients were recruited.

Fig. 3   Results of the uncalibrated PEV design under H0 ∶ p ≤ 0.2 (left) and H1 ∶ p > 0.2 (right). Tra-
jectories show simulated trial runs, where blue lines show trials that reach the threshold �U and red lines 
are trials which reach �L . The expected sample size under H0 (left panel) and H1 (right panel) are shown 
at the top of the panels, together with the probability to stop for efficacy. At the bottom of each panel the 
probability to stop early for futility is shown. The boxplot at the top shows the distribution of resulting 
sample sizes where the trial is terminated

https://osf.io/zmfyn/?view_only=348067ed1ccc498da7e4a11d949c84df
https://osf.io/zmfyn/?view_only=348067ed1ccc498da7e4a11d949c84df


1 3

Statistics in Biosciences	

•	 Step 2: Next, we call the calibrate function of the brada package and are 
recommended to increase � from � = 0 to � = 1.3.

Figure 4 shows the trial’s operating characteristics after this first calibration step. 
Note that now the false-positive rate has dropped to 7.1% , and the false-negative 
rate is at 17.3% . Before, we had a false-positive rate of 13.1%—see the left plot in 
Fig. 3—and a false-negative rate of 11.3%—see the right plot in Fig. 3.

•	 Step 3: Next, we call the calibrate function of the brada package again to 
calibrate �L and are adviced to decrease �L from 0.1 to 0.01.

•	 Step 4: Refitting the design with the brada function then yields the fully cali-
brated design shown in Fig. 5. The result shows that both the false-positive rate 
and the false-negative rate are well controlled below their boundaries of 10% . 
Note that to further improve our design we could try the same four-step calibra-
tion with a smaller Nmax than Nmax = 36 . For example, one could use Nmax of 
Simon’s two-stage optimal design.

Table  2 shows a comparison of the designs. All Bayesian solutions use con-
tinuous monitoring, and the expected sample size �[N|p0] under H0 ∶ p ≤ 0.2 is 
better for the calibrated PEV design than for the calibrated PP solution. Also, the 
PEV design outperforms Simon’s two-stage minimax design with regard to the 

Fig. 4   Results of the �-calibrated PEV design under H0 ∶ p ≤ 0.2 (left) and H1 ∶ p > 0.2 (right)

Fig. 5   Results of the fully calibrated PEV design under H0 ∶ p ≤ 0.2 (left) and H1 ∶ p > 0.2 (right)
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average sample size, as it requires ≈ 4 patients less under H0 , and still ≈ 3 patients 
less than the calibrated PP design. Table 2 also shows that the BOP2 design does 
not control the false-negative rate (and the false-positive rate only if rounding to 
two digits). This is, however, to be expected because the BOP2 design maximizes 
the power and does not assert an upper false-negative rate. Although it requires 
the smallest expected sample size under H0 , it violates the requirement (2) on the 
false-negative rate which was formulated in advance.

All of the above simulations took ≈ 15 minutes on a desktop computer, while 
the grid-search to calibrate the PEV design takes much longer. Furthermore, the 
false-positive and -negative estimates of the calibrated PEV design include the 
Monte Carlo standard error (MCSE). For example, the MCSE of the false-pos-
itive rate is 0.6% , so one can judge the uncertainty in the Monte Carlo estimate 
[34]. Results of [31] include no MCSEs but we could replicate them using the 
brada package. MCSEs are computed automatically in the brada package for 
all relevant quantities by means of 10000 bootstrap samples, see [25].

Some comments are in order with regard to the plots above. First, although the 
labels at the top right of each plot say stopped for efficacy, all simulations used 
�U = 1 . Thus, stopping early for efficacy is not possible. Stopped for efficacy is, as 
a consequence, to be interpreted that the trial continues until Nmax patients were 
recruited. Under H0 , this can be interpreted as a false-positive result. Under H1 , it 
can be interpreted as the power to reject H0.

Secondly, in Table 2 the expected sample size �[N|p1] under H1 is the expected 
value of the sample size under H1 for the BOP2 design, which is not the expected 
value specifically under p1 . As a consequence, the expected sample size under H1 
is smaller for BOP2 than the expected sample size specifically under p1 , because 
the average includes also the sample sizes under probabilities p > p1 (where fewer 
patients are required).

Table 2   Comparison of Simon’s two-stage minimax design, the calibrated PP design and the calibrated 
PEV design for the first example; �[N|p

1
] is not reported by [31] and not available for Simon’s two-stage 

minimax design; operating characteristics are simulation-based and obtained with the brada R package 
for the calibrated PP and PEV design

Nmax First interim 
analysis

� � PET(p0) PET(p1) �[N|p0] �[N|p1]

Simon’s two-stage minimax design
36 10 0.086 0.098 0.4600 0.902 28.26 -

Calibrated PP design design
36 10 0.088 0.094 0.8600 0.906 27.67 -

Calibrated PEV design
36 10 0.0904 0.0932 0.9036 0.908 24.40 27.76

BOP2 design
36 10 0.1005 0.1382 0.8995 0.8618 18.10 33.50
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For the calibrated PEV design, �[N|p1] is the expected sample size until PPe 
reaches the threshold �U = 1 . Thus, it represents the average sample size required to 
state with certainty that the drug works.

It should be noted that these quantities differ for the PEV and BOP2 designs, so 
using them as a benchmark is only partially justified. In practice, the expected sam-
ple size under H0 is of larger relevance because the success rate of phase II studies 
is only modest. Stopping a trial early for futility while controlling � and � is thus of 
primary importance.

7.3 � Example 2—A Tongue Cancer Trial

Next, we reproduce the tongue cancer trial example of [31]. There, the primary 
objective is to assess the efficacy of induction chemotherapy (with paclitaxel, ifos-
famide, and carboplatin) followed by radiation in treating young patients with prior 
untreated squamous cell carcinoma of the tongue. Previous results showed that 
radiation alone yields a response rate of 60% , so p0 ∶= 0.6 . With induction chemo-
therapy plus radiation, the target response rate is set at 80% , so p1 ∶= 0.8 . The con-
straints for the type I and II error rates are given as follows:

In contrast to the first example, we now take Simon’s optimal two-stage design as 
a competitor. Thus, we use Nmax = 43 from Simon’s optimal two-stage design. The 
calibrated PP design reported in [31] uses a different initial sample size at which 
the first interim analysis is made than Simon’s two-stage optimal design. That is, 
the first interim analysis is performed after 10 instead of 11 patients. For the PEV 
design, we use the 11 patients after which the first interim analysis is performed in 
Simon’s two-stage design.

We proceed with the four-step calibration as follows:

•	 Step 1: To calibrate the PEV design with the brada package we start again with 
liberal thresholds �T = 0.9 and �L = 0.1 . We investigate the false-positive and 
false-negative rates with a call to the brada function of the brada R package, 
call the plot function in R for the resulting object and obtain Fig. 6.

� ≤ 0.05 and � ≤ 0.20

Fig. 6   Results of the uncalibrated PEV design under H0 ∶ p ≤ 0.6 (left) and H1 ∶ p > 0.8 (right) for the 
tongue cancer trial
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The design achieves a false-positive rate of 9.8% and a false-negative rate of 7.1% . 
Thus, the design violates the requirement � ≤ 0.05 . We proceed with the step two 
of the four-step calibration:

•	 Step 2: We call the calibrate function of the brada package and are rec-
ommended to increase � from � = 0 to � = 1.6.

Figure  7 shows the trial’s operating characteristics after this first calibration 
step. Note that now the false-positive rate has dropped to 2.1% , and the false-
negative rate is at 20.9%.

•	 Step 3: Next, we call the calibrate function of the brada package again 
to calibrate �L and are adviced to decrease �L from 0.1 to 0.07.

•	 Step 4: Refitting the design with the brada function then yields the fully 
calibrated design shown in Fig. 8. The result shows that both the false-positive 
rate and the false-negative rate are well controlled below their boundaries of 
5% and 20% . Note that to further improve our design we could try the same 
four-step calibration with a smaller Nmax than Nmax = 43 , e.g. Nmax = 35 of 
Simon’s two-stage minimax design.

Fig. 7   Results of the �-calibrated PEV design under H0 ∶ p ≤ 0.6 (left) and H1 ∶ p > 0.8 (right) for the 
tongue cancer trial

Fig. 8   Results of the fully calibrated PEV design under H0 ∶ p ≤ 0.6 (left) and H1 ∶ p > 0.8 (right) for 
the tongue cancer trial
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Table 3 shows a comparison of the calibrated PP design, calibrated PEV design, 
and Simon’s optimal and minimax two-stage designs.

We see that the calibrated PEV design has a larger probability of early termi-
nation PET(p0 ) under H0 than all other designs. The expected sample size �[N|p1] 
under H1 is smallest for the calibrated PEV design. The expected sample size 
�[N|p0] is about one patient larger compared to the BOP2 design, and the PET(p1) is 
also about 2% smaller compared to the BOP2 design. In this example, the calibrated 
PEV design and BOP2 perform comparable. Both designs outperform Simon’s two-
stage minimax and optimal design and the calibrated PP design.

8 � Simulation Study

The last section discussed two examples of phase II studies with binary endpoints 
in detail and compared several group-sequential designs and their resulting per-
formance characteristics. It was shown that the calibration of the PEV design is 
straightforward with the help of the brada R package and the four-step calibration 
algorithm. The two detailed examples of the last section showed that the calibrated 
PEV design yields larger probabilities of early termination and smaller expected 
sample sizes under H0 than Simon’s two-stage designs and the calibrated PP design. 
The price paid for this improvement is a slightly higher � and a slightly lower � than 
for Simon’s designs and the PP design. The calibrated PEV design performs compa-
rable or better than the BOP2 design in the two examples.

In this section, we provide additional simulations to investigate the performance 
of the calibrated PEV design. First, we provide a systematic comparison under a 
selection of different contexts. Second, we explore how deviations from the sam-
pling plan affect the resulting operating characteristics of the PEV design. Thus, 
we deviate from continuous monitoring in the two examples of the last section and 

Table 3   Comparison of Simon’s two-stage minimax design, the calibrated PP design and the calibrated 
PEV design for the second example; �[N|p

1
] is not reported by [31] and not available for Simon’s two-

stage minimax design; operating characteristics are simulation-based and obtained with the brada R 
package for the calibrated PP and PEV design

Nmax First interim 
analysis

� � PET(p0) PET(p1) �[N|p0] �[N|p1]

Simon’s two-stage minimax design
35 13 0.0499 0.1918 0.6470 0.8082 20.77 -

Simon’s two-stage optimal design
43 11 0.0489 0.1976 0.7037 0.8024 20.48 -

Calibrated PP design
43 10 0.033 0.134 0.9675 0.8663 27.04 39.67

Calibrated PEV design
43 10 0.024 0.182 0.9760 0.8180 18.18 37.34

BOP2 design
43 10 0.0398 0.1697 0.9566 0.8277 17.4 39.20
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replace this unrealistic monitoring scheme with 1 − 4 interim analyses which is more 
realistic in clinical research. Finally, we investigate how an unplanned early termina-
tion influences the design characteristics.

8.1 � Systematic Comparison

Table 4 shows the systematic comparison between the calibrated PEV design, the 
calibrated PP design, Simon’s two-stage minimax design and the BOP2 design. 
Operating characteristics are simulation-based and obtained with the brada R pack-
age for the calibrated PP and PEV designs. We built on the calibrated solutions of 
[31] for the selected settings (shown in the rows with italics PP), and took the val-
ues of �T and �L they found via a two-dimensional grid search. For the calibrated 
PEV design, we applied the four-step calibration. The latter worked in a single cycle 
except for the last setting and setting five, where we had to increase Nmax once. Note 
that b in Table 4 denotes the batchsize after which the next interim analysis is per-
formed. Thus, if b = 1 , we monitor after each patient continuously. This is shown for 
the PP design in the rows denoted with CPP, and as this is unrealistic in practice, the 
rows with PP below show the results for a more realistic batchsize. In all settings, we 
aimed for 1 − 4 interim analyses, which seems possible in practice. The batchsize b 
was then chosen accordingly.

A flat prior was used in all simulations, and two comments are in order regard-
ing the PET(p1) and �[N|p1] . As noted previously, all simulations used �U = 1 , so 
stopping early for efficacy is not possible. Thus, PET(p1) is actually the probability 
of terminating the trial with Nmax patients and can be interpreted as the Bayesian 
power to reject H0 given that p = p1 is the true success probability. Furthermore, the 
expected sample size �[N|p1] is the expected sample size under H1 and not p1 for 
the BOP2 design. For the other rows PP, PP and PEV it is the expected sample size 
until PP respectively PPe reaches �U = 1 . Thus, it can be interpreted as the average 
number of patients required to state with certainty that the drug works (although the 
trial is not stopped early then). This interpretation is in particular helpful, because if 
stopping for efficacy at �U = 1 would be allowed, it reflects the sample size at which 
the trial would be stopped for efficacy under this protocol.

There are a few comments worth mentioning with regard to Table 4:

•	 Setting 1: The PEV design achieves the smallest combined sample sizes and best 
PETs both under H0 and H1.

•	 Setting 2: The BOP2 design’s solution does not strictly fulfill the requirement 
� ≤ 0.1 (first bold entry in Table 4). The same holds for the false-positive rate 
of the PP design in the last setting in Table 4. The preferred solution in setting 2 
thus is the PEV design.

•	 Setting 3: Both the calibrated PP and PEV designs require to increase Nmax 
compared to Simon’s two-stage design. Still, the expected sample size of the 
PP solution is best, except when a very small sample size under H0 is desired. 
Then, BOP2 is better. However, BOP2 has a substantially smaller PET under 
H0 , so the calibrated PP design seems best. Still, shifting from continuous 
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Table 4   Comparison of Simon’s two-stage minimax design, the calibrated PP design, the calibrated PEV 
design and the BOP2 design

p0∕p1 Design Nmax ninit b � � PET(p0) PET(p1) �[N|p0] �[N|p1]

0.1/0.3
Minimax 25 16 – 0.0951 0.0970 0.5147 0.9030 20.4 -
CPP 25 10 1 0.0988 0.0912 0.9012 0.9088 21.80 16.71
PP 25 10 5 0.096 0.084 0.9011 0.9160 24.13 18.02
PEV 25 10 5 0.095 0.094 0.905 0.906 17.58 17.55
BOP2 25 10 5 0.0894 0.0625 0.720 0.8864 16.8 24.3

0.2/0.4
Minimax 36 19 – 0.0861 0.0976 0.4551 0.9024 28.26 -
CPP 36 10 1 0.0876 0.0905 0.9124 0.9095 29.41 28.75
PP 36 9 9 0.0905 0.090 0.9124 0.9095 32.74 35.95
PEV 36 9 9 0.089 0.093 0.911 0.907 27.1 35.59
BOP2 36 9 9 0.0741 0.103 0.771 0.8524 19.8 33.7

0.3/0.5
Minimax 39 28 – 0.0943 0.0999 0.3648 0.9001 35.0 -
CPP 42 10 1 0.0956 0.0833 0.9044 0.9167 33.37 33.99
PP 42 15 9 0.0957 0.0829 0.9043 0.9171 37.85 39.23
PEV 42 15 9 0.0890 0.0780 0.9110 0.9220 37.94 39.13
BOP2 42 15 9 0.0878 0.0592 0.7620 0.8978 27.2 41

0.4/0.6
Minimax 41 28 – 0.0951 0.0991 0.5510 0.9009 33.80 –
CPP 41 10 1 0.0902 0.0909 0.9098 0.9091 31.24 35.26
PP 41 11 5 0.0904 0.0908 0.9096 0.9092 33.41 37.42
PEV 41 21 5 0.0790 0.0970 0.9210 0.9030 27.93 36.80
BOP2 41 21 5 0.0897 0.0660 0.7963 0.8878 27.90 40.00

0.5/0.7
Minimax 39 23 – 0.0978 0.0985 0.5000 0.9015 31.0 –
CPP 39 10 1 0.0967 0.0929 0.9033 0.9071 28.95 24.40
PP 39 23 4 0.0969 0.0924 0.9031 0.9076 31.65 37.20
PEV 43 23 4 0.100 0.077 0.9000 0.9230 29.23 38.87
BOP2 39 23 4 0.0955 0.0541 0.7835 0.8974 28.40 38.40

0.6/0.8
Minimax 35 27 – 0.0965 0.0997 0.8161 0.9003 28.5 –
CPP 36 10 1 0.0901 0.0878 0.9099 0.9122 25.48 32.38
PP 36 16 10 0.0902 0.0876 0.9098 0.9124 29.80 35.87
PEV 36 16 10 0.0850 0.0990 0.9150 0.9010 24.10 35.32
BOP2 36 16 10 0.0890 0.0254 0.6429 0.9084 26.70 35.70

0.7/0.9
Minimax 25 16 – 0.0905 0.0980 0.5501 0.9020 20.00 –
CPP 25 10 1 0.0911 0.0989 0.9089 0.9011 16.32 23.09
PP 25 10 5 0.1072 0.0548 0.8928 0.9452 22.00 37.42
PEV 30 10 5 0.0630 0.0650 0.9370 0.9350 18.18 29.36
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monitoring with b = 1 to the more realistic b = 9 the PEV design becomes 
comparable to the PP design.

•	 Setting 4: As in Setting 1, the PEV design achieves the smallest combined 
sample sizes and best PETs both under H0 and H1.

•	 Setting 5: As in Setting 3, the PP design with continuous monitoring is best, 
but for b = 4 it is worse than the PEV and BOP2 designs. BOP2 and PEV are 
comparable, with the PEV design yielding a larger PET under H0 and H1 and 
BOP2 yielding a slightly smaller sample size under H0.

•	 Setting 6: Again, the PEV design is best in terms of PET under H0 and H1 and 
the required sample sizes under both hypotheses.

•	 Setting 7: The four-step calibration requires to increase Nmax by one batchsize 
to Nmax = 30 . All other designs can be calibrated with Nmax = 25 . Here, BOP2 
yields smaller sample sizes and the PEV design again higher PETs under H0 
and H1.

There are two conclusions: First, the PEV design always achieves the highest 
probability of early termination under the null hypothesis. Although the BOP2 
design sometimes requires fewer patients under H0 , the PEV design always yields 
a larger PET(p0).

Secondly, the calibrated PEV design performs better than Simon’s two-stage 
minimax design in all settings, and performs better than or comparable to the 
calibrated PP and BOP2 designs. BOP2 achieves smaller sample sizes in settings 
3 and 7, and was outperformed in the other settings by the PEV design.

Table 5 shows that calibration of the PEV design typically takes less than an 
hour, while in most cases less than half an hour is possible on a regular desk-
top computer. Note that while Simon’s two-stage designs are calibrated almost 
instantaneously, calibration of the PP design via a 2-dimensional grid-search of 
�L and �T requires multiple hours in the best case, while in the worst case it may 
even take more than a full day on regular desktop machines. This happens, in 
particular, when the parameters for which the design is calibrated are located in 
regions that are visited by the search algorithm only at the end of the sequential 
procedure, compare Sect.  6.4. Note that the runtimes in Table  5 are the times 
needed from an uncalibrated design to a fully calibrated PEV design, where the 

Table 4   (continued)

p0∕p1 Design Nmax ninit b � � PET(p0) PET(p1) �[N|p0] �[N|p1]

BOP2 25 10 5 0.0895 0.0471 0.7681 0.8997 16.80 24.60

Table 5   Runtimes for calibrating the PEV design in the seven simulation settings shown in Table 4; m = 
minutes, s = seconds

p0∕p1 0.1/0.3 0.2/0.4 0.3/0.5 0.4/0.6 0.5/0.7 0.6/0.8 0.7/0.9

Runtime 55.80 m 34.01 m 22.72 m 46.01 s 25.07 m 5.55 m 3.29 m
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calibration algorithm is run multiple times in some simulation settings (e.g. set-
ting 3 and 5).

8.2 � Deviations from the Study Protocol

In this section, we investigate deviations from the study protocol. Thus, we reexam-
ine Example 1 and 2 discussed earlier and analyze how the operating characteris-
tics of the calibrated PEV design change when using a different number of interim 
analyses than specified in the study protocol. We vary between 1, 3, 13 and 26 (that 
is, continuous monitoring) interim analyses in the first example, and between 1, 2, 
4, 8, 16 and 32 (continuous monitoring) interim analyses in the second example 
and investigate how the false-positive and false-negative rates, the expected sample 
size and PET under H0 and H1 change. We use equally spaced interim analyses after 
the first one. That means when 2 interim analyses are specified and the first interim 
analysis is conducted after e.g. 10 patients, and Nmax is specified as Nmax = 30 , we 
use time points 10 and 20 for the first and second interim analysis.

Table  5 shows the results of deviations from the study protocol. Results indi-
cate that the false-positive and false-negative rates and the PET(p0) and PET(p1) 
are robust against changes to deviations from the study protocol. As with all group-
sequential designs, the expected sample sizes increase when fewer interim analyses 
are performed. In practice, a balance between logistic effort and expected sample 
sizes thus must be made with any group-sequential trial.

Importantly, the PET under H0 and H1 is always much better than for Simon’s 
two-stage design, even when conducting only a single interim analysis. This shows 
that the large PET of the PEV design under H0 and H1 is not due to a large number 
of interim analyses, but a property of this trial design. If possible, researchers should 
still aim for a large number of interim analyses to reduce the expected sample sizes 
of the PEV design under H0 and H1 , see Table 5.

8.3 � Unplanned Early Termination

The performance of a trial design under unplanned early termination is important, 
because clinical trials sometimes are terminated earlier than planned because of 
slow accrual or other reasons. For this situation, we investigate the performance of 
the calibrated PEV designs in Example 1 and 2 when the trials are terminated earlier 
than specified in the study protocol (Table 6). 

In the first example, we suppose that we have to stop the trial after 20 patients. In 
the second example, we proceed identical and report the resulting false-positive rate 
and false-negative rates, and the power to stop early for efficacy and futility.

In the first example, 32.76% of the trials are stopped for futility under H0 and 
1.96% under H1 . Thus, the false-negative rate is still controlled at � ≤ 0.1 . Only 
0.04% of the trials result in a false-positive conclusion under H0 , and 9.8% of the 
trials are stopped for efficacy under H1 . Thus, in case of an unplanned early termina-
tion the error rates are still controlled in the first example, but the power under H1 
drastically decreases, like the PET under H0.
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In the second example, 71.10% of the trials are stopped for futility under H0 and 
8.0% under H1 . Thus, the false-negative rate is still controlled at � ≤ 0.1 . Zero percent 
of the trials result in a false-positive conclusion under H0 , and zero percent of the trials 
are stopped for efficacy under H1 . Thus, in case of an unplanned early termination the 
error rates are still controlled in the second example, but the PET under H1 is not suf-
ficient to stop early for efficacy. The mean PPe when stopping at 20 patients under H0 
and H1 are 0.18 and 0.78 for the first and 0.15 and 0.72 for the second example.

In summary, the most severe problem, an inflation of false-positive or false-neg-
ative rates, does not happen when an unplanned early termination of a trial happens 
with the PEV design.

9 � The Brada R Package

All of the above examples, plots and simulations were computed with the accompa-
nying R package brada. Details on the brada R package which implements the PEV 
design are provided in the supplementary material.

10 � Discussion

The previous sections demonstrated the versatility of the proposed predictive evi-
dence value design in real data examples and simulations. In this section, we discuss 
some limitations and points not covered in detail thus far. Importantly, we address 
the case of a non-flat reference function now.

Table 6   Deviations from the study protocol for the lung cancer and tongue cancer trials in Example 1 
and 2

Example 1—Phase IIA lung cancer trial

# interim 
analyses

� � PET(p0) PET(p1) �[N|p0] �[N|p1]

1 0.0940 0.0860 0.9060 0.9140 33.35 35.86
2 0.0940 0.0864 0.9060 0.9136 30.68 35.43
13 0.0924 0.0904 0.9076 0.9096 25.44 29.01
26 0.0904 0.0932 0.9096 0.9068 24.23 27.65

Example 2—Phase IIA tongue cancer trial

# interim 
analyses

� � PET(p0) PET(p1) �[N|p0] �[N|p1]

2 0.028 0.1650 0.9720 0.8350 23.69 41.13
4 0.027 0.1710 0.9730 0.8290 21.23 40.57
8 0.027 0.1720 0.9730 0.8280 20.28 40.06
16 0.024 0.1770 0.9760 0.8230 18.91 39.20
32 0.024 0.182 0.9760 0.8180 18.18 37.34
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All applications in this paper rest on the choice of a flat reference function 
r(p) ∶≡ 1 . This choice leads to the case where the evidence interval recovers HPD-
intervals, which will be unambiguous for most Bayesians. However, selecting a 
flat reference function is not mandatory. Although the flat reference function is the 
canonical choice, there is a huge palette of alternatives available. As the success 
probability p is inside [0,  1], any function f ∶ [0, 1] → ℝ , p ↦ f (p) is a potential 
candidate for the reference function r(p).

Figure  9 shows some possible alternative choices for the reference function, 
which are inspired from the literature on artificial neural networks (ANNs). In fact, 
the functions in Fig.  9 are the most widely used activation functions for artificial 
neural networks (ANNs). Activation functions substantially influence the perfor-
mance of an ANN and are classified into ridge, radial and fold functions depending 
on their mathematical properties. A popular activation function is the rectified linear 
unit (ReLU) shown in Fig. 9e. The ReLU has emerged for visual feature extraction 
since the 1960s in hierarchical neural networks [10, 11]. The choice of activation 
functions in ANNs has a substantial effect on the resulting training dynamics and 
performance of the resulting neural network. We expect the same for the resulting 
operating characteristics of the PEV design when shifting from the flat reference 
function to any of these functions. An appealing property which makes these func-
tions attractive as candidates for non-flat reference functions is that most of them are 
monotonically increasing. This property should work as a kind of penalty for evi-
dence about large success properties p > p0 on H1 , thus reducing the false-positive 
rate under H0 at the price of slightly decreased power under H1 for large true suc-
cess probabilities. When modifying the functions in Fig. 9 slightly, e.g. truncating 
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them to the domain [0,  1] with associated image (e.g. the identity in Fig.  9a to 
f ∶ [0, 1] → [0, 1] , x ↦ f (x) ∶= x ) they seem like reasonable choices for non-flat 
reference functions. However, we decided against including non-flat reference func-
tions in the examples and simulations because of two primary reasons: 

(a)	 Firstly, any of the functions in Fig. 9 can be parameterized into a whole family 
of possible functions. For example, the ReLU is easily generalized into a param-
eterized version f (x) ∶= � + c ⋅max(p0, 1) for � ∈ ℝ , c ∈ ℝ+ and the cutoff p0 
between H0 ∶ p ≤ p0 and H1 ∶ p > p0 . The Softplus, GELU and Sigmoid linear 
unit can be parameterized into parabolically shaped families, while the sigmoid 
function allows parameterization into a logarithmically shaped family. With-
out further constraints (e.g. that a reference function should be proper, that is, 
integrate to unity, or be continuous) for each of these parameterized versions, 
there are infinitely many choices for such a reference function, which troubles 
application.

(b)	 Secondly, even after parameterization, formulation of further constraints and 
identification of canonical – or even possibly unique – choices among these 
differently shaped parameterized families of functions, there remain ethical 
problems. For example, some functions in Fig. 9 are monotonically increasing, 
or even strictly monotonically increasing. Thus, evidence for large success prob-
abilities p close to 1 is increasingly stronger penalized when opting for a strictly 
monotonically increasing reference function. In contrast, using e.g. the binary 
step, evidence on H1 ∶ p > p0 is equally penalized for any p > p0 . These aspects 
are crucial for ethical reasons, because several questions arise here:

•	 Is it justified to penalize large success probabilities more than small to 
moderate ones? This could be the case, because a steeper reference func-
tion on H1 ∶ p > p0 should also lead to smaller false-positive rate, so cali-
bration of a design should be possible at the price of risking that large suc-
cess probabilities are not identified. In some contexts, e.g. oncology, large 
success probabilities are, however, often unrealistic so such a choice might 
be justified (depending on the precise context).

•	 Also, how should the reference function treat evidence on H0 ∶ p ≤ p0 ? 
For example, choosing � = 1 in the generalized ReLU means a flat refer-
ence function is chosen on H0 . However, smaller or larger values express 
favor or skepticism about H0 being true. A regulatory agency will typically 
accept a critical stance towards H1 (the drug being effective), while a criti-
cal stance towards H0 must be justified (e.g. by improved operating charac-
teristics of the design, while still being calibrated in a frequentist sense).

	    Further theoretical work is required before simulations under these non-flat 
reference functions can become helpful for practitioners, and align with ethical 
or regulatory agency requirements.

The two points (a) and (b) clarify why we opted for the canonical case of a flat 
reference function in this paper. Work on the theoretical side regarding (a) is 
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current work in progress. This should help in providing a sound base for finding 
answers to the questions formulated in point (b).

However, some aspects are unambiguous even without the availability of further 
theoretical results: Firstly, we expect that the resulting operating characteristics of 
the design will be sensitive to the specific choice of non-flat reference function. The 
shape of the reference function will be crucial here, see (a).

Secondly, another layer of complexity is given by the interplay of prior and refer-
ence function, where we expect that they can work synergistic or cancel the effect of 
each other out, also depending on the specific choices. It has been shown that power 
gains are typically not possible in Bayesian designs when requiring strict false-pos-
itive control [26]. This is another interesting venue of future research now, because 
it should be possible to use informative priors based on historical data – e.g. power 
priors, see [15] – which may cause a design to be uncalibrated in the first place. 
Then, by using a similarly shaped, but slightly right-shifted reference function, the 
reference function raises the bar for evidence to accumulate for even more optimistic 
success probabilities than the ones specified in the informative prior. This way, his-
torical data is incorporated and it could become possible to achieve power gains only 
in certain regions of the success probability p ∈ [0, 1] , for example for the region 
p ∈ [p0, p0 + 0.2] of small to moderate success probabilities under H1 . See also 
the discussion in [26]. Conceptually speaking, by using an informative prior and 
an appropriate reference function it may become possible to achieve power gains 
through the prior at the price of suffering power in other areas of H1 via the refer-
ence function.

Thirdly, the calibration algorithm proposed in this paper will work also for non-
flat reference functions. However, we expect that extreme choices of reference func-
tions may lead to cases where a calibration itself becomes impossible for a given 
Nmax . Such extreme choices should, however, be less relevant in practice.

11 � Conclusion

In clinical research, the initial efficacy assessment of a new agent is typically consid-
ered in a phase IIA study which investigates the response rate of patients to the agent 
under consideration. Bayesian group-sequential designs for phase IIA studies are in 
practice often calculated based on the predictive probability approach which uses 
the predictive probability of concluding efficacy or futility based on interim data 
analyses under the premise that the trial will be conducted to the maximum planned 
sample size. The predictive probability of trial success is then used to stop the trial 
early for futility or efficacy.

In this paper, a novel group-sequential design for binary endpoints based on 
Bayesian evidence values – the PEV design – was proposed and its theoretical 
properties and operating characteristics were analyzed. It was shown that the 
predictive probability approach is a special case of the latter, and that the PEV 
design can improve the operating characteristics of the resulting trial in a vari-
ety of cases. The simulation and theoretical results demonstrated that Bayesian 
evidence values offer another layer of flexibility for error control in Bayesian 
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group-sequential clinical trial designs, and offer the possibility to achieve smaller 
expected sample sizes and larger probabilities of early termination.

We provided default choices for the reference function (flat) and a four-step 
algorithm to calibrate the operating characteristics of the PEV design. The four-
step algorithm is based on the theoretical results in Corollary 3, which shows how 
an improvement of the false-positive rate by increasing � is possible. The devel-
oped R package brada facilitates calibration of the PEV design, and offers fur-
ther methods for visualization, monitoring and reporting of a trial. Additionally, 
the brada package is designed for multicore environments and achieves efficient 
runtimes.

Our results indicate that the PEV design is quite robust to deviations from the 
sampling protocol and unplanned early termination. However, there are also limita-
tions. First, the calibration is still computationally more difficult than for the com-
peting BOP2 design and Simon’s two-stage minimax and optimal designs. Second, 
there are cases where the BOP2 design achieves smaller sample sizes (e.g. setting 7 
in Table 4). However, when a practically feasible number of interim analyses is car-
ried out, the PEV design often outperforms Simon’s two-stage design and the BOP2 
design. In particular, while the expected sample sizes of the BOP2 design are often 
slightly smaller, the probability of early termination was always largest for the PEV 
design in all scenarios considered. This is an appealing feature, because the primary 
goal of a group-sequential trial design is to yield an early conclusion based on an 
interim analysis. As the expected sample sizes of the PEV and BOP2 design are 
often comparable, the PEV design provides an attractive competitor for a Bayesian 
phase IIA trial with a binary endpoint.

Although the PEV design often performed better than the standard PP design, it 
is not helpful to conclude that the PEV is “superior” to the standard PP design, as 
in this paper it was shown that the standard PP design is simply a special case of the 
PEV design. The latter is appealing because Bayesian group-sequential trials can be 
tailored to attain the desired frequentist operating characteristics and are gaining in 
popularity (e.g. the Biontech-Pfizer mRNA vaccine Comirnaty against SARS-Cov-2 
used a Bayesian adaptive trial design based on a beta-binomial model similar to the 
one discussed in this paper. In particular, a B(0.700102, 1) prior adjusted for surveil-
lance time was used, see page 91 in the EPAR available at https://​www.​ema.​europa.​
eu/​en/​docum​ents/​asses​sment-​report/​comir​naty-​epar-​public-​asses​sment-​report_​en.​
pdf. See also page 74 for details on the approach (e.g. the Bayesian design was cal-
ibrated to attain a frequentist � = 0.025 ), and the posterior probability of vaccine 
efficacy (VE) being larger than 30% had to pass the threshold of 98.60% to declare 
VE. Note, however, that the Comirnaty trial was a phase II/III design with planned 
interim analyses at at least 32, 62, 82 and 120 cases (not participants)). This is also 
reflected in the ongoing interest in Bayesian group-sequential phase II designs with 
binary endpoints [19, 48].

Future work could extend the results obtained herein to other endpoints, because 
the derivations in this paper are not special to binary endpoints at all. Theorems 
1 and 2 as well as the Corollaries, therefore, should also hold for continuous end-
points. Also, an extension to a two-group phase IIb design with treatment and con-
trol group should be straightforward. We expect the advantages in terms of smaller 

https://www.ema.europa.eu/en/documents/assessment-report/comirnaty-epar-public-assessment-report_en.pdf
https://www.ema.europa.eu/en/documents/assessment-report/comirnaty-epar-public-assessment-report_en.pdf
https://www.ema.europa.eu/en/documents/assessment-report/comirnaty-epar-public-assessment-report_en.pdf
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expected sample sizes and larger probabilities of early termination under H0 will 
translate to this setting, too.

Appendix A Proofs

Proof of Theorem 1  It suffices to show that PP = PPe under the stated conditions, as 
then the group-sequential designs given in Algorithm 1 and 2 will yield identical 
decisions based on observed data X = x , fixed �L, �U , �T , n and Nmax.

Based on Eqs. (4) and (10) the values for PP and PPe will be identical based on 
X = x if and only if

holds for H1 ∶ p > p1 with arbitrary p1 > 0 . If Eq. (A1) holds, then

holds for fixed 𝜃T > 0 , and therefore the values of PP and PPe will be identical for 
fixed thresholds �L, �U , n and maximum sample size Nmax . Thus, it remains to show 
that Eq. (A1) holds. Therefore, write the observed data y� ∶= {X = x, Y = i} , and we 
have

In (1), the definition of EvEIr(�)(H1) was used. In (2), the definition of EIr(�) and H1 
was used. In (3) the assumptions r(p) ∶≡ 1 and � ∶= 0 were used and the fact that 
under a continuous beta prior the singleton {p0} is a Lebesgue null-set. In (4) to (5) 
the sets over which the integration is performed were rewritten, and the fact that the 
support of p(p|y) equals [0, 1] was used, and in (6) the integral in the previous step 
was identified as the appropriate posterior probability Pp|X,Y (p > p0|X = x, Y = i).

Equation (A3) now states that

(A1)Pp|X,Y (p > p0|X = x, Y = i) ≡ EvEIr(𝜈)(H1)

(A2)1Pp|X,Y (p>p0|X=x,Y=i)>𝜃T ≡ 1EvEIr (𝜈)(H1)>𝜃T

(A3)

EvEIr(𝜈)(H1) ∶
(1)
= �EIr(𝜈)∩H1

p(p|y�)dp

(2)
= �{p∈[0,1]|s(p)≥𝜈}∩{p∈[0,1]|p>p0}

p(p|y�)dp

(3)
= �{p∈[0,1]|p(p|y�)≥0}∩[p0,1]

p(p|y�)dp

(4)
= �[0,1]∩[p0,1]

p(p|y�)dp

(5)
= �[p0,1]

p(p|y�)dp

(6)
=Pp|X,Y (p > p0|X = x, Y = i)

EvEIr(𝜈)(H1) = Pp|X,Y (p > p0|X = x, Y = i).
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This was the statement in Eq. (A1). Thereby, Eq. (A2) follows which implies the 
statement in the theorem.

Proof of Corollary 1  The result follows from Theorem 1, because under r(p) ∶= 1 and 
� ∶= 0 the designs yield identical values for PP and PPe . As a consequence, when 
H0 ∶ p ≤ p0 holds for a fixed p0 ∈ [0, 1] , the corresponding type I error rates �PP and 
�PPe are identical. The same holds for the corresponding type II error rates �PP and 
�PPe , if data follow H1 ∶ p > p1 for any fixed p1 ∈ [0, 1].

Proof of Theorem 2  To show Eq. (13), we show

except for the case when both sides are zero. If Eq. (A4) holds, then

but

for any fixed 𝜃T > 0 . In particular, this implies that PPe ≤ PP because PP respec-
tively PPe depend on the values Pp|X,Y (p > p0|X = x, Y = i) respectively EvEIr(�)(H1) . 
There may be cases in which 1Pp|X,Y (p>p0|X=x,Y=i)>𝜃T = 1 but 1EvEIr (𝜈)(H1)>𝜃T

= 0 , and in 
these situations PPe < PP . If a false-positive error is defined based on the threshold 
PP > 𝜃U respectively PPe > 𝜃U (stopping early for futility although H0 ∶ p ≤ p0 
holds), then PPe < PP implies that a false-positive error can occur based on PP , 
while it is possible that PPe does not pass the critical threshold �U simultaneously. 
Note, however, that this must not be the case, which is why no strict inequality holds 
in general.

Equation (A4) remains to show. Therefore, notice that (we substitute the param-
eter � for p for notational convenience)

(A4)EvEIr(𝜈)(H1) ≤ Pp|X,Y (p > p0|X = x, Y = i)

(A5)1Pp|X,Y (p>p0|X=x,Y=i)>𝜃T = 0 ⇒ 1EvEIr (𝜈)(H1)>𝜃T
= 0

(A6)1Pp|X,Y (p>p0|X=x,Y=i)>𝜃T = 1 ⇏ 1EvEIr (𝜈)(H1)>𝜃T
= 1

(A7)

EvEIr(�)(H1) ∶ = �EIr(�)∩H1

p(�|y�)d�

= �{�∈Θ| p(�|y)
r(�)

≥�}∩H1

p(�|y�)d�

(A8)≤ �{𝜃∈Θ|p(𝜃|y)>0}∩H1

p(𝜃|y�)d𝜃
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where in the second-last equality the parameter � ∶= p was re-substituted for nota-
tional reasons, and the last equality follows as p(⋅|y�) is the posterior density, where 
again the observed data are denoted as y� ∶= {X = x, Y = i} in the steps before. Note 
that in Eq. (A8), r(�) ∶= r(p) ∶≡ 1 was used, and we have

as � ≥ 0 by definition.
From Eq. (A9) now follows Eq. (A4) which finishes the proof.

Proof  (Corollary 3) Now, if 𝜈 > 0 , Eq. (A10) becomes

As a consequence, inequality (A8) can become a strict inequality only if 𝜈 > 0 . Then 
(A4) becomes a strict inequality, too. For � → ∞ we have

so there exists a � ∈ ℝ large enough, for which setting � ∶= � implies 𝛼PPe < 𝛼PP , 
which is Eq. (14) and finishes the proof.

Appendix B Competing Designs

Simon’s two-stage designs First, the main competitor is Simon’s two-stage minimax 
and optimal design. Here, we focus mainly on Simon’s minimax design. The rea-
son is that in the PEV design, we want to fix Nmax to the same value as in Simon’s 
minimax design to avoid having another free parameter to calibrate. Still, there is no 
problem to compare the PEV design to Simon’s optimal two-stage design, compare 
the second trial in Example 2. However, a reason for the focus on Simon’s minimax 
design here is that in certain situations the PP and PEV design do require a larger 
Nmax than Simon’s minimax design.

(A9)

= ∫Θ∩H1

p(𝜃|y�)d𝜃

= ∫H1

p(𝜃|y�)d𝜃

= ∫(p0,1]

p(p|y�)dp

= Pp|X,Y (p > p0|X = x, Y = i)

(A10)
{
𝜃 ∈ Θ

||||
p(𝜃|y) ≥ 𝜈

}
⊆

{
𝜃 ∈ Θ

||||
p(𝜃|y) > 0

}

(A11)
{
𝜃 ∈ Θ

||||
p(𝜃|y) ≥ 𝜈

}
⊂

{
𝜃 ∈ Θ

||||
p(𝜃|y) > 0

}

{
� ∈ Θ

||||
p(�|y) ≥ �

}
→ �
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Predictive probability design The second key competitor is the standard predic-
tive probability approach. Although this is not really a competitor—Theorem  1 
showed that the PP design is, in fact, a PEV design – we compare the PEV design 
with calibrated 𝜈 > 0 to the calibrated PP design to see whether it is possible to 
obtain better trial operating characteristics with the PEV design.

Bayesian posterior probabilities Another possible competitor includes designs 
which are based on Bayesian posterior probabilities without any notion of predictive 
probability. Thus, given the interim data, the posterior probability of the drug being 
effective is computed. [31] showed that this approach is less favorable than the pre-
dictive probability approach, and we, therefore, do not include it here.

BOP2 design Another competitor that is proposed in the literature is the BOP2 
design of [49]. The BOP2 design includes (amongst others) binary endpoints. At 
each interim, the go/no-go decision in the BOP2 design is made by evaluating a 
set of posterior probabilities of the events of interest, which is optimized to maxi-
mize power or minimize the number of patients under the null hypothesis. Unlike 
other existing Bayesian designs, the BOP2 design explicitly controls the type I error 
rate, thereby bridging the gap between Bayesian designs and frequentist designs. For 
our current purposes, a comparison with the BOP2 design is only partially useful 
because as stressed in the introduction, we focus on the false-positive and false-neg-
ative constraints in Eqs. (1) and (2) simultaneously. Therefore, it may be the case 
that the BOP2 design yields a better power than the PP or PEV design but has no 
false-negative control. One example of this problem occurs in Table 4. Still, we will 
report the results of the BOP2 design anyway to get an intuition whether the power 
of a design can be improved through introduction of the reference function and evi-
dence threshold. Calculation of the BOP2 design is straightforward via https://​biost​
atist​ics.​mdand​erson.​org/​shiny​apps/​BOP2/.

Sequential Bayes factor designs A last branch of competing designs deals with 
Bayes factors: Examples are given in [37, 39, 43] and [42]. Although the approach 
is appealing, there is currently no efficient software implementation. There is the 
bfda package on GitHub, compare https://​rawgit.​com/​niceb​read/​BFDA/​master/​
packa​ge/​doc/​BFDA_​manual.​html, but there is still no R package on CRAN. Fur-
thermore, Bayes factors are not without controversy, see for example [44] or [23]. 
However, future research should analyze group-sequential Bayes factor tests more 
thoroughly.

The Brada R Package

Application of the PEV design is facilitated by the ®package brada. The package 
was developed to simplify the planning, calibration, monitoring and reporting of a 
Bayesian phase IIA trial with either the PP or PEV design. All computations in this 
paper have been carried out with the help of the brada package, and the package 
is available on CRAN under https://​cran.r-​proje​ct.​org/​web/​packa​ges/​brada/​index.​
html. The package consists of the main function brada to fit a trial, plot to pro-
duce plots in the style of Fig. 4, and calibrate to calibrate � and �L as detailed in the 
four-step calibration, compare the previous section. When analyzing the operating 

https://biostatistics.mdanderson.org/shinyapps/BOP2/
https://biostatistics.mdanderson.org/shinyapps/BOP2/
https://rawgit.com/nicebread/BFDA/master/package/doc/BFDA_manual.html
https://rawgit.com/nicebread/BFDA/master/package/doc/BFDA_manual.html
https://cran.r-project.org/web/packages/brada/index.html
https://cran.r-project.org/web/packages/brada/index.html
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characteristics of a design, the brada package internally sets up a multicore cluster 
to reduce computation time. In practice, the analysis of a PP or PEV design there-
fore takes little time even on desktop computers. As the calibration of Bayesian 
designs is simulation-based, the default plots of the brada package always include 
Monte Carlo errors in square brackets behind each estimate, compare e.g. Figs. 4, 5, 
6, 7 and 8.

We have provided a vignette to get started with the package on CRAN at https://​
cran.r-​proje​ct.​org/​web/​packa​ges/​brada/​index.​html. Also, the accompanying Quarto 
replication scripts (see https://​osf.​io/​zmfyn/?​view_​only=​34806​7ed1c​cc498​da7e4​
a11d9​49c84​df) at the Open Science Foundation include all code to reproduce the 
results in this manuscript and serve as a further source of how to use the package.
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