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Abstract
Arsenic is a bladder carcinogen though less is known regarding the specific temporal 
relationship between exposure and bladder cancer diagnosis. In this study, we mod-
eled time-varying mixtures of arsenic exposures at many historic temporal windows 
to evaluate their association with bladder cancer risk in the New England Bladder 
Cancer Study. We used arsenic exposure estimates up to 60 years prior to study entry 
and compared the goodness of fit of models using these mixtures to those using 
summary measures of arsenic exposures. We used the Bayesian index low rank krig-
ing multiple membership model (LRK-MMM) to estimate the associations of these 
mixtures with bladder cancer and estimate cumulative spatial risk for bladder cancer 
using participants’ residential histories. We found consistent evidence that modeling 
arsenic exposures as a time-varying mixture provided better fit to the data than using 
a single arsenic exposure summary measure. We estimated several positive though 
not significant associations of the time-varying arsenic mixtures with bladder cancer 
having odds ratios (ORs) of 1.03–1.14 and identified many significant and positive 
associations for an interaction among those who consumed water from a private dug 
well (ORs 1.28–1.60). Arsenic exposures 40–50 years before study entry received 
elevated importance weights in these mixtures. Additionally, we found two small 
areas of elevated cumulative spatial risk for bladder cancer in southern New Hamp-
shire and in south central Maine. These results emphasize the importance of consid-
ering time-varying mixtures of exposures for diseases with long latencies such as 
bladder cancer.
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1 Introduction

Bladder cancer is a relatively common cancer and particularly so in industrialized 
nations [1]. It is expected to be the fourth-leading cancer in terms of incidence 
and eighth in terms of mortality among males in the United States in 2023 [2]. 
While the primary risk factor for bladder cancer is tobacco smoking [3], envi-
ronmental and occupational exposures are other important risk factors, the latter 
of which accounts for 20–25% of all bladder cancer cases in men [4]. One nota-
ble environmental exposure for bladder cancer is arsenic, a naturally occurring 
metalloid that has been established as a bladder carcinogen by the International 
Agency for Research on Cancer [5]. Humans are exposed to arsenic primarily 
through drinking water in addition to exposure from contaminated soil and air.

Several studies have examined the arsenic-bladder cancer relationship across 
a variety of settings and study designs. For example, a large prospective cohort 
study in Chile identified significant relative risks for bladder cancer among resi-
dents of a region whose drinking water had high levels of arsenic [6]. Addition-
ally, the New England Bladder Cancer Study (NEBCS) was a population-based 
case–control study conducted in Maine, New Hampshire and Vermont that was 
designed to identify the reasons for the elevated bladder cancer mortality rates in 
northern New England since at least the mid-twentieth century [7]. Arsenic was 
a natural candidate risk factor to investigate in this region, as its geology leads to 
low-to-moderate levels of arsenic in well water and a large proportion of the pop-
ulation use private wells as their primary source of drinking water. The NEBCS 
found a statistically significant trend in risk occurring with increasing drinking 
water intake from all sources and among participants with exclusive use of shal-
low dug wells before 1960 [8]. Further, lagging exposure 40 years led to stronger 
estimated associations with bladder cancer for cumulative arsenic exposure (aver-
age arsenic concentration multiplied by daily intake multiplied by duration of 
exposure). This long latency period was similar to that estimated in the Chile 
study [6], suggesting that evaluating arsenic exposures at different times may be 
informative for understanding its temporal relationship with bladder cancer.

Two classes of statistical techniques—mixture analysis and spatial analy-
sis—can address this accumulation of exposures over space and time. Mixture 
analysis has emerged as a powerful technique to assess the effects of mixtures 
of exposures on health outcomes. This class of methods evaluates how the total-
ity of a mixture, often comprised multiple chemicals, may be associated with 
an outcome, in contrast to analyzing the chemicals separately. This is in line 
with the exposome concept [9, 10], which holds that health outcomes result 
from a variety of exposure sources accumulating over the individual life course. 
Five methods for mixture analysis that have been developed in recent years are 
weighted quantile sum (WQS) regression [11, 12], Bayesian kernel machine 
regression (BKMR) models [13, 14], quantile g-computation [15], functional 
logistic regression [16], and the Bayesian group index model [17]. While these 
methods vary regarding implementation and estimation details, they share a goal 
of estimating the health effect of a mixture of environmental exposures as well 
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as how each exposure varies in its contribution to the mixture effect. Addition-
ally, mixture analysis can consider the timing of mixture exposures in relation 
to health outcomes. Recent applications of WQS and the Bayesian index model 
have assessed how exposure to mixtures of metals at different times is associated 
with rapid visual processing in children [18] and how exposure to neighborhood 
deprivation at historic time lags is associated with risk for non-Hodgkin lym-
phoma [19], respectively. These methods have extended distributed lag models 
[20, 21] to identify critical temporal exposure windows for mixtures in contrast 
to single chemicals. Identifying important temporal windows from time-varying 
mixtures provides additional information regarding how exposures influence 
health over time.

Statistical analyses of diseases with long latencies such as bladder cancer 
have begun to use residential histories to assess how cumulative spatial exposure 
to potentially unmeasured risk factors may also associate with disease risk. This 
approach embodies the exposome framework as well by considering accumulat-
ing unmeasured exposures for which residential histories are proxies. For exam-
ple, the convolution multiple membership model (MMM) aggregates study par-
ticipants’ residential histories to larger administrative units and has been applied 
to model cumulative spatial risk for mesothelioma [22]. Also, the low-rank krig-
ing (LRK) MMM uses the precise points in space from residential histories to 
estimate cumulative spatial risk and has been applied to case–control analyses of 
bladder cancer [23] and non-Hodgkin lymphoma (NHL) [24, 25]. The applica-
tions of this model to the NHL data also included weighted indices of environ-
mental exposures to estimate mixture effects, the importance of each component 
in the mixture, and cumulative spatial risk simultaneously in a model termed the 
Bayesian index LRK-MMM. These models can identify geographic areas where 
residence is associated with elevated risk for disease and can motivate follow-up 
investigations into the causes of such risk, such as previously unmeasured envi-
ronmental exposures.

Following the above developments in mixture and spatial modeling, we con-
ducted an analysis in the NEBCS using historic arsenic exposure measurements 
and residential histories to estimate the associations between arsenic and bladder 
cancer risk over time. We used the Bayesian index LRK-MMM owing to its abil-
ity to flexibly estimate mixture effects and importance weights for components 
in the mixture and also estimate cumulative spatial risk for disease with residen-
tial histories. A primary goal of our analysis was to assess whether modeling 
arsenic exposures as a time-varying mixture provided better model fit to NEBCS 
data rather than doing so with a similar summary measure [8]. Our hypothesis 
was that modeling time-varying arsenic exposures as a weighted index would 
provide better model fit. We considered many different annual arsenic exposures 
up to a 60-year period prior to study entry, which would provide insight regard-
ing the importance of arsenic exposures at different times for bladder cancer 
risk. We also estimated the residual cumulative spatial risk surface to evaluate 
whether any areas in the study region conferred significantly elevated cumula-
tive spatial risk for bladder cancer that was unexplained by arsenic exposures or 
other covariates.
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2  Methods

2.1  Study Population

The New England Bladder Cancer Study (NEBCS) is a population-based case–con-
trol study in Maine, New Hampshire, and Vermont. Rates of bladder cancer incidence 
and mortality have been elevated in this region for decades, and the NEBCS sought 
to identify risk factors responsible for the elevated incidence. The details of this study 
have been described previously [8, 26]. Briefly, cases were all newly diagnosed cases 
of bladder between 2001 and 2004 cancer among residents of the study region, and 
controls were randomly selected from driver’s license registration (for controls under 
65 years) or Centers for Medicare and Medicaid Services (for controls 65–79 years) 
records. Controls were frequency matched to cases by state, sex, and approximate age 
at diagnosis. There was a 65% participation rate in the study among both cases and 
controls. Residential histories were collected from participants based on in-person 
interviews with each subject that used a standardized questionnaire. In our analysis, we 
used the residential histories of long-term residents who had been living in Maine, New 
Hampshire, or Vermont for a minimum of 25 years prior to diagnosis (reference date 
for controls) (500 cases and 602 controls, which was 43% of the interviewed and eligi-
ble totals for both cases and controls), and considered residential locations for subjects 
from 1970 to 1986, to reflect a latency period that has been estimated for bladder can-
cer occupational carcinogens [27]. We made this restriction to focus on historic expo-
sures within the study region. We adjusted our models for smoking status (former, cur-
rent/occasional, don’t know, versus reference never), high-risk occupation [28] (ever/
never), sex, age group (< 55 or 55–64 or 65–74 or 75 +), race, French-Canadian ances-
try, ethnicity (Hispanic or don’t know versus not Hispanic), educational attainment 
(high school degree, vocational or some college, college degree, postgraduate versus 
less than high school degree), cumulative total trihalomethanes (THM) intake from age 
15 + , average daily nitrate intake from public water supplies and private wells in 1970 
or later, and drinking from a shallow dug well in the study area before 1960. Arse-
nic exposures were estimated at participant residential locations using drinking water 
sampling and statistical modeling, the details of which have been described previously 
[29]. In Table 1 we summarize the characteristics of the analysis population, as well as 
of a subset that had complete arsenic exposure measurements for the 60 years prior to 
study entry. This involved first excluding 85 cases and 95 controls who were less than 
60 years old and then excluding 279 cases and 350 controls without complete estimated 
arsenic exposures over this time period, meaning that 33% of cases and 31% of con-
trols who were 60 years or older had complete arsenic exposure histories. Overall, this 
sub-sample comprised 27% of case long-term residents and 26% of control long-term 
residents.

2.2  Model Specification

We considered three classes of models to assess the associations of arsenic exposure 
and cumulative unmeasured exposures with bladder cancer risk using the Bayesian 
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Table 1  Summary of NEBCS analysis population

Variable Long-term residents Participants >  = 60 years of 
age with complete arsenic 
measurements

Cases Controls Cases Controls

(N = 500) (N = 602) (N = 136) (N = 157)

Study state
 Maine 260 (52) 336 (56) 80 (59) 96 (61)
 Vermont 78 (16) 87 (14) 19 (14) 23 (15)
 New Hampshire 162 (32) 179 (30) 37 (27) 38 (24)

Sex
 Female 127 (25) 159 (26) 57 (42) 71 (45)
 Male 373 (75) 443 (74) 79 (58) 86 (55)

Age group
  < 55 years 42 (8) 49 (8) 0 (0) 0 (0)
 55–64 years 126 (25) 141 (23) 33 (24) 33 (21)
 65–4 years 203 (41) 253 (42) 74 (54) 79 (50)

  > 75 years 129 (26) 159 (26) 29 (21) 45 (29)
Race
 White 471 (94) 578 (96) 126 (93) 150 (96)
 Native American/White only 26 (5) 19 (3) 9 (7) 6 (4)
 Other 3 (1) 4 (1) 1 (1) 1 (1)
 Don’t know 0 (0) 1 (0) 0 (0) 0 (0)

Hispanic ethnicity
 No 496 (99) 592 (98) 134 (99) 155 (99)
 Yes 4 (1) 9 (1) 2 (1) 2 (1)
 Don’t know 0 (0) 1 (0) 0 (0) 0 (0)

Education
  < High school degree 123 (25) 122 (20) 39 (29) 46 (29)
 High School degree 189 (38) 229 (38) 66 (49) 77 (49)
 Vocational 40 (8) 52 (9) 8 (6) 10 (6)
 Some college 60 (12) 76 (13) 12 (9) 14 (9)
 College graduate 52 (10) 57 (9) 11 (8) 9 (6)
 Postgraduate 36 (7) 66 (11) 0 (0) 1 (1)

Smoking history
 Never smoked 77 (15) 207 (34) 22 (16) 71 (45)
 Former smoker 273 (55) 306 (51) 71 (52) 70 (45)
 Current/occasional smoker 149 (30) 89 (15) 42 (31) 16 (10)
 Don’t know 1 (0) 0 (0) 1 (1) 0 (0)

Ever held high risk occupation
 No 233 (47) 406 (67) 64 (47) 115 (73)
 Yes 261 (52) 189 (31) 68 (50) 39 (25)
 Never worked 6 (1) 7 (1) 4 (3) 3 (2)



382 Statistics in Biosciences (2024) 16:377–394

1 3

index low-rank kriging multiple membership model [24] (LRK-MMM), a type of 
hierarchical Bayesian regression model. We chose to use this model due to its abil-
ity to accommodate measured mixtures and cumulative spatial risk using residential 
histories. The three classes of models we used varied in their specification and tim-
ing of arsenic exposures and are given below. For all models we assumed a binary 
outcome variable Yi denoting case membership that was distributed as a Bernoulli 
random variable with probability of being a case pi , and we modeled the log-odds of 
the probability of being a case.

In Class 0,

Table 1  (continued)

Variable Long-term residents Participants >  = 60 years of 
age with complete arsenic 
measurements

Cases Controls Cases Controls

(N = 500) (N = 602) (N = 136) (N = 157)

Cumulative lagged arsenic  intakea

  < 3.52 mg 81 (16) 114 (19) 18 (13) 15 (10)
 (3.52, 8.77] mg 118 (24) 136 (23) 28 (21) 33 (21)
 (8.78, 22.42] mg 110 (22) 156 (26) 36 (26) 50 (32)
 (22.42, 83.53] mg 119 (24) 128 (21) 41 (30) 48 (31)
 (83.53, 124.80] mg 17 (3) 14 (2) 5 (4) 5 (3)
  > 124.80 mg 26 (5) 18 (3) 8 (6) 6 (4)
 Missing 29 (6) 36 (6) 0 (0) 0 (0)

Average arsenic  concentrationb

  < 0.53 ug/L 153 (31) 165 (27) 46 (34) 45 (29)
 (0.53, 0.95] ug/L 85 (17) 138 (23) 24 (18) 43 (27)
 (0.95, 2.06] ug/L 121 (24) 126 (21) 35 (26) 35 (22)
 (2.06, 6.99] ug/L 94 (19) 108 (18) 24 (18) 28 (18)

  > 6.99 ug/L 22 (4) 36 (6) 7 (5) 6 (4)
 Missing 25 (5) 29 (5) 0 (0) 0 (0)

French-Canadian ancestry
 No 328 (66) 414 (69) 86 (63) 110 (70)
 Yes 172 (34) 188 (31) 50 (37) 47 (30)

Dug well  drinkerc

 No 334 (67) 409 (68) 82 (60) 96 (61)
 Yes 141 (28) 164 (27) 54 (40) 61 (39)
 Missing 25 (5) 29 (5) 0 (0) 0 (0)

Quantities presented in table are frequency (percentage). Some percentages may not sum exactly to 100 
due to rounding
a From residential and workplace water, lagged 40 years
b From residential and workplace water
c Ever drank from unconsolidated well at home or work in study area before 1960
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In Class 1,

In Class 2,

Several components are common to models. Namely, β0 is an intercept term, and 
we control for covariate vector xi with coefficient vector � . Additionally, we esti-
mate cumulative spatial risk with the right-most term in all models. For the ith par-
ticipant, define the set of all locations they have lived in their residential history to 
be A(i) . For jth location sij , the spatial risk they experience at that location is esti-
mated with a sum of spatial random effects ψ weighted by the spatial covariance 
C[⋅] between the residential location and the knot locations where the spatial random 
effects are evaluated ( km,m = 1,… , nK ). We use the Matern covariance function 
that simplifies to C[d] = (1 + d∕ρ)e−d∕ρ for distance d and spatial range parameter 
ρ when fixing parameters of the Matern family of m and ν to 1 and 3∕2 , respectively. 
We choose to use the Matern family of covariance functions in our models due to its 
popularity in geostatistical models [30, 31], flexibility, and smoothness with respect 
to distance. Finally, the term wij represents the proportion of the study period that 
the ith participant resided at their jth location, so 

∑J

j=1
wij = 1.

The specification of the arsenic term is different in each class of models. In Class 
0, we estimate the association of a summary arsenic exposure (cumulative arse-
nic intake from residential and workplace water lagged 40 years (meaning a sum 
of these arsenic exposures ending 40 years before study entry), or average arsenic 
concentration from residential and workplace water) with bladder cancer risk using 
regression coefficient β1 . In Class 1, we replace the summary arsenic exposure with 
a time-varying mixture of arsenic exposures. Over a time period of T years, the 
quantized arsenic exposure for the ith individual in the tth year is qit, t = 1,… , T . 
We quantized the arsenic exposures to accommodate high correlations between arse-
nic measurements over time and to account for uncertainty in the measurements, 
using quartiles (four groups) in all models. The importance weight for the tth year 
in the mixture was ωt , and 

∑T

t=1
ωt = 1 for interpretability. We used a variety of win-

dows of temporal exposure for the arsenic mixture (Table 2). In Class 2, we used 
the same set of temporal windows as in Class 1 but added an additional interaction 
term ( β2 ∗ Dug Welli ) to evaluate how the health effect of the arsenic mixtures could 
vary for study participants who had consumed water from shallow dug wells. We 
included this class of models due to a previous finding that water intake was sig-
nificantly associated with bladder cancer risk among study participants who drank 
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from shallow dug wells prior to 1960 [8]. Exponentiating the regression coefficients 
βj, j = 1, 2 gives the odds ratio for bladder cancer for the arsenic exposures.

Some study participants had missing arsenic exposure estimates at certain time 
lags, and increasingly so many decades prior to study entry. In the case of missing 
arsenic exposures, we imputed missing values from a log-normal distribution using 
the non-missing logged estimated arsenic measurements in the given year. In a sen-
sitivity analysis, we fit all models described above to a subset of the analysis sample 
who had complete arsenic exposure estimates for the 60 years prior to study entry. 
We conducted the sensitivity analysis to evaluate the impact of imputing missing 
arsenic measurements on model estimated odds ratios for the arsenic mixtures and 
on the importance of historic arsenic exposures.

2.3  Knot Selection

The Bayesian index LRK-MMM reduces the dimensionality of the spatial risk 
model component through a set of nK knots, which are locations where the spatial 
random effects are estimated. This requires specification of the number and location 
of the knots. Previous research has suggested that the Teitz and Bart heuristic [32], 
originally developed to address the location-allocation problem, chooses knot loca-
tions in a way that enables good sensitivity and power to detect regions of elevated 
spatial risk for disease [33]. Therefore, we use this heuristic to choose knot locations 
in our models. Briefly, Teitz and Bart begins with a random set of knot locations and 
iteratively changes knot location points to candidate ones if doing so decreases the 
objective function of the total distance between cases and their nearest knot location. 
Additionally, we use nK = 60 knots in all models for comparability with a previous 
LRK-MMM analysis of NEBCS data [23].

Table 2  Summary of temporal 
windows and number of weights 
for arsenic exposure index

In the Exposure Years column, the pair 
[
x, y) denotes arsenic expo-

sures beginning x (inclusive) and ending y (exclusive) years before 
study entry. If the number of weights ν in a given model is less than 
x − y, the first entry in the exposure index is the median of the 
exposures in years x,… , x − (x − y)∕ν + 1, , and so on

Model Exposure years Number of weights

1, 2, 3, 4 [60,0) 60, 30, 20, 15
5, 6, 7 [60,15) 45, 15, 9
8, 9, 10 [60, 30) 30, 15, 10
11, 12 [60, 45) 15, 5
13, 14, 15 [45, 0) 45, 15, 9
16, 17, 18 [30, 0) 30, 15, 10
19, 20 [15, 0) 15, 5
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2.4  Model Fitting and Evaluation

We fitted models in a Bayesian framework using Markov chain Monte Carlo 
(MCMC) methods. We specified the following priors: for the adjustment covariates, 
θb ∼ Normal

(
0, τb

)
 , where τb = 1∕σ2

b
 and σb ∼ Uniform(0, 100) . The intercept and 

arsenic exposure coefficients received a similar prior βj ∼ Normal
(
0, τj

)
, with 

τj = 1∕σ2
j
 and σj ∼ Uniform(0, 100), j = 0, 1, 2 . The arsenic index importance 

weight vector � received a Dirichlet prior with parameter vector � =
(
α1,… , αT

)
 to 

assure that each weight in the index was between 0 and 1 and 
∑T

t=1
ωt = 1 . The spa-

tial random effect vector ψ received a multivariate normal prior MVN
(
0, τS�

−1
)
 , 

with covariance matrix � =
[
C
[||ka − kb

||∕ρ
]]

 , τS = 1∕σ2
S
, and σS ∼ Uniform(0, 100) . 

Finally, the spatial range parameter received a uniform prior on the range 
(
0, dmax

)
 , 

where dmax represents the maximum distance between a knot location and a residen-
tial location.

For model estimation, we used Just Another Gibbs Sampler (JAGS) [34], in the 
software R, version 4.1.0 [35], using two chains that each had a burn in period of 
60,000 iterations and retained 40,000 iterations for sampling from the joint poste-
rior distribution. We monitored convergence of model parameters using the Gel-
man-Rubin statistic [36], where a parameter was considered to have converged if its 
statistic was less than 1.1, using the coda package [37] in R. We compared model 
goodness of fit using the deviance information criterion (DIC), which is a common 
method to compare model fit that penalizes model complexity [38]. Smaller DIC 
values indicate a better fit to the data, and differences of greater than 5 in DIC may 
indicate meaningfully better fitting models [39]. We summarized associations with 
the arsenic exposures with posterior mean and 95% credible interval for the odds 
ratio.

We assessed spatial risk over a 6 km by 6 km grid covering the study region, pre-
dicting spatial risk at each grid cell with the posterior estimates of the spatial random 
effects at the knot locations and the covariance function between the grid cell and the 
knot locations. We identified grid cells as being significantly elevated or lowered in 
risk using exceedance probabilities [40], which estimate how frequently the spatial 
odds at a location ( θi ) exceed the null value ( θi = 1 ). The exceedance probabilities 
use the posterior distribution of spatial odds at the ith location ( θi,m+1,… , θi,m+G ), 
where m represents the burn-in and G represents the number of posterior samples 
after the burn-in, and are calculated as q̂i = 1∕G

∑m+G

g=m+1
I
�
θi,g > 1

�
 . We determined 

significance of spatial risk using 95% exceedance probabilities.

3  Results

According to the DIC values, modeling the effect of arsenic exposure as time-vary-
ing rather than as a single summary measure consistently provided better model fit 
to the data (Table 3). Where the DIC values for the Class 0 models with summary 
arsenic measures were 1439 and 1440, the DIC values for the Class 1 time-varying 
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arsenic exposure index models were between 1431 and 1436. Therefore, 14 of the 
20 Class 1 models provided considerably better model fit than the Class 0 models. 
Including the additional interaction term for the dug well drinkers in the Class 2 
models provided even better model fit. The DIC values for models in Class 2 ranged 
from 1424 to 1434, meaning that 19 of the 20 models fit considerably better than the 
Class 0 models.

Comparing the estimated odds ratios for the arsenic exposure index provides 
additional insight into the health effect of arsenic exposure at different times on 
bladder cancer risk. In the Class 1 models, the odds ratio for the arsenic exposure 
index ranged from 1.03 to 1.14 (Fig. 1). The four best fitting models in this class 
included arsenic exposures up to 30 years (one model), 45 years (one model), and 
60 years (two models) prior to study entry. In the Class 2 models, the odds ratio 
for the arsenic index ranged from 1.28 to 1.60 among dug well drinkers and was 
significantly elevated for 16 of the 20 models (Fig. 2). These results provide consist-
ent evidence for the association between historic time-varying arsenic exposures and 

Table 3  Summary of model 
goodness of fit by model class

DIC stands for Deviance Information Criterion, where smaller 
values indicate better-fitting models. In Class 0 that does not fit a 
time-varying arsenic exposure index, Model A and B use summary 
arsenic exposures cumulative arsenic intake from residential and 
workplace water lagged 40 years and average arsenic concentration 
from residential and workplace water, respectively

Class 0 Class 1 Class 2

Model DIC Model DIC Model DIC

A 1439 1 1433 1 1428
B 1440 2 1431 2 1424

3 1434 3 1429
4 1433 4 1429
5 1436 5 1434
6 1434 6 1432
7 1435 7 1428
8 1433 8 1432
9 1433 9 1432

10 1434 10 1431
11 1435 11 1431
12 1432 12 1428
13 1433 13 1429
14 1433 14 1430
15 1432 15 1431
16 1432 16 1430
17 1433 17 1429
18 1433 18 1429
19 1433 19 1427
20 1433 20 1427
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bladder cancer risk among those who drank water from shallow dug wells. The six 
best fitting models in this class included four models with arsenic exposures up to 60 
years before study entry and two models with arsenic exposures in the 15 years prior 
to study entry.

Fig. 1  Summary of model fit and arsenic index odds ratio, Class 1 models. Models are ranked from top 
to bottom indicating best to worst fit. DIC values are displayed in blue text. The posterior mean and 95% 
credible interval for the arsenic exposure index odds ratio are displayed in black text (Color figure online)

Fig. 2  Summary of model fit and arsenic index odds ratio for dug well drinkers, Class 2 models. Models 
are ranked from top to bottom indicating best to worst fit. DIC values are displayed in blue text. The pos-
terior mean and 95% credible interval for the arsenic exposure index odds ratio among dug well drinkers 
are displayed in black text  (Color figure online)
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Evaluating the estimated importance weights in different indices supports the 
variation in the importance of arsenic exposures at different times for bladder cancer 
risk (Fig. 3). In the Class 1 models, there were several elevated importance weights 
at time lags between 60 and 45 years before study entry for several models, and in 
three of the four models the largest estimated importance weight corresponded to 
arsenic exposure at least 45 years prior to study entry. For the Class 2 models, there 
were many elevated importance weights between 60 and 45 years prior to study 
entry as well as a few elevated importance weights in the 10 years before study 
entry.

The sensitivity analysis found that results changed little when including only 
study participants having 60 years of arsenic exposures. Relative to the best fit-
ting Class 0 models, the Class 1 models provided improvements in DIC of 10–22, 
and the Class 2 models provided improvements of 14–33 (Supplemental Mate-
rial Table  S1). In the Class 1 models, the estimated odds ratio for the arsenic 
exposure index was close to the null and not significant for any model (Supple-
mental Material Fig. S1). In the Class 2 models, the estimated odds ratio for the 
arsenic exposure index among dug well drinkers was elevated for all models and 
significant for 16 of 20 models (Supplemental Material Figure S2). Therefore, the 
sensitivity analysis suggests that imputing missing arsenic exposures did not bias 
conclusions in the main analysis.

After modeling the time-varying arsenic exposure mixtures and adjusting for 
individual-level covariates, there was little additional variation in the cumulative 
spatial risk surface. In the main analysis, nowhere in the study region constituted 
a clustering of significantly elevated cumulative spatial risk. In the Class 1 mod-
els from the sensitivity analysis, three models identified a small circular region 
of elevated risk in southern New Hampshire near Rochester that had approximate 

Fig. 3  Summary of yearly importance weights among best fitting models in Classes 1 and 2. Class 1 and 
2 models are in the left and right panel, respectively. The value on the y-axis represents the importance 
weight of the arsenic exposure at the given time lag. Weights in each index sum to one
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Fig. 4  Class 1 models finding significantly elevated cumulative spatial risk for bladder cancer, only using 
data from long-term residents with 60 years of arsenic exposures. Red grid cells denote areas with sig-
nificantly elevated cumulative spatial risk  (Color figure online)

Fig. 5  Class 2 models finding significantly elevated cumulative spatial risk for bladder cancer, only using 
data from long-term residents with 60 years of arsenic exposures. Red grid cells denote areas with sig-
nificantly elevated cumulative spatial risk  (Color figure online)
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radius 15 km, and one of these models identified a region of similar size in south 
central Maine near Augusta (Fig. 4). In the Class 2 models from the sensitivity 
analysis, five models identified the region in southern New Hampshire, and four 
of these models identified the region in south central Maine (Fig. 5).

4  Discussion/Conclusion

In this study, we estimated the associations between mixtures of historic arsenic 
exposures and bladder cancer risk in the NEBCS. Our analytical approach used 
the Bayesian index LRK-MMM, which simultaneously estimates cumulative spa-
tial risk using residential histories and mixture effects. We compared the good-
ness of fit of these models to those that used a 40-year lagged cumulative meas-
ure of arsenic exposure in addition to estimating cumulative spatial risk (standard 
LRK-MMMs). We found that modeling arsenic exposures as a time-varying mix-
ture consistently provided better goodness of fit than using the summary meas-
ure. In these time-varying mixtures, we estimated many positive though not sig-
nificant associations with bladder cancer risk. However, an interaction term for 
the arsenic exposure mixture among dug well drinkers was positively and signifi-
cantly associated with bladder cancer risk in almost every model fit, which pro-
vides insight into how arsenic exposures affect cancer risk differentially over time 
and by source of drinking water. In these models, arsenic exposures between 45 
and 60 years before study entry received large importance weights in the mixture, 
and a few models estimated larger importance weights for more recent exposures. 
These results communicate the complexity and time-varying nature of arsenic 
exposures for bladder cancer risk. Additionally, modeling time-varying arsenic 
exposures explained one area of elevated spatial risk for bladder cancer identi-
fied from a previous analysis that used LRK-MMMs and a summary measure of 
arsenic exposure [23]. We found that our results changed little when restricting 
the analysis sample to include only residents with complete arsenic exposure his-
tories in contrast to the imputation we performed in the main analysis. We also 
identified small areas of elevated spatial risk for bladder cancer in the sensitivity 
that could warrant additional hypothesis generation and analyses.

Findings in our study contribute to the literature on arsenic and bladder can-
cer. Though arsenic has been recognized as a carcinogen for bladder cancer [5], 
less is known regarding the exact timing of the relationship between exposure 
and diagnosis. A previous analysis of arsenic in the NEBCS found that lagging 
arsenic exposure 40 years provided stronger and significant associations with 
bladder cancer risk compared with shorter exposure lags [8]. This latency was 
approximately equal to that found in the prospective study in Chile that identified 
significantly elevated risks for bladder cancer risks up to 40 years after expo-
sure reduction [6, 41]. One notable difference between the sample in the Chile 
study and the NEBCS is that many residents in the former study were exposed to 
very high levels of arsenic in the earliest decades of the exposure range (1950s to 
1970s). Contrastingly, most participants in the NEBCS were exposed to low-to-
moderate levels of arsenic that were lower than for many participants in the Chile 
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study. The large estimated importance weights in many of our models for arsenic 
exposures occurring 45–50 years before study entry (Fig. 3) suggest a somewhat 
longer latency period for these more moderate exposures.

There are several strengths to our study. First is its use of complete residen-
tial histories and historic arsenic exposure estimates [29] that enable assessment 
of how historic unmeasured and estimated exposures respectively influence risk 
for bladder cancer, a disease with a long latency period. Modeling exposure over 
the life course requires [42, 43] a large effort. Our results illustrate the impor-
tance of estimating these historic exposures. Additionally, our analytical frame-
work employed the Bayesian index LRK-MMM, which developed from the 
Bayesian index model and has demonstrated the ability to accurately and consist-
ently estimate mixture effects as well as high power to detect regions of elevated 
unmeasured spatial risk for disease [17, 24]. Finally, we considered a wide range 
of exposure windows for the time-varying arsenic mixtures to assess how expo-
sures at different times vary in importance for explaining bladder cancer risk. The 
methods we used in this analysis can motivate future studies that model the asso-
ciations of time-varying exposures with disease risk.

The limitations of our study should also be considered. First, although the his-
toric arsenic exposure measurements were a product of extensive water sampling, 
characterization of the geology of the aquifers, and statistical modeling, there is a 
possibility that the arsenic estimates may not have represented the true exposures 
of some participants, and particularly for certain historical residential locations. 
For a subset of drilled wells, this method of arsenic exposure assignment offered 
only moderate agreement, sensitivity, and specificity for a binary classification 
of less or greater than 2 μg/L of arsenic [29]. Thus, it is possible that the vari-
ation in the arsenic exposure estimates could have led to non-differential expo-
sure misclassification and a subsequent underestimation of true risk [44]. Sec-
ond, the prevalence of use of arsenical pesticides and dug wells decreased from 
the mid-twentieth century to the present [8, 45]. Therefore, these factors may be 
less relevant for future studies and populations. Third, it is possible that some 
other water contaminants demonstrated different time-varying associations and 
strengths of association with bladder cancer risk. A previous analysis of data in 
this study found that high exposures to drinking water nitrates (average concen-
tration above the 95th percentile) was associated with elevated risk for bladder 
cancer [46]. It is possible that exposures at different times to this contaminant 
could be important for bladder cancer risk. Fourth, nonparticipation occurred in 
this study, with a 65% response rate for both case and control subjects. Therefore, 
it is possible that selection bias could have impacted our findings. However, at 
least regarding rurality and well use, this does not appear to have been an issue 
in this study. For both cases and controls there were a similar proportion of par-
ticipants and nonparticipants living outside a designated census place, which is 
a common indicator for having a private well [8], so nonparticipation does not 
appear to have influenced the composition of the sample in regards to this impor-
tant factor for bladder cancer in this region. Additionally, while this is not neces-
sarily a limitation, we note that we used one statistical method—the Bayesian 
index LRK-MMM—given the nature of our data and goal to estimate mixture 
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effects and spatial risk simultaneously. It is possible that other statistical methods 
could provide new insights into arsenic exposures and bladder cancer. Finally, we 
are unable to establish causality due to the retrospective nature of the study, and 
despite adjusting for many demographic, occupational, and environmental covari-
ates, we cannot rule out the possibility of residual confounding.

In conclusion, we found that modeling historic arsenic exposures as a time-var-
ying mixture provided better fit to the data than modeling a single summary lagged 
exposure in a population-based case–control study of bladder cancer in New Eng-
land. We estimated significant and positive associations for arsenic mixtures and 
bladder cancer among dug well drinkers across several historic windows of expo-
sure. We found evidence for the importance of arsenic exposures 40–50 years before 
study entry in these time window mixtures. Our results support the importance of 
historic environmental exposures particularly in the context of diseases with long 
latency periods. Although the prevalence of dug wells and arsenical pesticides have 
decreased over time, our results provide additional evidence for the latency period 
between arsenic and bladder cancer and motivate the use of time-varying mixtures 
in future health research. Future studies should continue to investigate how geospa-
tial analysis and exposure assignment can benefit health research, particularly over 
historic time periods.
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