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Abstract
When interest lies in causal analysis of the effects of multiple exposures on an out-
come, one may be interested in investigating the interaction between the exposures. 
In such settings, causal analysis requires modeling the joint distribution of exposures 
given pertinent confounding variables. In the most general setting, this may require 
modeling the effect of confounding variables on the association between exposures 
via a second-order regression model. We consider joint modeling of exposures for 
causal analysis via regression adjustment and inverse weighting. In both frame-
works, we also investigate the asymptotic bias of estimators when the dependence 
model for the generalized propensity score incorrectly assumes conditional inde-
pendence of exposures or is based on a naive dependence model which does not 
accommodate the effect of confounders on the conditional association of exposures. 
We also consider the problem of a semi-continuous bivariate exposure and propose 
a two-stage estimation technique to study the effects of prenatal alcohol exposure, 
and the effects of drinking frequency and intensity on childhood cognition.

Keywords  Causal analysis · Dependence modeling · Generalized propensity score · 
Inverse weighting · Multiple exposures · Two-stage analysis

1  Introduction

1.1 � Overview

Causal analysis is concerned with mitigating the effect of confounding variables on 
inferences regarding the exposure–disease relationship. With binary exposures, pro-
pensity scores capturing the association between confounders and the exposure of 
interest can be used for matching, stratification, or regression adjustment [1]. Inverse 
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probability of exposure weighting offers another framework for the estimation of 
causal effects. For continuous exposure variables, generalized propensity scores 
have been developed [2, 3].

The complex etiology of many chronic conditions motivates joint consideration 
of multiple exposure variables and their possible interacting effects [4]. Examples 
include the study of smoking and alcohol consumption on pancreatic cancer [5], the 
interacting effect of smoking and drinking on dietary intake of antioxidants on oral, 
pharyngeal, or laryngeal squamous cell carcinoma [6], and environmental studies 
of several different air pollutants and their effects on lung cancer risk [7]. When the 
joint effects of multiple exposures are under consideration, multivariate propensity 
scores can play a useful role. Vegetabile et al [8] describe a joint model for multivar-
iate binary exposures through the specification of a model for a latent multidimen-
sional Gaussian variable. Williams and Crespi [9] develop a generalized propensity 
score and use it to construct inverse multivariate density-weighted estimating func-
tions. Chen and Zhou [10] propose the use of entropy balancing for multiple con-
tinuous treatments as a framework for causal analysis; this approach is best suited 
for settings in which the dimensions of the exposure and confounding variables are 
modest.

In settings with a single toxin, interest may lie in the causal effect of different 
exposure patterns defined in terms of the frequency of the  exposure, the dose of 
the exposure on exposure occasions, and their interaction. Di Credico et al [11], for 
example, study the effect of the duration and intensity of smoking on the risk of head 
and neck cancers. This is the setting of our motivating study assessing the effect 
of maternal drinking patterns on childhood cognition. Here, even though previous 
studies show that high levels of prenatal alcohol exposure (PAE) can cause serious 
developmental problems in children [12–15], the impact of low levels of exposure 
is not well understood. Still less is known about the impact of “dose rate" which 
refers to the possibility that infants exposed to the same total volume of alcohol 
over the course of a pregnancy may have very different cognitive deficits depend-
ing on whether the mother drinks small amounts relatively frequently, or whether 
she drinks large amounts but less frequently (chronic versus binge drinking). This 
motivates the development and study of the methods to better understand possible 
complex causal effects of PAE on cognition outcomes.

When considering confounding in the causal analysis of multiple exposures, the 
effect of confounders is usually modeled on each marginal exposure variable with 
dependencies accommodated between the exposures through joint models - condi-
tional associations are typically assumed to be functionally independent of any con-
founders. We consider a more general framework in which confounders may affect 
second moments (i.e., the relation between different features of exposures to a single 
toxin). Specifically, we develop methods to study the joint effect of the frequency of 
drinking and the dose of alcohol per drinking occasion in expectant mothers on the 
cognitive development of their child [16]; we then apply the methods we develop to 
the motivating study.

The remainder of the paper is as follows. In Sect. 2, we define a response model 
involving the main effects of two binary exposures and their interaction, along with 
a generalized propensity score. We formulate a general model for the exposures in 
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which confounders affect the first and second-order moments so that they explain 
how the two aspects of exposure vary together. We then describe how this can be 
used for regression adjustment and inverse weighting. The importance of modeling 
the effect of confounders on the association between exposures is investigated in 
Sect. 3 by evaluating the bias of causal estimands from regression adjustment and 
inverse probability of exposure weighting when naive propensity scores only deal 
with the marginal effects of confounders. In Sect. 4, we consider the case of con-
tinuous exposures including semi-continuous exposures and carry out an analo-
gous investigation for analyses based on regression adjustment and inverse density 
weighting for estimating causal effects. A two-stage approach for estimating the 
causal effects of semi-continuous exposures is proposed in Sect. 5. An application to 
the Detroit Cohort Study [12] is given in Sect. 6 and concluding remarks and topics 
for future research are given in Sect. 7. We focus on the case of a bivariate exposure 
but as suggested by the notation in Sect. 2.1, the methods can be naturally general-
ized to accommodate higher dimensional exposures.

2 � Causal Analysis with Multiple Exposures

2.1 � Specification of the Full Model

Let Y denote a continuous response variable of interest, A = (A1,… ,Ap)
� a p × 1 

vector of exposure variables with p ≥ 2 , and B = (A1A2,… ,Ap−1Ap)
� a q × 1 vector 

of all pairwise products where q = p(p − 1)∕2 . Higher-order interaction terms can 
be considered, but here we focus on two-way interactions and so let X = (A�,B�)� 
contain the exposure data of interest. Furthermore, let Z = (Z1,… , Zr)

� be an r × 1 
vector of confounding variables obscuring the effects of X on the response Y. The 
data-generating model for the response is taken to have the form

where � = (��, ��)� with � = (�0, �1,… , �p)
� and � = (�1,… , �q)

� , � = (�1,… , �r)
� , 

and � is a mean zero error term with X,Z ⟂ � . Let A(−j) = (A1,… ,Aj−1,Aj+1,… ,Ap)
� 

be the vector of all exposure variables excluding Aj , let B(−j) be the vector of all 
products of Aj with the p − 1 other exposures, and let �(−j) be the corresponding vec-
tor of coefficients. The causal effect of a one unit change in Aj from aj◦ to aj◦ + 1 
given A(−j) = a(−j) and Z is �j + a�

(−j)
�(−j) . This model therefore enables one to study 

the causal interacting effects of the two exposures.
When dim{Z} = r is large or one is concerned about getting the functional form 

of the effects of confounders correct in the response model, regression adjust-
ment on the propensity score mitigates the effects of confounders. Let fa∣z(a ∣ z) 
be the conditional joint probability distribution or mass function for multivari-
ate continuous or discrete exposures given confounders. Imai and Van Dyk [17] 
defined the generalized propensity score (GPS) as G(A,Z) = fa∣z(A ∣ Z) so that 
Z ⟂ I(A = a) ∣ G(A,Z) = g . Additionally, they stated that if there is a finite dimen-
sional quantity S(Z) such that G(A,Z) depends on Z only  through S(Z) , matching 

(2.1)Y = X
�� + Z

�� + � ,
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or stratification on S(Z) = s or G(A,Z) is equivalent. For a single Bernoulli expo-
sure variable, the generalized propensity score is the conventional propensity 
score, namely the conditional probability of being exposed given confounders (i.e., 
P(A1 = 1 ∣ Z) ), whereas for a scalar continuous exposure it is the conditional density 
of the exposure fa1∣z(A1 ∣ Z) ; based on Assumption 3 of [17], it will often be suffi-
cient to condition on a linear function of confounders such as �(A1 ∣ Z) . For multi-
variate exposures, the generalized propensity score is the multivariate joint distribu-
tion of exposures given confounders, G(A,Z) = fa∣z(A ∣ Z) . When the dependence of 
A on Z in G(A,Z) can be expressed through a low dimensional function S(Z) , this 
generalized propensity score S(Z) can be considered the effective propensity score; 
we consider this in what follows.

2.2 � Propensity Scores for Two Binary Exposures

2.2.1 � Regression Adjustment

Here, we aim to determine the minimal requirements for a potential vector-valued 
propensity score S(Z) to ensure valid causal inference regarding the exposure effects 
conditional on S(Z) . We assume that data are available from independent individual 
processes and consider properties of a single process in much of what follows. From 
(2.1), note

Using P(⋅) to informally denote a joint probability mass function or density, we write

so if S(Z) contains enough information to construct the conditional distribution for 
the exposure variables given Z (i.e., if X ⟂ Z ∣ S ), then following Assumption 3 of 
[17], S serves as a valid propensity score. In this case, the final term in (2.2) is inde-
pendent of X and a working regression model of the form

will give an estimator �̂ which is consistent for the causal parameter �.
Here, we give an illustrative example involving a bivariate binary exposure 

A = (A1,A2)
� where Ak indicates exposure status with respect to exposure k, k = 1, 2 . 

Let Z be a set of all potential confounders. Suppose the status for exposure k can be 
characterized by the marginal model P(Ak ∣ Z) = P(Ak ∣ Zk) , where Zk is a subvector 
of Z , k = 1, 2 . We may assume, for example, that logitP(Ak = 1 ∣ Zk) = Z

�
k
�k . While 

such marginal models are typically used when considering scalar exposures, they 
may not be sufficient to fully characterize the joint distribution of exposures if some 
confounding variables exert a second-order effect. Let Z3 be another set of con-
founders characterizing the dependence between A1 and A2 given Z1 and Z2 through 
a dependence regression model

(2.2)�Y∣X,S(Y) = �
Z∣X,S{�Y∣X,S,Z(Y)} = X

�� + �
Z∣X,S(Z

�)� .

(2.3)P(Z ∣ X, S) =
P(X,Z, S)

∫
Z
P(X,Z, S)dz

=
P(X ∣ Z, S)P(Z,S)

∫
Z
P(X ∣ Z, S)P(Z,S)dz

,

(2.4)�(Y ∣ X,S) = X
�� + S

��
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where

Based on the marginal models for Ak ∣ Zk , k = 1, 2 , and (2.5),

where a = 1 − (1 − OR)
∑2

k=1
P(Ak = k ∣ Zk) [18] and we let OR denote 

OR(A1,A2 ∣ Z) . The generalized propensity score is obtained by not-
ing that P(A1 = 1,A2 = 0 ∣ Z) = P(A1 = 1 ∣ Z1) − P(A = 1 ∣ Z) and 
P(A1 = 0,A2 = 1 ∣ Z) = P(A2 = 1 ∣ Z2) − P(A = 1 ∣ Z) , from which 
P(A = 0 ∣ Z) can be obtained. A sufficient propensity score would be 
S(Z) = (S1(Z1), S2(Z2), S3(Z3))

� where Sk(Zk) = P(Ak = 1 ∣ Zk) , k = 1, 2 , and 
S3(Z) = P(A = 1 ∣ Z) ; alternatively, one could define Sk(Zk) = Z

�
k
�k , k = 1, 2, 3.

Here, Z1 and Z2 are sets of confounders influencing the marginal causal effects of 
A1 and A2 on Y, and conditioning on (S1, S2) is sufficient if A1 does not interact with A2 
(i.e., if �1 = 0 ). If �1 ≠ 0 , then it is necessary to model the association between A1 and 
A2 given (Z�

1
,Z�

2
)� as a function of possibly different sets of confounders Z3 as suggested 

in (2.5). We investigate the implications of not doing this adequately in Section 3.

2.2.2 � Inverse Probability Weighting

Here, we consider the use of a generalized propensity score as weight in inverse prob-
ability weighting analysis for two binary exposures. Let P(A ∣ Z;�) denote the condi-
tional joint probability of A = (A1,A2)

� given confounders under the positivity con-
dition [1] where P(A = a ∣ Z;�) > 0 for all possible values of Z . The inverse “joint 
probability”-weighted estimating function [19] is expressed as

where �
R(⋅) represents an expectation in the setting where X ⟂ Z and 

�
R(Y ∣ X;�) = X

�� defines a marginal structural model. Here,

To show that (2.6) is an unbiased estimating function, we take the expectation of 
U1(�;�) with respect to Y ∣ X,Z to obtain

(2.5)logOR(A1,A2 ∣ Z) = Z
�
3
�3 ,

OR(A1,A2 ∣ Z) =
P(A1 = 1,A2 = 1 ∣ Z)∕P(A1 = 0,A2 = 1 ∣ Z)

P(A1 = 1,A2 = 0 ∣ Z)∕P(A1 = 0,A2 = 0 ∣ Z)
.

P(A1 = 1,A2 = 1 ∣ Z) =

{
a−[a2−4OR(OR−1)P(A1=1∣Z1)P(A2=1∣Z2)]

1∕2

2(OR−1)
, OR ≠ 1

P(A1 = 1 ∣ Z1)P(A2 = 1 ∣ Z2) , OR = 1

(2.6)U1(�;�) =
I(A = a)

P(A = a ∣ Z;�)
D(X)

[
Y − �

R(Y ∣ X;�)
]
,

D(X) =
�

��
�
R(Y ∣ X;�) = (1,A1,A2,A1A2)

�.

(2.7)
I(A = a)

P(A = a ∣ Z;�)
D(X)

[
�(Y ∣ X,Z;� ) − �

R(Y ∣ X;�)
]
,
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where � = (��, � �)� . The expectation of (2.7) with respect to Z ∣ A = a gives

Since

we can rewrite (2.8) as

which effectively results in the expectation being taken in the setting where Z ⟂ A , 
equivalent to how this would be done in the hypothetical randomized trial [19]. 
Since (2.6) has expectation zero, solving U1(�;�) = 0 defines an estimator that is 
consistent for the causal estimand of interest. In practice, � must be estimated but 
provided a 

√
n−consistent estimator is used  in its place, consistency of �̂ is still 

achieved.

3 � Exposure Dependence Model Misspecification

3.1 � Regression Adjustment

3.1.1 � General Framework

Here, we derive the limiting bias of the estimators of exposure effects obtained 
through regression adjustment when the dependence model is misspecified through 
a) an inappropriate conditional independence assumption, or b) specification of an 
exchangeable dependence structure functionally independent of confounders; this is 
defined more formally in what follows.

Consider the following regression model with a generalized propensity score 
adjustment,

where S̃ = S̃(Z) is a vector-valued propensity score which might be insufficient for 
adjustment under model misspecification, e.g., assuming conditional independ-
ence among exposures or using an inadequate dependence model. The contribu-
tion to the least squares equation for � from a single individual based on (3.1) is 
U(Y ∣ X, S̃;�,�) = (X�, S̃

�
)�(Y − X

�� − S̃
�
�) . With a sample of n independent indi-

viduals yielding data {(Yi,Xi,Zi), i = 1,… , n} , the least squares estimator of the 
exposure effect is the solution to 

∑n

i=1
U(Yi ∣ Xi, S̃i;�,�) = 0 and is denoted by �̂ ; 

this is consistent for the solution to �{U(Y ∣ X, S̃;�,�)} = 0 where the expectation 
is taken with respect to the full data generation process [20, 21].

(2.8)
∑
Z

I(A = a)

P(A = a ∣ Z;�)
D(X)

[
�(Y ∣ X,Z;� ) − �

R(Y ∣ X;�)
]
P(Z ∣ A = a).

P(Z ∣ A = a) =
P(A = a ∣ Z;�)P(Z;�)

P(A = a)
,

∑
Z

I(A = a)

P(A = a)
D(X)

[
�(Y ∣ X,Z;� ) − �

R(Y ∣ X;�)
]
P(Z;�) ,

(3.1)�(Y ∣ X, S̃) = X
�� + S̃

�
� ,
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Again we consider the bivariate case with X = (1,A1,A2,A1A2)
� and the corre-

sponding coefficient � = (�0,�1,�2,�3)
� . The explicit form of the limiting value 

of the estimator �̃ for � in (2.1) is

where � and � are given in (2.1) and (3.1),

Σk = cov(�(Ak ∣ Z),Z) , Λk = cov(�(Ak ∣ Z), S̃) , Σ3 = cov(�(A1A2 ∣ Z),Z) , 
and Λ3 = cov(�(A1A2 ∣ Z), S̃) . We also have �2

k
= var(Ak) , �2

3
= var(A1A2) , 

�12 = corr(A1,A2) , and �k3 = corr(Ak,A1A2) , k = 1, 2 ; see Online Appendix A for 
more details.

With two binary exposures, �2
k
= pk(1 − pk) and �2

3
= p12(1 − p12) , where 

pk = P(Ak = 1) , k = 1, 2 , and p12 = P(A1A2 = 1) . The correlation �12 is

[22], and

3.1.2 � A Misspecified Dependence Model

If exposure variables are treated as conditionally independent given confounders, 
one might specify S̃ as S̃ = (S1(Z1), S2(Z2))

� or S̃ = (S1(Z1), S2(Z2), S1(Z1)S2(Z2))
� , 

where S1(Z1) and S2(Z2) are the marginal propensity scores. A naive model using 
regression adjustment might be specified as

(3.2)𝜑̃1 = 𝛼1 + � �𝛥11 + � �𝛥21 ,

(3.3)𝜑̃2 = 𝛼2 + � �𝛥12 + � �𝛥22 ,

(3.4)

𝜑̃3 = 𝛽1 + � �
(Σ3

𝜎2
3

− 𝛥11

𝜌13𝜎1

𝜎3
− 𝛥12

𝜌23𝜎2

𝜎3

)

− � �
(Λ3

𝜎2
3

+ 𝛥21

𝜌13𝜎1

𝜎3
+ 𝛥22

𝜌23𝜎2

𝜎3

)
,

�1k =

(�12 − �13�23)(
�2
k
Σ3−k

�1�2
−

�k

�3

�13�23

�k3
Σ3) + (

�2
13
�2
23

�2
k3

− 1)(Σk −
�k

�3
�k3Σ3)

�2
k
{(�12 − �13�23)

2 − (1 − �2
13
)(1 − �2

23
)}

,

�2k =

(�12 − �13�23)(
�2
k
Λ3−k

�1�2
−

�k

�3

�13�23

�k3
Λ3) + (

�2
13
�2
23

�2
k3

− 1)(Λk −
�k

�3
�k3Λ3)

�2
k
{(�12 − �13�23)

2 − (1 − �2
13
)(1 − �2

23
)}

,

�12 =
p12 − p1p2√

p1(1 − p1)p2(1 − p2)

�k3 =
p12 − pkp12√

pk(1 − pk)p12(1 − p12)
, k = 1, 2.



354	 Statistics in Biosciences (2024) 16:347–376

1 3

or possibly

In the most general setting, such propensity score regression adjustments are insuf-
ficient to render X ⟂ Z ∣ S̃ since A1A2 depends on the joint model of A1 and A2 given 
Z . As a result, estimates of the causal effects �1,�2 and �3 are inconsistent with 
the asymptotic bias given by the second and third terms on the right-hand side of 
Eqs. (3.2)–(3.4). It can be seen that the bias depends on the second-order association 
between the exposures and confounders, the association between exposures and gen-
eralized propensity scores, and variances of exposures.

A more flexible exposure model may recognize the conditional association between 
exposures (given marginal confounders Z1 and Z2 ), but assume no role of confounders 
on the second-order dependence. In this case, one might consider a propensity score 
term based on

where cov(A1,A2 ∣ Z1,Z2) = �
√
V(A1 ∣ Z1)V(A2 ∣ Z2) and V(Ak ∣ Zk) is the residual 

variance from the propensity score for exposure k, k = 1, 2 . In this case, the regres-
sion model adjusted by the generalized propensity score may be,

We explore the impact of such misspecifications in Sect. 3.3.

3.2 � Inverse Probability Weighting

A misspecified propensity score will have a different impact in the framework of the 
inverse propensity score-weighted estimating function. Let P0(A = a ∣ Z;�) denote the 
misspecified (naive) conditional joint density or mass function indexed by � , and let 
U10(�;�) and U20(�) be the estimating functions as follows:

Let �∗ be the solution to �A,Z{U20(�);�, �} = 0 , the limiting value to which the esti-
mator �̂ converges when fitting the misspecified model. The limiting value of � is 
obtained by setting the equation below to zero and solving �̂,

(3.5)�(Y ∣ X,S) = X
�� + �1S1(Z1) + �2S2(Z2),

(3.6)�(Y ∣ X, S) = X
�� + �1S1(Z1) + �2S2(Z2) + �3S1(Z1)S2(Z2).

�(A1A2 ∣ Z) = cov(A1,A2 ∣ Z1,Z2) + S1(Z1)S2(Z2),

(3.7)�(Y ∣ X,S) = X
�� + �1S1(Z1) + �2S2(Z2) + �3�(A1A2 ∣ Z1,Z2) .

(3.8)U10(�;�) =
I(A = a)

P0(A = a ∣ Z;�)
D(X)

[
Y − �

R(Y ∣ X;�)
]
,

(3.9)U20(�) =
� logP0(A ∣ Z;�)

��
.

(3.10)
∑
A

∑
Z

I(A = a)P(A = a ∣ Z;�)

P0
(
A = a ∣ Z;�∗

)
P(Z;�)

D(X)
[
�(Y ∣ X,Z;� ) − �

R(Y ∣ X;�)
]
.
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A misspecified propensity score P0(A = a ∣ Z;�) is the product of two marginal pro-
pensity scores P(A1 = a1 ∣ Z;�)P(A2 = a2 ∣ Z;�) under the conditional independence 
assumption. In this case, under the present formulation, we have

where

and �∗ = (��
1
, ��

2
)� so �̂ is consistent for the target parameters �1 and �2 but is of insuf-

ficient dimension to characterize the second-order dependence.
When the association is assumed functionally independent of confounders, the 

misspecified propensity score P0(A = a ∣ Z;�) is an inadequately modeled condi-
tional joint density or mass function P(A1 = a1,A2 = a2 ∣ Z1,Z2;�) . In this case, we 
have U20(�) = �logP(A = a ∣ Z1,Z2;�)∕�� , and �∗ will not be consistent for the tar-
get parameters �1 or �2.

3.3 � Empirical Bias and Efficiency

Here, we report on simulation studies investigating the limiting values of the expo-
sure effects subject to model misspecification. We consider a bivariate binary expo-
sure and assess the relative asymptotic bias of estimates of exposure effects under 
two types of model misspecification of Sect. 3.1.2 under both regression adjustment 
and IPW analyses.

Suppose a sample of n independent replicates {(Yi,Xi,Zi), i = 1… n} 
are generated with n = 500 . Let Z contain binary confound-
ing variables with Z1 ⟂ Z2 , P(Z1 = 1) = P(Z2 = 1) = 0.5 , and 
P(Z3 = 1 ∣ Z1, Z2) = expit{−0.896 + (log 2)Z1 + (log 3)Z2} giving P(Z3 = 1) = 0.5 . 
We let P(A1 = 1 ∣ Z1) = expit(�10 + �11Z1) where �1 = (�10, �11)

� = (−0.764, log 2)� 
so �(A1) = 0.4 , and P(A2 = 1 ∣ Z2) = expit(�20 + �21Z2) with 
�2 = (�20, �21)

� = (−0.112, log 1.25)� so �(A2) = 0.5 , Finally, we let 
logOR(A1,A2 ∣ Z3) = �30 + �31Z3 with �3 = (�30, �31)

� ; we consider �31 ∈ [−5, 5] and 
for each value of �31 , we solve for �30 in (2.5) such that �{OR(A1,A2)} = 4 . For 
response Y, we generate data according to (2.1) with � = (�0, �1, �2, �1)

� = (0, 2, 2, 4)� 
and � = (0.5, 0.5, 0.5)�.

Under the assumption of conditional independence between exposures, the 
regression model adjusted by the generalized propensity scores can be fitted as in 
(3.5) or (3.6), which is denoted as Reg1 and Reg2 in Fig. 1, respectively. The IPW 
approach involves solving the exposure effect in (3.10). We denote the estimated 
effect as �̂ = (𝜑̂1, 𝜑̂2, 𝜑̂3)

� for X = (A1,A2,A1A2)
� , and the relative bias of the esti-

mated exposure effect for X is shown in Fig. 1 as (𝜑̂1 − 𝛼1)∕𝛼1 , (𝜑̂2 − 𝛼2)∕𝛼2 , and 
(𝜑̂3 − 𝛽1)∕𝛽1 . In the bottom right panel of Fig. 1, we show the relative bias of the 
causal effect of a one unit change in A2 given A1 = a1 = 1 or 0 and Z , and denote 
it as (𝛥2(A1) − 𝛥2(A1))∕𝛥2(A1) where �2(A1) = �2 + a1�1 and 𝛥2(A1) = 𝜑̂2 + a1𝜑̂3 . 

U20(�) = (U�
20,1

(�1),U
�
20,2

(�2)),

U20,k(�k) =
�logP(Ak = ak ∣ Zk;�k)

��k
, k = 1, 2,
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The absolute value of relative bias of the exposure effect increases as the covari-
ate effect on the exposure dependence increases. Moreover, the regression adjust-
ment leads to less bias in effect estimation than the IPW approach in these settings. 
Adjusting for (S1(Z), S2(Z))� or (S1(Z), S2(Z), S1(Z)S2(Z))� produces similar results. 
When �31 = 0 (i.e., the conditional association between exposure is functionally 
independent of confounders), the bias of the estimated exposure effect is negligible 
when conditional independence is assumed between two binary exposures.

We follow (3.7) and (3.10) to conduct the estimation for the second type of mis-
specification, that is, using an exchangeable dependence structure which assumes no 
second-order effects of confounders on the exposure. The results are shown in Fig. 2. 
When there is no confounder affecting the dependence (i.e., �31 = 0 ), the curves pass 
through zero points on both axes, indicating both the regression adjustment and IPW 
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Fig. 1   Empirical relative bias with standard errors (reflected by  shaded bands) of estimators of expo-
sure effects from inadequate propensity score modeling assuming conditional independence between two 
binary exposures when the second-order confounder has the effect �31 ; regression adjustment (Reg) and 
inverse weighting (IPW) are considered; the marginal association between exposures is OR = 4
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approaches produce unbiased estimates as the models are correctly specified under 
the assumption of no second-order effects of confounders on the exposure. Similarly 
as in Fig. 1, the absolute value of relative bias of the exposure effect would increase 
as the covariate effect on the exposure dependence ( �31 ) increases. The regression 
adjustment leads to less bias in effect estimation compared to the IPW approach.

4 � Multivariate Continuous Exposures

In this section, we consider multiple continuous exposures and semi-continuous 
exposures.
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Fig. 2   Empirical relative bias with standard errors (reflected by shaded bands) of estimators of exposure 
effects from inadequate propensity score modeling due to the omission of a second-order confounder 
with effect �31 ; regression adjustment (Reg) and inverse weighting (IPW) are considered; the marginal 
association between two binary exposures is OR = 4
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4.1 � Multivariate Normal Exposures

4.1.1 � Regression Adjustment

Here, we consider A ∣ Z ∼ BVN(�(Z),Σ(Z)) with A = (A1,A2)
� , Z = (Z�

1
,Z�

2
,Z�

3
)� , 

�(Z) = (�1(Z),�2(Z))
� , �k(Z) = �(Ak ∣ Z) = �(Ak ∣ Zk) , var(Ak ∣ Z) = �2

k
 , k = 1, 2 , 

and corr(A1,A2 ∣ Z) = �(Z3) . We suppose �(Ak ∣ Z) = Z
�
k
�k with a dependence 

model

Since the variance parameters are functionally independent of Z , a sufficient pro-
pensity score is S(Z) = (S1(Z1), S2(Z2), S3(Z3))

� where Sk(Zk) = Z
�
k
�k , k = 1, 2 and 

S3(Z) = Z
�
3
�3 [17] since

where (a − S) = (a1 − S1, a2 − S2)
� and

An alternative to (4.1) would be to model B1 = A1A2 given Z directly to define 
S3(Z) = �(B1 ∣ Z3) and note that in this case, we could replace the covariance entries 
of Σ with S3(Z) − S1(Z1)S2(Z2) ; the key point is that S(Z) = (S1(Z1), S2(Z2), S3(Z3))

� 
contains the relevant information on confounders in the exposure model.

4.1.2 � Inverse Joint Density Weighting

Inverse density weighting can be used when exposures are continuous [23]. With 
conditional joint density f (a ∣ z;�) as in (2.6), we write the inverse joint density-
weighted estimating function as

The expectation of U1(�;�) with respect to Y ∣ X,Z and Z ∣ X gives

where

Thus, we can rewrite (4.3) as

(4.1)log

{
1 + �(Z3)

1 − �(Z3)

}
= Z

�
3
�3.

f (a1, a2 ∣ Z, S)) =
1

2�
√
∣ Σ(S3) ∣

exp{−(a − S)�Σ−1(S3))(a − S))∕2},

Σ(S3) =

[
�2
1

�(Z3)�1�2
�(Z3)�1�2 �2

2

]
.

(4.2)U1(�;�) =
I(A = a)

f (a ∣ z;�)
D(X)

[
Y − �

R(Y ∣ X;�)
]
.

(4.3)∫
Z

I(A = a)

f (a ∣ z;�)
D(X)

[
�(Y ∣ X,Z;�, �) − �

R(Y ∣ X;�)
]
f (z ∣ a)dz,

f (z ∣ a) =
f (a ∣ z;�)f (z;�)

f (a)
.
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which results in the expectation being taken in the setting where Z ⟂ A and gives 
consistent causal estimate �̂ from solving U1(�;�) = 0.

4.2 � Multivariate Semi‑continuous Exposures

4.2.1 � Regression Adjustment

Here we suppose A1 and A2 are non-negative semi-continuous exposure variables with 
a mass at zero and we adopt a two-part generalized propensity score model [24] to 
address the effects of confounding variables. While these two exposures could in gen-
eral represent exposures to different agents, here we consider the case where they rep-
resent different aspects of the exposure to a single agent. Specifically for motivating 
study, we may let A1 and A2 represent the drinking frequency (proportion of drinking 
days per week) and drinking intensity (dose per drinking occasion) – among non-drink-
ers, these degenerate to zero. We can therefore let A+ = �(A1A2 > 0) indicate positive 
exposure, Lk = log(Ak ∣ A

+ = 1) , k = 1, 2 , and �1(Z0) = �(A+ ∣ Z0).
We consider the true response model is (2.1) with X = (1,A+,A+L1,A

+L2,A
+L1L2)

� . 
We let

where Z0 = (1,Z�
1
,Z�

2
)� , and given A+ = 1 , we suppose Lk = Z

�
k
�k + Rk , k = 1, 2 , and 

R = (R1,R2)
� is bivariate normal with var(Rk) = �2

k
 , k = 1, 2 , �(Z) = corr(R1,R2 ∣ Z) 

, and log{(1 + �(Z)∕(1 − �(Z))} = Z
�
3
�3 . As such, we have

to form the generalized propensity score as 
S = (�1(Z0),�(L1 ∣ Z0,Z1),�(L2 ∣ Z0,Z2),�(L1L2 ∣ Z))

� or 
S = (S0(Z0), S1(Z1), S2(Z2), S3(Z3))

� and use it for adjustment in the regression 
model (2.4) as

where X = (1,A+,A+L1,A
+L2,A

+L1L2)
�.

4.2.2 � Inverse Joint Density Weighting

The inverse density of exposure weighted estimating function is given here by

where � = (��
1
, �2

1
, ��

2
, �2

2
, ��

3
)�,

(4.4)∫
Z

I(A = a)

f (a)
D(X)

[
�(Y ∣ X,Z;�, �) − �

R(Y ∣ X;�)
]
f (z;�)dz,

�1(Z0) = expit(Z�
0
�0),

�(Lk ∣ Z0,Zk) = �1(Z0)�(Lk ∣ A
+ = 1,Zk) , k = 1, 2 ,

�(L1L2 ∣ Z) = �1(Z0)�(L1L2 ∣ A
+ = 1,Z)

(4.5)�(Y ∣ X,S) = X
�� + S

��,

(4.6)U0(Y ∣ X;�,� , �0) = w(X,Z)D(X)[Y − �
R(Y ∣ X;�)],



360	 Statistics in Biosciences (2024) 16:347–376

1 3

and D(X) = (1,A+,A+L1,A
+L2,A

+L1L2)
�.

Stabilization can be used to address extreme weights [19, 25] where

with �2(�
†

0
) and f (l1, l2 ∣ A+ = 1)   unconditional quantities with respect to the con-

ditional quantities �1(Z0;�0) and f (l1, l2 ∣ A+ = 1,Z) for weights stabilization. The 
inverse weighted estimating function for � with stabilized weights is given by (4.6) 
with ws(X,Z) in place of w(X,Z) giving

The estimate of � is the solution from solving U0(Y ∣ X;�,� , �0) = 0 or 
U0(Y ∣ X;�,� ,� †, �0, �

†

0
) = 0 ; See Online Appendix B and C, for more details on 

parameter estimation through the second-order generalized estimating equations 
(GEE2) [26, 27] and derivation of the asymptotic covariance of the estimator.

4.3 � Misspecification of Propensity Scores

4.3.1 � Regression Adjustment and Inverse Density Weighting

If we treat the bivariate continuous or semi-continuous exposures as conditionally 
independent, the generalized propensity score can be adjusted similarly as in the 
regression model (3.5). That is,

where X = (1,A1,A2,A1A2)
� contains continuous exposures, 

S̃ = (�(A1 ∣ Z1),�(A2 ∣ Z2),�(A1 ∣ Z1)�(A2 ∣ Z2))
� . For semi-continuous exposures, 

we have X = (1, L1, L2, L1L2)
� , and S̃ =

(

�1
(

Z0
)

,�
(

L1 ∣ Z0, Z1
)

,�
(

L2 ∣ Z0, Z2
)

,
�
(

L1 ∣ Z0, Z1
)

�
(

L2||Z0, Z2
))′ in (4.8).

When exposures are continuous, the inverse density of exposure weighted esti-
mating equation used for exposure effects estimation is given by

and when exposures are semi-continuous, the inverse density of exposure weighted 
estimating equation is given by

where

w(X,Z) =
�(X = x)

{�1(Z0;�0)f (l1, l2 ∣ A
+ = 1,Z)}A

+
{1 − �1(Z0;�0)}

1−A+
,

ws(X,Z) =
�(X = x){�2(�

†

0
)f (l1, l2 ∣ A

+ = 1)}A
+

{1 − �2(�
†

0
)}1−A

+

{�1(Z0;�0)f (l1, l2 ∣ A
+ = 1,Z)}A

+
{1 − �1(Z0;�0)}

1−A+
,

(4.7)U0(Y ∣ X;�,� ,� †, �0, �
†

0
) = ws(X,Z)D(X)[Y − �(Y ∣ X;�)] .

(4.8)�(Y ∣ X, S̃) = X
�� + S̃

�
� ,

(4.9)U10(�;�) =
�(X = x)f

(
a1
)
f
(
a2
)

f
(
a1 ∣ Z1;�

)
f
(
a2 ∣ Z2;�

)D(X)[Y − �
R(Y ∣ X;�)

]
= 0,

(4.10)ws(X,Z)D(X)[Y − �
R(Y ∣ X;�)] = 0,
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and D(X) = (1,A+,A+L1,A
+L2,A

+L1L2)
�.

When the dependence model assumes no role of confounders on the association 
between exposures, the regression model adjusted by the generalized propensity 
score is similar to (3.7),

where X = (1,A1,A2,A1A2)
� , S̃ = (�(A1 ∣ Z1),�(A2 ∣ Z2),�(A1A2 ∣ Z1,Z2))

� . 
For semi-continuous exposures, we have X = (1, L1, L2, L1L2)

� , 
S̃ = (𝜋1(Z0),�(L1 ∣ Z0,Z1),�(L2 ∣ Z0,Z2),�(L1L2 ∣ Z0,Z1,Z2))

�.
The inverse density weighting approach using the misspecified joint density of 

exposures is to solve the following estimating equation for continuous exposures,

For the semi-continuous exposures, the inverse density of exposure weighted esti-
mating equation is to solve (4.10) with

4.3.2 � Empirical Bias and Efficiency

In this section, we report on simulation studies based on the random sample of size 
500 with 1000 repetitions to estimate the exposure effect when exposures are con-
tinuous or semi-continuous. The estimated exposure effect through both regression 
adjustment and inverse density-weighting approach would be assessed in terms of 
the relative bias, i.e., (�̂ − �)∕�.

When exposures in the true response model (2.1) are bivariate continuous, we let 
Ak = �k0 + �k1Zk + Rk , k = 1, 2 , where

and Zk ⟂ Rk . Additionally, we have log{(1 + �)∕(1 − �)} = �30 + �31Z3 . We let 
�10 = 2 and �11 = log 2 such that �(A1) = 2 , let �20 = 0.5 and �21 = log 1.25 such that 
�(A2) = 0.5 . We let �31 ∈ [−5, 5] and solve for �30 such that �(�) = 0.5.

The relative biases of exposure effects estimated from (4.8), (4.9), (4.11), and (4.12) 
under two types of model misspecifications are shown in Figs. 3 and 4. The patterns 
of relative biases for continuous exposures are quite different from the case of binary 
exposures, but the main findings are similar in general. We again see the relative bias 

ws(X,Z) =
�(X = x){�2(�

†

0
)f (l1 ∣ A

+ = 1)f (l2 ∣ A
+ = 1)}A

+
{1 − �2(�

†

0
)}1−A

+

{�1(Z0;�0)f (l1 ∣ A
+ = 1, Z1)f (l2 ∣ A

+ = 1,Z2)}
A+{1 − �1(Z0;�0)}

1−A+
,

(4.11)�(Y ∣ X, S̃) = X
�𝝋 + S̃

�
𝝍 ,

(4.12)U10(�;�) =
�(X = x)f

(
a1, a2

)

f
(
a1, a2 ∣ Z1,Z2;�

)D(X)[Y − �
R(Y ∣ X;�)

]
= 0.

(4.13)

ws(X,Z) =
I(X = x){�2(�

†

0
)f (l1, l2 ∣ A

+ = 1)}A
+

{1 − �2(�
†

0
)}1−A

+

{�1(Z0;�0)f (l1, l2 ∣ A
+ = 1,Z1,Z2)}

A+
{1 − �1(Z0;�0)}

1−A+
.

R = (R1,R2)
� ∼ N

(
0,

(
�2
1
�12

�12 �2
2

))
,
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of the exposure effect increases as the covariate effect on the exposure dependence 
increases. Compared to the case of binary exposures, the estimated relative bias is 
relatively lower for continuous exposures. Regression adjustment tends to produce a 
smaller bias than the inverse density weighting approach with higher efficiency.

For semi-continuous exposures, we let �1(Z0) = expit(�00 + �01Z1 + �02Z2) where 
�00 = 1.484 , �01 = 1 , �02 = 2 such that �(�1) = 0.7 in the first part of the model. For 
the second part where given A+ = 1 , we suppose log(Ak ∣ A

+ = 1) = �k0 + �k1Zk + Rk , 
k = 1, 2 , where

R = (R1,R2)
� ∼ N

(
0,

(
�2
1
�12

�12 �2
2

))
.
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Fig. 3   Empirical relative bias with standard errors (reflected by shaded bands) of estimators of exposure 
effects from inadequate propensity score modeling assuming conditional independence between two con-
tinuous exposures when the second-order confounder has the effect �31 ; regression adjustment (Reg) and 
inverse weighting (IPW) are considered; the marginal association between exposures is � = 0.5
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We let �10 = 2 and �11 = log 2 such that �(logA1 ∣ A
+ = 1) = 2 , let �20 = 0.5 

and �21 = log 1.25 such that �(logA2 ∣ A
+ = 1) = 0.5 . Additionally, we have 

� = �12∕(�1�2) , and log{(1 + �)∕(1 − �)} = �30 + �31Z3 , where we let �31 ∈ [−5, 5] 
and solve for �30 such that �{�(A1,A2)} = 0.5.

Figures D1 and D2 in Online Appendix D show the relative biases of semi-con-
tinuous exposure effects estimated via (4.8), (4.10), (4.11) and (4.13) under two 
model misspecifications. The patterns of the relative bias as a function of the covari-
ate effect �31 are similar to those of Figs. 3 and 4, while the case of semi-continuous 
exposures can lead to higher variability in estimates compared to binary and con-
tinuous exposures, especially under inverse density weighting and conditional inde-
pendence. Again regression adjustment yields a smaller bias and greater precision 
compared to inverse density weighting in these simulation settings.
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Fig. 4   Empirical relative bias with standard errors (reflected by shaded bands) of estimators of exposure 
effects from inadequate propensity score modeling due to the omission of a second-order confounder 
with effect �31 ; regression adjustment (Reg) and inverse weighting (IPW) are considered; the marginal 
association between two continuous exposures is � = 0.5
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5 � A Two‑Stage Causal Analysis for Bivariate Semi‑continuous 
Exposures

Here, we propose a two-stage approach for causal analysis involving semi-contin-
uous exposures, again considering the special case that a single binary indicator 
A+ indicates that an individual is exposed, and if A+ = 1 then variables Ak , 
k = 1,… , p record the different facets of exposure. It is helpful to let 
Ac
k
= A+(Ak − Āk) denote the the centered value of Ak where Āk = �(Ak ∣ A

+ = 1) , 
k = 1,… , p , and A = (Ac

1
,… ,Ac

p
)� is the vector of exposures, 

B = (Ac
1
Ac
2
,… ,Ac

p−1
Ac
p
)� is the vector of pairwise products of exposures, 

X = (A+,A�,B�)� , and Z is an r × 1 vector of confounders. The data-generating 
model is

5.1 � Stage I: The Dose–Response Surface

In stage I, we focus on the subgroup analysis modeling the dose–response surface 
among those with A+ = 1 (the exposed). For a sample with {Yi,Xi,Zi, i = 1,… , n} , 
the estimating function is U1(�) =

∑n

i=1
Ui1(�) for the covariate adjustment where

D1(Ai,Bi,Zi) = (1,A�
i
,B�

i
,Z�

i
)� , and

Alternatively, if SA = �(A ∣ A+ = 1,Z) and SB = �(B ∣ A+ = 1,Z) , we can set

where D1(Ai,Bi, Si) = (1,A�
i
,B�

i
, S�

i
)� , and

We have �̂ from solving 
∑n

i=1
Ui1(�) = 0 or 

∑n

i=1
Ui2(�) = 0 which is the causal 

effect of the continuous part of exposure.

5.2 � Stage II: The Effect of Exposure Status

The exposure effect of A and B is obtained from stage I and is used as an offset in 
stage II. Specifically we use 𝜂̃0(A,B;�) = �̂

�

2
Ai + �̂

�

3
Bi as an offset taking the value 

zero for those with A+ = 0 . Stage II is directed at assessing the effect of the binary 
exposure A+ ; many propensity score-based methods can be used to assess the effect 
of exposure at the reference level. We now discuss 4 possible approaches: simple 

(5.1)�(Y ∣ X,Z;�) = �0 + �1A
+ + ��

2
A + ��

3
B + ��

4
Z.

(5.2)Ui1(�) = A+
i
D1(Ai,Bi,Zi)

{
Yi − �1(Ai,Bi,Zi;�)

}
,

�1(Ai,Bi,Zi;�) = �1 + ��
2
Ai + ��

3
Bi + ��

4
Zi.

(5.3)Ui2(�) = A+
i
D1(Ai,Bi, Si)

{
Yi − �1(Ai,Bi, Si;�)

}
,

�1(Ai,Bi, Si;�) = �1 + ��
2
Ai + ��

3
Bi + ��

4
Si.
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regression adjustment, propensity score regression adjustment, inverse probability 
weighting (IPW), and augmented inverse probability weighting (AIPW).

5.2.1 � A. Simple regression adjustment

For the simple regression adjustment, we have the estimating function as

where �◦ = (�0, �1,�
�
5
)� , D2(A

+
i
,Zi) = (1,A+

i
,Z�

i
)� , and

The superscript Z in 𝜂̃Z
0
 indicates that � is estimated from (5.2) by adjusting for Z . If 

� = (�◦�,��)� , we solve the joint estimating equations,

to get 𝛹̂.

5.2.2 � B. Propensity score regression adjustment

If S0 = �(A+ ∣ Z) , replacing Z with S0 in (5.4), we obtain the estimating function

where D2(A
+
i
, Si0) = (1,A+

i
, Si0)

� , D3(Zi) = (1,Zi)
� , �(A+

i
∣ Zi;�) = expit(� �Zi) , and

The superscript S in 𝜂̃S
0
 indicates that � is estimated from (5.3) by adjusting with 

the generalized propensity score. Let � = (�◦�,��,� �)� , we can consider solving the 
joint estimating equations to obtain 𝛹̂,

5.2.3 � C. Inverse probability weighting (IPW)

We first consider a marginal structural model with the offset,

(5.4)Ui3(�
◦,�) = D2(A

+
i
,Zi)

{
Yi − �2(A

+
i
,Zi;�

◦,�)
}
,

𝜂2(A
+
i
,Zi;�

◦,�) = 𝛼0 + 𝛼1A
+
i
+ ��

4
Zi + offset(𝜂̃Z

0
(A,B;�)).

n∑
i=1

Ui(� ) =

n∑
i=1

(
Ui1(�)

Ui3(�
◦,�)

)
= 0

(5.5)Ui4(�
◦,�) = D2(A

+
i
, Si0)

{
Yi − �2(A

+
i
, Si0;�

◦,�)
}
,

(5.6)Ui5(�) = D3(Zi)
{
A+
i
− �(A+

i
∣ Zi;�)

}
,

𝜂2(A
+
i
, Si0;�

◦,�) = 𝛼0 + 𝛼1A
+
i
+ 𝛼4Si0 + offset(𝜂̃S

0
(A,B;�)).

n�
i=1

Ui(� ) =

n�
i=1

⎛⎜⎜⎝

Ui2(�)

Ui4(�
◦,�)

Ui5(�)

⎞⎟⎟⎠
= 0.

𝜂3(A
+;�,�) = �(Y ∣ A+;�,�) = 𝜙0 + 𝜙1A

+ + offset(𝜂̃S
0
(A,B;�)).
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Then we define the estimating function

where D4(A
+
i
) = (1,A+

i
)� . Let � = (��,��,� �)� , so we can consider solving the joint 

estimating equations,

5.2.4 � D. Augmented inverse probability weighting (AIPW)

The AIPW approach combines an outcome regression (OR) model and a propen-
sity score (PS) model. The AIPW estimators are shown to be doubly robust, with 
estimators consistent if either the outcome regression model or the propensity score 
model is correctly specified [28]. To obtain this estimator, we begin by specifying 
the estimating functions for the outcome regression model through the G-computa-
tion approach [29, 30].

We consider

Then the AIPW estimator 𝜇̂1 and 𝜇̂0 can be obtained by solving the estimating equa-
tion 

∑n

i=1
Ui9(�,� ,�1) = 0 and 

∑n

i=1
Ui,10(�,� ,�2) = 0 , where

and

Let � = (��,� �,��,��)� , we can solve the joint estimating equations 
∑n

i=1
Ui(� ) = 0 , 

where

From standard estimating function theory, we have

where A(� ) = E{−�Ui(� )∕�� �} and B(� ) = E{Ui(� )U�
i
(� )} , and the expectation 

is taken with respect to the true distribution. In practice, we use sample averages to 

Ui6(�,�,�) =
I(A+

i
= a+

i
)

P(A+
i
= a+

i
∣ Z;�)

D4(A
+
i
)
{
Yi − �3(A

+
i
;�,�)

}
,

n�
i=1

Ui(� ) =

n�
i=1

⎛
⎜⎜⎝

Ui2(�)

Ui5(�)

Ui6(�,�,�)

⎞
⎟⎟⎠
= 0.

Ui7(�,�1) = A+
i
D3(Zi)

{
Yi − ��

1
Z − offset(𝜂̃S

0
(A,B;�))

}
,

Ui8(�,�2) = (1 − A+
i
)D3(Zi)

{
Yi − ��

2
Z − offset(𝜂̃S

0
(A,B;�))

}
.

Ui9(�,� ,𝜇1) =
YiA

+
i
−
{
A+
i
− P(A+

i
= 1 ∣ Z;�)

}{
��

1
Z + offset(𝜂̃S

0
(A,B;�))

}
P(A+

i
= 1 ∣ Z;�)

− 𝜇1,

Ui,10(�,� ,𝜇2) =
Yi(1 − A+

i
) −

{
P(A+

i
= 1 ∣ Z;�) − A+

i

}{
��

2
Z + offset(𝜂̃S

0
(A,B;�))

}
1 − P(A+

i
= 1 ∣ Z;�)

− 𝜇2.

Ui(� ) = (U�
i2
(�),U�

i5
(�),U�

i7
(�,�1),U

�
i8
(�,�2),U

�
i9
(�,� ,�1),U

�
i,10

(�,� ,�2))
�.

asvar(
√
n(𝛹̂ − 𝛹 )) = A

−1(𝛹 )B(𝛹 )[A−1(𝛹 )]�,
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estimate A(� ) and B(� ) , and evaluate the resulting expressions at the estimates to 
obtain A−1(𝛹̂ )B(𝛹̂ )[A−1(𝛹̂ )]� , where

and

5.3 � Simulation Studies on the Two‑Stage Approach

Here, we evaluate the performance of the two-stage approach for the analysis 
of a bivariate semi-continuous exposure under the data-generating process of 
Sect. 4.3.2. We consider the stage II estimator based on various combinations of 
methods in stages I and II. For stage I, confounder regression (5.2) and propen-
sity score adjustment (5.3) are used. In stage II, we employ methods A) to D) of 
Sect. 5.2. We see that when all models are correctly specified, the empirical bias 
is negligible across all methods as shown in Table 1; use of IPW in stage II yields 
the estimates with the highest standard error, while the AIPW estimator improves 
the efficiency as expected.

Table  2 displays the relative bias and empirical standard error of the stage 
II estimators when models are misspecified in stage II. Here, the confound-
ers are transformed as V1 = exp(Z1∕2) + Z2 ,V2 = Z2∕(1 + exp(Z1)) + 10 ,
V3 = (Z1Z2∕10 + 0.6)2 and V = (V1,V2,V3)

� is used instead of Z = (Z1, Z2, Z3)
� in 

stage II for model misspecification. If either the outcome regression (OR) model 
or the propensity score (PS) model is misspecified in Stage II, biased estimates 
are obtained in methods reliant on the respective model. The AIPW estimator 
exhibits the double robustness property. When both models are misspecified in 
stage II, the AIPW approach yields an estimator with a large finite sample bias 
and high standard error.

A(𝛹̂ ) = −
1

n

n∑
i=1

𝜕Ui(𝛹 )∕𝜕𝛹 �
|||||𝛹=𝛹̂

,

B(𝛹̂ ) =
1

n

n∑
i=1

Ui(𝛹 )U�
i
(𝛹 )

|||||𝛹=𝛹̂

.

Table 1   Simulation results with sample size �31 , repetitions OR = 4 : relative bias and standard error of 
stage II estimator of the binary exposure effect when models are correctly specified

Stage I Stage II Bias (%) Empirical SE

Regression with Z Regression with Z − 0.08 0.14
Regression with GPS Regression with Z − 0.12 0.15

Regression with PS 0.13 0.19
IPW 0.16 0.23
AIPW − 0.11 0.17
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6 � Prenatal Alcohol Exposure and Cognition

Here, we consider a large prospective cohort study comprised of 480 inner-city 
pregnant African–American mothers recruited between September 1986 and 
April 1989 [12]. Quantitative measures of alcohol consumption during pregnancy 
were obtained at each maternal prenatal visit using a timeline follow-back inter-
view [31] and converted to three common metrics: the number of standard drinks 
per drinking occasion, frequency of drinking (days/month), and average oz abso-
lute alcohol (AA/day). Additional variables collected included socioeconomic 
status (SES), maternal age, maternal years of education, marital status, and fam-
ily income; maternal smoking (cigarettes/day) and marijuana, cocaine, and other 
illicit drug use (days/month), maternal history of alcohol abuse or dependence; 
and child’s sex, race, and whether s/he was raised by his/her biological mother 
and/or was in foster care; see Table D1 in Online Appendix D. The mothers and 
their children were followed for 19-21 years postpartum with a retention rate of 
79.0% ( N = 377 ). A variety of cognitive tests were administered to each child 
to assess various facets of cognitive function. The results of the various cogni-
tive tests were synthesized by fitting a second-order confirmatory factor analysis 
giving a composite measure of cognitive function [32] which we adopted as the 
response, Y, in the analyses that follow.

Among the 377 mothers in this analysis, 16.2% reported no alcohol consump-
tion during pregnancy resulting in the alcohol exposure variables being semi-con-
tinuous. For mothers who drank alcohol during pregnancy, two main exposures 
(oz prenatal absolute alcohol exposure per drinking occasion, and the proportion 
of drinking days during pregnancy) were log-transformed and centered. Here, 
we evaluate the causal effects in four ways as discussed in the previous sections: 
subgroup analysis involving drinkers, analyses based on the bivariate semi-
continuous exposure using conventional regression adjustment and the two-part 
model, and full sample analysis with the two-stage approach. We aim to evaluate 
the causal effect of alcohol drinking, two main exposures, and their interaction 
on child cognitive function while controlling for selected measurements listed in 
Table 3.

Table 2   Simulation results with sample size �31 , repetitions OR = 4 : relative bias and standard error of 
stage II estimator of the binary exposure effect with model misspecification in stage II

Model misspecification Stage I Stage II Bias (%) Empirical SE

PS model Regression with GPS Regression with PS 0.91 0.18
IPW − 5.06 0.35
AIPW 0.07 0.31

OR model Regression with Z Regression with Z 4.48 0.18
Regression with GPS Regression with Z 4.45 0.18

AIPW − 0.12 0.22
PS+OR model Regression with GPS AIPW 5.95 0.43
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6.1 � Subgroup Analysis Involving Drinkers

We first restrict attention to drinkers and focus on the causal effects of alcohol expo-
sure on children’s cognition. Let A1 represent the number of standard drinks per drink-
ing occasion, and A2 represent the proportion of days in each month of drinking (days/
month); we refer to these as the intensity and frequency of drinking, respectively. If 
A+ = �(Ai1Ai2 > 0) indicates any consumption of alcohol, to conduct the analyses 
among drinkers, we consider the regression model

where Lik = A+
i
{logAik − �(logAik ∣ A

+
i
= 1)} . When using propensity score regres-

sion adjustment, we consider

(6.1)�
(
Yi ∣ A

+
i
= 1,Li,Zi

)
= � + �1Li1 + �2Li2 + �3Li1Li2 + Z

�
i
� ,

(6.2)�
(
Yi ∣ A

+
i
= 1,Li, Si

)
= � + �1Li1 + �2Li2 + �3Li1Li2 + S

�
i
� ,

Table 3   Estimates for the effects of each confounder

Estimate (SE)

logit(�1i) �(L1i ∣ A
+
i
= 1) �(L2i ∣ A

+
i
= 1) log

(1+�i)

(1−�i)

Intercept − 0.625 (1.794) − 1.499 (0.613) − 0.648 (0.636) − 0.184 (8.978)
Smoking during pregnancy 

(cigarettes/day)
0.090 (0.025) 0.007 (0.005) 0.009 (0.005) 0.018 (0.108)

Socioeconomic status at birth/
infancy

0.012 (0.020) − 0.016 (0.007) − 0.001 (0.007) 0.040 (0.101)

Child’s gender (female) − 0.574 (0.310) − 0.042 (0.102) − 0.075 (0.105) 0.297 (2.169)
Mother’s age at delivery 0.048 (0.035) 0.020 (0.011) 0.036 (0.011) − 0.037 (0.315)
Prenatal Beck Depression 

Inventory
0.024 (0.022) 0.011 (0.007) 0.012 (0.007) 0.004 (0.168)

HOME score at infancy 0.023 (0.033) 0.003 (0.011) − 0.013 (0.012) − 0.023 (0.241)
Biological mother’s verbal IQ 

(PPVT score)
0.000 (0.013) − 0.003 (0.004) 0.000 (0.004) 0.020 (0.086)

Biological mother’s marital 
status (married)

− 0.121 (0.498) − 0.001 (0.179) 0.098 (0.186) − 0.350 (3.102)

Prenatal cocaine exposure (days/
month)

− 0.140 (0.061) − 0.026 (0.019) − 0.031 (0.020) 0.828 (3.025)

Prenatal marijuana exposure 
(days/month)

0.226 (0.137) − 0.016 (0.019) 0.021 (0.020) − 0.002 (0.198)

Prenatal opiate exposure (days/
month)

0.122 (0.234) 0.071 (0.044) 0.163 (0.046) − 0.010 (0.785)

Number of prenatal visits − 0.018 (0.059) − 0.002 (0.020) − 0.111 (0.021) − 0.076 (0.455)
Biological mother’s education 

(year)
− 0.040 (0.116) 0.092 (0.038) 0.012 (0.040) − 0.011 (0.575)

Parity − 0.474 (0.213) 0.095 (0.059) − 0.082 (0.062) − 0.134 (1.357)
Gravidity 0.288 (0.144) − 0.019 (0.036) 0.040 (0.037) 0.064 (0.660)
Gestational age at screening − 0.011 (0.025) 0.007 (0.008) 0.014 (0.008) 0.001 (0.153)
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where Si = (Si1, Si2, Si3)
� , with Sik = �(Lik ∣ A

+
i
= 1,Zi) , k = 1, 2 , 

Si3 = �(Li1Li2 ∣ A
+
i
= 1,Zi) . The estimated effects of each confounder are given in 

columns 3-5 of Table 3 for each of the respective models.

6.2 � Analyses Based on the Bivariate Semi‑continuous Exposure Model

The conventional regression model adjusted by all the confounders is fitted as

with Zi the set of confounders. Using a two-part model for the generalized propen-
sity score as in [24], the regression model adjusted by generalized propensity score 
is

where as in (4.5), Si = (�i1(Zi),�(Li1 ∣ Zi),�(Li2 ∣ Zi),�(Li1Li2 ∣ Zi))
� with

The results are shown in Table 3.
The inverse density weighting approach to estimating causal effects involves solv-

ing (4.7) with stabilized weights. We assume the exposures follow a bivariate normal 
distribution when we estimate the conditional joint density of the two exposures.

6.3 � Full Sample Analysis with the Two‑Stage Approach

We also address the effects of confounding variables through the two-stage 
approach as discussed in Sect. 5. We first define the offset from subgroup analysis 
on drinkers using estimates obtained from (6.1) or (6.2) which is the stage I. Let 
𝜂̃i = 𝛼̂1Li1 + 𝛼̂2Li2 + 𝛼̂3Li1Li2 be the offset in stage II and use regression adjustment 
with covariates, regression adjustment with propensity score, IPW, and AIPW to dif-
ferentiate the actual exposure effect as a drinker.

6.4 � Results

We assess the covariate balance using Pearson correlation [23, 33]; see Table D2 
in Online Appendix D. The Pearson correlations were computed between each 
exposure and each covariate in Table 3 before generalized propensity score adjust-
ment or weighting adjustment. To evaluate the performance of each approach, we 
analyzed the covariate balance after conditioning on the generalized propensity 
score or applying inverse probability/density weighting. All the methods described 
above substantially reduce the maximum absolute correlation and average absolute 

�
(
Yi ∣ A

+
i
,Li,Zi

)
= � + �0A

+
i
+ �1Li1 + �2Li2 + �3Li1Li2 + Z

�
i
�,

�
(
Yi ∣ A

+
i
,Li, Si

)
= � + �0A

+
i
+ �1Li1 + �2Li2 + �3Li1Li2 + S

�
i
�,

𝜋i1(Zi) = expit(Z̄
�

i
�0) ,

�(Lik ∣ Zi) = 𝜋i1(Zi)�(Lik ∣ A
+
i
= 1,Zi) , k = 1, 2 ,

�(Li1Li2 ∣ Zi) = 𝜋i1(Zi)�(Li1Li2 ∣ A
+
i
= 1,Zi) .
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correlation compared to the conventional regression approach shown in the third 
row of Table 3, indicating improvement of covariate balance.

In the full sample analysis with the two-part model, we found that the regression 
approach with generalized propensity score adjustment reduced covariate imbalance 
more effectively than the inverse density weighting approach. In the full sample 
analysis with the two-stage approach, the propensity score-based methods in stage 
II (e.g., IPW) achieve better covariate balance than the regression approach. Overall, 
our results demonstrate the effectiveness of each analysis with different methods in 
improving covariate balance, with the optimal approach depending on the specific 
analysis context.

Table 4 presents the causal effects estimated from both subgroup analysis and full 
sample analysis with the various methods. All estimated effects are negative, includ-
ing the effects of drinking at the reference level versus not drinking, prenatal abso-
lute alcohol exposure per occasion, the proportion of drinking days, and their inter-
action, confirming that alcohol consumption by expectant mothers has a negative 
effect on children’s cognitive development. For subgroup analysis among drinkers, 
the results from the regression with covariate adjustment and the regression model 
adjusted by generalized propensity scores are quite similar, indicating the cognitive 
function score of the child decreases as the mother increases the amount of alcohol 
consumed at each drinking occasion, or increases her drinking frequency. The inter-
action term is negative so the effect of increasing the intensity of drinking on each 
occasion is greater when the frequency of alcohol use during pregnancy is greater, 
and vice versa. For full sample analysis, the conventional regression adjustment 
and the regression model adjusted by the two-part generalized propensity scores 
also generate similar estimates except for the drinker indicator. The inverse density 
weighting approach results in a larger effect size of alcohol exposure per occasion 
and smaller effect sizes of drinking frequency and their interaction compared with 
estimates obtained from the regression methods. In full analysis with the two-stage 
approach, the effect of drinking obtained from the propensity score-based methods 
in stage II, that is regression with a propensity score adjustment, IPW, and AIPW 
method, is larger than the estimate obtained from regression approaches. The IPW 
approach in stage II has the largest standard error among all the methods, whereas 
the AIPW approach generates a similar, but more precise estimate of the causal 
effect.

We built a dose–response surface on the exposure estimates obtained from 
stage I using a regression model with generalized propensity score adjustment in 
the two-stage approach. The resulting surface is shown in the left panel of Fig. 5. 
We define the reference level of a child’s cognition when the mother has an average 
level of intensity and density of alcohol use, that is having 1.81 oz absolute alcohol 
per occasion and spending approximately 4 days per month (0.13 months) consum-
ing alcohol. The x-axis and y-axis show the increment levels of drinking frequency 
and intensity, respectively. This graphical depiction shows the expected reduction in 
child’s cognitive function resulting from increased drinking frequency and intensity. 
The right panel of Fig.  5 displays a contour plot that shows the change in cogni-
tion associated with different combinations of changes in intensity and frequency 
of alcohol intake. For instance, spending approximately 9 more days per month (0.3 
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months) drinking based on the reference level while maintaining the same drink-
ing intensity, or spending 3 more days per month while also increasing the dose of 
drinks by 2 oz on each drinking occasion based on the reference level would both 
result in a 4-unit decrease in the child’s cognitive function score.

7 � Discussion

In this article, we describe methods for assessing the effect of two or more exposure 
variables on a continuous response. Confounding is addressed through the use of 
a generalized propensity score. In this setting, the generalized propensity score is 
based on the joint density of exposures and in particular is the vector of linear func-
tions of confounders necessary to construct this joint density. For inverse density 
weighting, we stabilize the weights via the marginal joint density of the exposures. 
A key finding is that when confounders affect the joint distribution of the exposure 
variables, they must be accounted for in the propensity score modeling to ensure 
consistent estimation and valid inference regarding the interactions between the 
exposures. Regression adjustment appears to be less sensitive to misspecification of 
the dependence structure and omission of the second-order effects of confounders, 
and moreover, it leads to more precise estimation of causal effects. We did not con-
sider matching or stratification on the generalized propensity score but these repre-
sent alternative approaches for dealing with confounders [34].

Note that much of the literature on causal analysis includes the conceptualization 
of potential outcomes [35, 36] for each unit, here denoted by {Y(a) for a ∈ A} where 
A may be a multidimensional space for possible exposures. We do not make use of 
potential outcomes in this paper, but our methods could be reformulated and formal-
ized within that framework.
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