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Abstract
Spatiotemporal gene expression data of the human brain offer insights on the spatial 
and temporal patterns of gene regulation during brain development. Most existing 
methods for analyzing these data consider spatial and temporal profiles separately, 
with the implicit assumption that different brain regions develop in similar trajecto-
ries, and that the spatial patterns of gene expression remain similar at different time 
points. Although these analyses may help delineate gene regulation either spatially 
or temporally, they are not able to characterize heterogeneity in temporal dynamics 
across different brain regions, or the evolution of spatial patterns of gene regulation 
over time. In this article, we develop a statistical method based on low-rank ten-
sor decomposition to more effectively analyze spatiotemporal gene expression data. 
We generalize the classical principal component analysis (PCA), which is appli-
cable only to data matrices, to tensor PCA that can simultaneously capture spatial 
and temporal effects. We also propose an efficient algorithm that combines tensor 
unfolding and power iteration to estimate the tensor principal components efficiently, 
and provide guarantees on their statistical performance. Numerical experiments are 
presented to further demonstrate the merits of the proposed method. An applica-
tion our method to a spatiotemporal brain expression data provides insights on gene 
regulation patterns in the brain.
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1 Introduction

Principal component analysis (PCA) is among the most commonly used statistical 
methods for exploratory analysis of multivariate data [e.g., 10]. By seeking a low-
rank approximation to the data matrix, PCA allows us to reduce the dimensional-
ity of the data, and oftentimes serves as a useful first step to capture the essential 
features in the data. In particular, PCA has been widely used in analyzing gene 
expression data collected for multiple time points or across different biological 
conditions [1, 35, 38]. While PCA is appropriate to analyze data matrices, data 
sometimes come in the format of higher order tensors, or multilinear arrays. In 
particular, our work here is motivated by characterizing the spatiotemporal gene 
expression patterns of the human brain based on gene expression profiles col-
lected from multiple brain regions of both developing and adult post-mortem 
human brains.

The human brain is a sophisticated and complex organ that contains billions of 
cells with different morphologies, connectivity and functions [e.g., 11]. Different 
brain regions have specific compositions of cell types, expressing unique combi-
nations of genes at different developmental periods. Recent advances in sequenc-
ing and micro-dissection technology have provided us new and powerful tools 
to take a closer look at this complex system. Many studies have been conducted 
to date to collect spatiotemporal expression data to identify spatial and temporal 
signatures of gene regulation in the brain, and to gain insights into various bio-
logical processes of interest such as brain development processes, central nervous 
system formation, and brain anatomical structure shaping, among others [8, 12, 
16, 24, 29, 30, 37].

The spatiotemporal expression data may be modeled by a third order multilin-
ear array, or tensor, with one index for gene, one for region, and another one for 
time. Because the classical PCA can only be applied to data matrices, previous 
analyses of such data often consider the spatial and temporal patterns separately. 
To characterize temporal patterns of gene expression, data from different regions 
are first pooled and treated as replicates, before applying PCA. Similarly, when 
extracting spatial patterns of gene expression, data from different time points are 
combined so that PCA could be applied. Such analyses have yielded some use-
ful insights on the gene regulation in spatiotemporal transcriptome [12, 19]. But 
the data pooling precludes us from understanding the heterogeneity in temporal 
dynamics across different regions of the brain, or the evolution of spatial gene 
regulation patterns over time. There is a clear demand to develop statistical meth-
ods that can more effectively utilize the tensor structure of spatiotemporal expres-
sion data.

To this end, we introduce in this article a higher order generalization, here-
after referred to as tensor PCA, of the classical PCA to better characterize spa-
tial and temporal gene expression dynamics. As in the classical PCA, we seek 
the best low-rank orthogonal approximation to the data tensor. The orthogonality 
among the rank-one components is automatically satisfied by the classical PCA 
but is essential for our purpose. It not only ensures that the components can be 
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interpreted in the same fashion as the classical PCA, but also is necessary for the 
low rank approximation to be well-defined. Unlike in the case of matrices, low 
rank approximations to a higher order tensor without orthogonality is ill-posed 
and the best approximation may not even exist [e.g., 4]. However, even with 
orthogonality, low rank approximations to a higher order tensor is still in general 
NP hard to compute [e.g., 9]. Heuristic or approximation algorithms are often 
adopted, and they often lead to suboptimal statistical performances [e.g., 25]. It 
is an active area of research in recent years to achieve a balance between com-
putational and statistical efficiency when dealing with higher order tensor. For 
our purposes, we propose an efficient algorithm that combines tensor unfolding 
and power iteration to compute the principal components under the tensor PCA 
framework. We also show that our estimates are not only easy to compute but also 
attain the optimal rate of convergence under suitable conditions.

Numerical experiments further demonstrate the merits of our proposed method. 
We also applied the method to the spatiotemporal expression data from [12]. We 
found that the proposed tensor PCA approach can effectively reduce the dimension-
ality of the data while preserving inherent structure among the genes. In particular, 
through clustering analysis, we show that tensor PCA reveals interesting relation-
ships between gene functions and the spatiotemporal dynamics of gene regulation. 
To fix ideas, we focus on spatiotemporal expression data in this paper. Our method-
ology, however, is also readily applicable to other settings where data are in the form 
of tensor.

The rest of the article is organized as follows. Section 2 introduces the proposed 
tensor PCA methodology. Section 3 reports the result from simulation studies. Sec-
tion  4 presents an application of the proposed methodology to a spatiotemporal 
brain gene expression data set. Finally, we conclude with some remarks and discus-
sions by Sect. 5. All proofs are covered in supplementary materials.

2  Methodology

Denote by xgst an appropriately normalized and transformed expression meas-
urement for gene g, in region s, at time t, where g = 1,… , dG , s = 1,… , dS , and 
t = 1,… , dT and dG , dS and dT are the number of genes, regions, and time points, 
respectively. In many applications, we may also have replicate measurements so that 
xgst is a vector rather than a scalar. To fix ideas, we shall focus on the case where 
there is no replicate. In practice, we can average over replicate measurements to con-
vert xgst from a vector to scalar in practice if necessary. Treatment of the more gen-
eral situation is analogous albeit more cumbersome in notation.

2.1  From Classical PCA to Tensor PCA

As mentioned above, the classical PCA is often applied to estimate spatial and tem-
poral patterns of gene regulation separately. Consider, for example, inferring the 
spatial patterns of gene regulation. Let
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be the averaged expression measurements for gene g in region s. The classi-
cal PCA then extracts the leading principal components, or equivalently the lead-
ing eigenvectors of dG × dS matrix xg ∶= (x̄g1⋅,… , x̄gdS⋅)

⊤ . The principal compo-
nents can also be interpreted through singular value decomposition of data matrix 
(x1,… , xdG

)⊤ . Denote by vk ∶= (vk1,… , vkdS )
⊤ the kth leading principal component 

and uk ∶= (uk1,… , ukdG )
⊤ its normalized loadings, that is its �2 norm ‖u‖ = 1 . Then, 

after appropriate centering, the observed expression measurements can be written as

where 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆r > 0 so that 
√
dG�k is the kth largest singular value of the 

data matrix (x̄gs⋅)1≤g≤dG,1≤s≤dS , and the idiosyncratic noise 𝜖gs are iid centered normal 
random variables. Note that, in (1), the scaling factor 

√
dG is in place to ensure that 

�2
k
 (more precisely 𝜆2

k
+ var(𝜖gs) ) can also be understood as the kth largest eigenvalue 

of the covariance matrix of (x̄gs⋅)1≤s≤dS when they are viewed as independent random 
vectors for g = 1,… , dG.

Obviously, because of pooling measurements from different time points, the princi-
pal components extracted this way can only be identified with spatial patterns averaged 
over all time points. Therefore it is not able to capture spatial patterns that evolve over 
time. Similar problem also arises when we pool data from different regions and extract 
principal components for temporal patterns. In order to model the spatial and temporal 
dynamics jointly, we now consider a generalization of PCA to specifically account for 
the tensor structure of the expression data.

The expression data X = (xgst)1≤g≤dG,1≤s≤dS ,1≤t≤dT can be conveniently viewed as a 
third order tensor of dimension dG × dS × dT . It is clear that the pooled data matrix

where 1d is a d dimensional vector of ones, and ×j between a tensor and vector stands 
for multiplication along its jth index, that is,

See, e.g., [14] for further discussions on tensor algebra. Instead of seeking a low-
rank approximation to the pooled data matrix, we shall work directly with the data 
tensor X . More specifically, with slight abuse of notation, we shall consider the fol-
lowing low rank approximation to X:

x̄gs⋅ =
1

dT

dT∑

t=1

xgst,

(1)x̄gs⋅ =
√
dG

r�

k=1

𝜆kukgvks + 𝜖gs,

(x1,… , xdG)
⊤ = X ×3

(
1

dT
1dT

)
,

(A ×3 x)ij =
∑

k

Aijkxk.

(2)X =
√
dG

r�

k=1

𝜆k
�
uk ⊗ vk ⊗ wk

�
+ E,
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where the eigenvalues 𝜆1 ≥ ⋯ ≥ 𝜆r > 0 , uk s, vk s and wk s are orthonormal basis in 
ℝ

dG , ℝdS and ℝdT respectively, and the E = (egst) is the residual tensor consisting of 
independent idiosyncratic noise following a normal distribution N(0, �2) . Here ⊗ 
stands for the outer product so that

Conceptually, model (2) can be viewed as a natural multiway generalization of the 
model for the classical PCA. Similar to the classical PCA, such a tensor decomposi-
tion allows us to conveniently capture the spatial dynamics and temporal dynamics 
by vk s and wk s, respectively. The loading of each gene for a particular interaction of 
spatial and temporal dynamics is then represented by uks.

2.2  Estimation for Tensor PCA

Clearly, any interpretation of the data based on the tensor PCA model (2) depends 
on our ability to estimate the principal components vk s and wk s from the expression 
data X . Naturally, we can consider estimating them via maximum likelihood, lead-
ing to the problem of computing the best rank r approximation to data tensor X . In 
the case of the usual PCA, such a task can be accomplished by applying SVD to the 
data matrix. But for the tensor PCA model, this is a more delicate issue because low 
rank approximation to a generic tensor could be hard to compute at least in the worst 
case. To address this challenge, we introduce here an approach that combines ten-
sor unfolding and power iteration and show that we can estimate the tenor principal 
components in an efficient way, both computationally and statistically.

2.2.1  Tensor Unfolding

A commonly used heuristic to overcome this problem is through tensor unfolding. In 
particular, in our case, we may collapse the second and third indices of X to unfold 
into a dG × (dS ⋅ dT ) matrix M(X) by collapsing the second and third indices, that is,

It is clear that

where vec(⋅) vectorizes a matrix into a vector of appropriate dimension. This sug-
gests that {vec(vk ⊗ wk) ∶ 1 ≤ k ≤ r} are the top right singular vectors of �[M(X)] 
and can therefore be estimated by applying singular value decomposition to M(X) . 
Denote by 

√
dG�̂k the kth leading singular value of M(X) , and ĥk its corresponding 

right singular vector. We can reshape ĥk into a dS × dT matrix vec−1(ĥk) , that is

xgst =
√
dG

r�

k=1

�kukgvkswkt + egst, 1 ≤ g ≤ dG, 1 ≤ s ≤ dS, 1 ≤ t ≤ dT .

[M(X)]i,(j−1)dT+k = Xijk, 1 ≤ i ≤ dG, 1 ≤ j ≤ dS, 1 ≤ k ≤ dT .

M(X) =
√
dG

r�

k=1

𝜆kuk ⊗ vec(vk ⊗ wk) +M(E),
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An estimate of vk and wk can then be obtained by the leading left and right singular 
vectors, denoted by v̂k and ŵk respectively, of vec−1(ĥk) . It turns out that this simple 
approach can yield a consistent estimate of �k s, vk s and wk s. More specifically, we 
have

Theorem 1 There exists an absolute constant C > 0 such that for any simple eigen-
value �k ( 1 ≤ k ≤ r ) under the tensor PCA model (2), if the eigen-gap

with the convention that �0 = ∞ and �r+1 = 0 , then

with probability tending to one as dG → ∞.

Theorem 1 indicates that the eigenvalue �k and its associated eigenvectors vk and 
wk can be estimated consistently whenever the eigen-gap

In the context of spatiotemporal expression data, the number of genes dG is typically 
much larger than dSdT . Therefore, even if the eigen-gap is constant, the spatial and 
temporal PCA can still be consistently estimated.

2.2.2  Power Iteration

Although Theorem  1 suggests that the eigenvalue and eigenvector estimates 
obtained via our tensor folding scheme is consistent under fairly general conditions, 
they can actually be further improved. We can indeed use them as the initial value 
for power iteration or altering least squares to yield estimates that converge to the 
truth at faster rates.

Power iteration is perhaps the most commonly used algorithm for tensor decom-
posation [39]. We assume the standard deviation of noise is known and denoted as 
� . In practice, when � is unknown, one can estimate it by the sample variance of the 
residual tensor with the initial estimate. Specifically, let b[0] and c[0] be initial values 
for vk and wk . Let a , b and c be the estimates of uk , vk and wk , respectively. Then at 
the mth ( m ≥ 1 ) iteration, we update a , b and c as follows:

• Let a[m] = a∕‖a‖ where 

• Let b[m] = b∕‖b‖ where 

[vec−1(ĥk)]ij = (ĥk)(i−1)dT+j, ∀1 ≤ i ≤ dS, 1 ≤ j ≤ dT .

gk ∶= min
{
�2
k−1

− �2
k
, �2

k
− �2

k+1

}
≥ C

(
�2 + ��1

)(
dSdT∕dG

)1∕2
,

max
�
�̂2
k
− �2

k
, 1 − �⟨v̂k, vk⟩�, 1 − �⟨ŵk,wk⟩�

�
≤ C

�
�2 + ��1

�
g−1
k
(dSdT∕dG)

1∕2,

gk ≫ 𝜎2(dSdT∕dG)
1∕2.

(3)a = X ×2 b
[m−1] ×3 c

[m−1];
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• Let c[m] = c∕‖c‖ where 

The following theorem shows that the algorithm, after a certain number of itera-
tions, yields estimates of the tensor principal components at an optimal convergence 
rate.

Theorem  2 Let b[m] and c[m] be the estimates of vk and wk from the mth modified 
power iteration with initial values b[0] = v̂k and c[0] = ŵk obtained by tensor unfold-
ing as described before. Suppose that the conditions of Theorem 1 hold. Then there 
exist absolute constants C1,C2 > 0 such that if

then for any

we have

Note that we only require that the number of genes dG diverges in Theorem 2, 
which is the most relevant setting in spatiotemporal expression data. If the singular 
values �1,… , �r are simple and finite, as typically the case in practice, then Theo-
rem 2 indicates that the spatial and temporal PCAs can be estimated at the rate of 
convergence 

√
(dS + dT )∕dG . This is to be compared with the unfolding estimates 

which converge at the rate of 
√
dSdT∕dG.

It is also worth noting, assuming that �k s and � are finite, the rate of convergence 
given by Theorem 2 is optimal in the following sense. Suppose that vk is known in 
advance, it is not hard to see that X ×2 vk is a sufficient statistics for wk . Because wk 
is the usual principal component of X ×2 vk , following classical theory for principal 
components [see, e.g., 26], we know that the optimal rate of convergence for esti-
mating wk is of the order 

√
dT∕dG . Similarly, even if wk is known apriori, the opti-

mal rate of convergence for estimating vk would be of the order 
√
dS∕dG . Obviously, 

not knowing either vk or wk only makes their estimation more difficult. Therefore, 
the rate of convergence established in Theorem 2 is the best attainable.

A key difference between the power iteration described above and the usual ones 
is that subtract �2b

[m−1] and �2c[m−1] when updating b and c at each iteration. This 
modification is motivated by a careful examination of the effect of noise E on the 

(4)b = X ×1 a
[m] ×3 c

[m−1] − �2
b
[m−1];

(5)c = X ×1 a
[m] ×2 b

[m] − �2
c
[m−1].

�2
k
gk ≥ C1(�

2 + �1�)�
2
1

√
dSdT

dG
,

m ≥ −C2 log

(
�−2
k
(�2 + �1�)

√
dS + dT

dG

)
,

max
�
1 − �⟨b[m], vk⟩�, 1 − �⟨c[m],wk⟩�

�
= Op

�
�−2
k
(�2 + �1�)

�
dS + dT

dG

�
, as dG → ∞.
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power iteration. Although not essential for the performance of the final estimate, this 
adjustment allows for faster convergence of the power iterations. A careful inspec-
tion of the proof of Theorem 2 suggests that the results continue to hold in this case 
because of the consistency of the initial value.

Our approach is developed for effectively modeling brain spatiotemporal gene 
expression data, which is a 3-order tensor. For tensor with higher orders, we can 
naturally generalize our algorithm. Assume the tensor is X = 𝜆a⊗ b⊗ c⊗ d + E . 
For the tensor unfolding part, we can recursively apply the singular value decompo-
sition on the unfolded tensor with first dimension fixed. For example, we can first 
estimate a and b⊗ c⊗ d by applying SVD on unfolded tensor with the last three 
dimensions flattened. Then we can estimate the b , c , and d according to our tensor 
unfolding algorithm. For power iteration, we can first add ×4d

[m−1] on the first term 
of Eqs. 3, 4, and 5. The we follow the Eq. 5 to update d:

We can do the same approach for even higher order tensors. The theoretical and 
numerical study of the algorithm on higher order tensors are beyond the scope of 
this paper.

3  Numerical Experiments

To demonstrate the merits of the tensor PCA method described in the previous sec-
tion, we conducted several sets of simulations.

3.1  Convergence of Power Iteration

To gain further insights into the operating characteristics of the power iteration, we 
examine how the estimation error changes from iteration to iteration for 50 typical 

(6)d = X ×1 a
[m] ×2 b

[m] ×3 c
[m] − �2

d
[m−1].

Fig. 1  Estimation error as a function of iterations for 50 typical simulated datasets with � = 4 and 
d = 200
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simulation runs with � = 4 and d = 200 in Fig. 1. First, it is evident to see the esti-
mation error reduces quickly with the iterations. It is also worth noting that the algo-
rithm converges in only several iterations. This has great practical implication as 
computation is often a significant issue when dealing with tensor data.

3.2  Principal Components Estimation Accuracy

3.2.1  Synthetic Data Generation

We begin with a simple simulation setup designed to investigate the effect of dimen-
sionality and signal strength on the estimation of tensor accuracy. In particular, we 
simulated data tensor from the following rank-one tensor PCA model:

To assess the effect of dimensionality, we consider cubic tensors of dimension 
ℝ

d×d×d where d = 25, 50, 100 . We set � = 4 . The principal components v and w , as 
well as the loadings u were uniformly sampled from the unit sphere in ℝd . We recall 
that a uniform sample from the unit sphere in ℝd can be obtained by Z∕‖Z‖ where 
Z ∼ N(0, Id) . The noise tensor E is a Gaussian ensemble whose entries are inde-
pendent standard normal variables.

3.2.2  Baseline Approaches and Metrics

For each simulated data tensor X , we compared our proposed approach (TPCA) 
with the following baseline approaches:

– Tensor unfolding (UFD) The baseline approach is described in Sect. 2.2.1. This 
baseline is to study the effect of power iteration.

– Power iteration (PI1, PI5, or PI10) We conduct power iteration (described in 
Sect. 2.2.2) from random initial state. We repeat the power iteration with differ-
ent starting states 1, 5, or 10 times and denote them as PI1, PI5, or PI10, respec-
tively. This is to study the efficiency of using tensor unfolding as initial state.

We use 2 ⋅max{1 − �⟨v̂, v⟩�, 1 − �⟨ŵ,w⟩�} as the estimation error, which is equiva-
lent to max(‖v̂ − v‖2, ‖ŵ − w‖2).

3.2.3  Results

For each simulation setting, we repeat it for 200 times and report the metrics 
in Table  1. Compared with UFD, it is evident from the comparison that TPCA 
improves the quality of estimates, especially for situations with high dimensional-
ity. These observations are in agreement with the theoretical analysis presented in 
Theorems 1 and 2. Compared with (PI1, PI5, PI10), TPCA achieves the best per-
formance. As the dimension goes higher, it requires more repetitions in power itera-
tion from random states. During the simulation, we chose the smallest error among 

(7)X =
√
d𝜆u⊗ v⊗ w + E.
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repetitions, which is infeasible in real applications since we don’t know the ground 
truth. In all other cases, TPCA significantly improves upon the power iteration from 
random. PI1 performs worse than UFD, which suggests that pure power iteration 
cannot yield good results even compared to tensor unfolding. The improvement is 
least significant in the easiest case with d = 25 when PI5 estimate already appears to 
be quite accurate.

3.3  Synthetic Gene Expression Data

Our development was motivated by the analysis of spatiotemporal expression data. 
To better assess the performance of our method in such a context, we now con-
sider a simulation setting designed to mimic it. More specifically, we simulated a 
spatiotemporal gene expression data tensor with dG = 2000 genes, dS = 10 spatial 
regions, dT = 13 temporal regions. We assume the following tensor PCA model of 
rank three:

where we fix � = 1 and � = 3 . The eigenvectors u ∈ ℝ
dG , v ∈ ℝ

dS and w ∈ ℝ
dT were 

uniformly sampled from the Grassmannian of conformable dimensions. This simu-
lation setting allows us to appreciate the effect of eigengap and eigenvalue, as well 
as the unequal dimensions on the accuracy of our estimates.

Usually, spatial-temporal gene expression data are heterogeneous. It could be the 
case that the variance differs across genes, locations, and time periods. To study 
the effect of heterogeneity along dimension dG , we apply linear increase of standard 
deviation as �i = i∕dG for i = 1,… , dG . Similarly, we can apply on the heterogene-
ous noise on spatial and temporal dimension.

3.3.1  Principal Components Estimation Accuracy

We compare the proposed tensor PCA approach with the classical PCA approach for 
estimating each of the flattened spatiotemporal principal component. We add homo-
geneous noise and heterogeneous noise across gene, spatial, temporal dimensions 

X =
√
dG𝜆

3�

k=1

4 − k

3
⋅ uk ⊗ vk ⊗ wk + E,

Table 1  Principal components estimation errors comparison for rank 1 tensor

Approaches are tensor unfolding (UFD), power iteration with 5 repetitions (PI5), power iteration with 10 
repetitions (PI10), our proposed approach (TPCA). We report means and standard deviations (in paren-
thesis) averaged over 200 simulation runs
Bold values indicate the best metric among all methods

d UFD PI1 PI5 PI10 TPCA

25 0.083 (0.021) 0.293 (0.591) 0.076 (0.017) 0.076 (0.017) 0.076 (0.017)
50 0.092 (0.017) 0.760 (0.877) 0.082 (0.12) 0.073 (0.012) 0.073 (0.012)
100 0.133 (0.088) 1.160 (0.894) 0.299 (0.564) 0.096 (0.193) 0.072 (0.009)
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for each simulation. For each principal component, we use (‖x − v⊗ w‖ as metrics, 
where x = v̂⊗ ŵ for TPCA and x = "right singular vector" for PCA. The results 
reported in Table 2 confirm our theoretical findings and suggests the superior per-
formance of the proposed approach over the classical PCA agnostic to the heteroge-
neity of the noise. It is worth noting that gene wise heterogeneous noise has smaller 
effect on the principal component estimation, while spatial and temporal heteroge-
neity can make the estimation more challenging.

3.3.2  Signal Tensor Estimation Accuracy

We compared TPCA with classical PCA, tensor unfolding (UFD), Higher Order 
Orthogonal Iteration of Tensors (HOOI) [3] on signal tensor estimation. HOOI is 
a specific orthogonal Tucker decomposition algorithm that generalizes the matrix 
singular value decomposition. It is an iterative approach that computes the singular 
values for each mode fixing others. See Sheehan and Saad [33] for details of the 
algorithm. We simulated the data in the same way as described early in the section. 
For signal tensor T and estimated signal tensor T̂ , we compute the relative error as 
‖T̂ − T‖F∕‖T‖F , where ‖ ⋅ ‖F denotes the Frobenius norm of a tensor. The relative 
errors are reported in Table 3. TPCA again shows the best performance among all 
approaches.

3.4  Clustering Based on Tensor PCA

Oftentimes in practice, PCA is not the final goal of data analysis. It is com-
monly used as an initial step to reduce the dimensionality before further analysis. 

Table 2  Principal components estimation errors comparison for synthetic rank 3 noisy spatiotemporal 
gene expression tensor with different noise types

The data tensor is of 2000 genes by 10 spatial regions by 13 time periods. We report means and standard 
deviations (in parenthesis) averaged over 200 simulation runs
Bold values indicate the best metric among all methods

Noise type Principal component PCA TPCA

Homogeneous PC1 0.090 (0.006) 0.001 (0.000)
Homogeneous PC2 0.141 (0.009) 0.001 (0.000)
Homogeneous PC3 0.351 (0.025) 0.008 (0.003)
Gene-wise heterogeneous PC1 0.051 (0.004) 0.000 (0.000)
Gene-wise heterogeneous PC2 0.079 (0.005) 0.000 (0.000)
Gene-wise heterogeneous PC3 0.187 (0.012) 0.002 (0.001)
Spatial heterogeneous PC1 0.065 (0.006) 0.001 (0.000)
Spatial heterogeneous PC2 0.117 (0.011) 0.002 (0.001)
Spatial heterogeneous PC3 0.448 (0.092) 0.021 (0.010)
Temporal heterogeneous PC1 0.065 (0.005) 0.001 (0.000)
Temporal heterogeneous PC2 0.117 (0.012) 0.002 (0.001)
Temporal heterogeneous PC3 0.433 (0.074) 0.017 (0.008)
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For example, PCA based clustering is often performed when dealing with gene 
expression data. See, e.g., [38]. Similarly, our tensor PCA can serve the same 
purpose. To investigate the utility of our approach in this capacity, we conducted 
a set of simulation studies where for each simulated dataset, we first estimated the 
loadings uk s and then applied clustering to the loadings. To fix ideas, we adopted 
the popular k-means technique for clustering although other alternatives could 
also be employed.

Motivated by the dataset from [12], which we shall discuss in further details in 
the next section, we simulated a data tensor of size ℝ1087×10×13 from the following 
model:

where �1 = 337.8 , �2 = 27.1 , �3 = 9.0 , and � = 0.2 . These values, along with the 
principal components vk and wk are based on estimates when fitting a tensor PCA 
model to the data from [12]. The clusters, induced by the loadings uk , were gen-
erated as follows. For a given number K of clusters, we first generated the cluster 
centroids C ∈ ℝ

K×3 from right singular vector matrix of K by 3 Gaussian random 
matrix. We then assigned clusters among 1087 observations and generated the 
observed tensor with � = 1, 5, 10, 20 , representing different levels of signal-to-noise 
ratio.

For comparison purposes, we also considered using the classical PCA based 
approach to reduce the dimensionality. For each method, we took the loadings 

(8)X =

3∑

k=1

𝜆kuk ⊗ vk ⊗ wk + 𝜎2
E.

Table 3  Signal tensor estimation comparisons among the classical PCA, Higher Order Orthogonal Itera-
tion of Tensors, tensor unfolding, and tensor PCA, in terms of relative errors averaged over 200 simula-
tion runs

Numbers in parentheses are the standard deviations
Bold values indicate the best metric among all methods

Noise type PCA HOOI UFD TPCA

Homogeneous 0.496 (0.005) 0.469 (0.005) 0.469 (0.005) 0.467 (0.005)
Gene-wise heterogeneous 0.283 (0.003) 0.270 (0.003) 0.271 (0.003) 0.270 (0.003)
Spatial heterogeneous 0.357 (0.022) 0.350 (0.039) 0.331 (0.022) 0.329 (0.022)
Temporal heterogeneous 0.354 (0.020) 0.351 (0.040) 0.329 (0.020) 0.327 (0.021)

Table 4  Clustering performance 
comparison between the 
classical PCA and tensor PCA, 
in terms of Adjusted Rand index 
averaged over 200 simulation 
runs

Numbers in parentheses are the standard deviations
Bold values indicate the best metric among all methods

Noise PCA TPCA

20 0.525 (0.219) 0.930 (0.106)
10 0.619 (0.254) 0.963 (0.074)
5 0.718 (0.296) 0.965 (0.080)
1 0.942 (0.124) 1.000 (0.000)
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from the first four directions and then applied k-means to infer the cluster mem-
bership. We used the adjusted Rand Index as a means of measuring the clustering 
quality. The results for each method and a variety of combinations of dimension, 
averaged over 200 runs, are reported in Table 4. The results suggest that tensor 
PCA based clustering is superior to that based on the classical PCA.

4  Application to Human Brain Expression Data

We now turn to the spatiotemporal expression data from Kang et  al. [12] that we 
alluded to earlier.

4.1  Dataset Description and Preprocessing

4.1.1  Dataset Description

[12] reported the generation and analysis of exon-level transcriptome and associated 
genotyping data from multiple brain regions and neocortical areas of developing and 
adult post-mortem human brains. The dataset was also analyzed by Liu et al. [22] on 
selecting ultrahigh dimensional feature and Lin et al. [21] on modeling spatial tem-
poral pattern with Markov Random Field. It consists of spatiotemporal gene expres-
sion data of post mortem human brains with each from a time period with all neo-
cortex regions. It has 11 areas and 15 time periods. The areas include orbitofrontal 
cortex (OFC), dorsolateral prefrontal cortex (DFC), ventral frontal cortex (VFC), 
primary motor cortex (M1C), primary somatosensory cortex (S1C), posterior infe-
rior parietal cortex (IPC), primary auditory (A1) cortex (A1C), superior temporal 
cortex (STC), medial prefrontal cortex (MFC), inferior temporal cortex (ITC), and 
primary visual cortex (V1C). The time periods span from embryonic (period 1) to 
late adulthood (period 15), we refer readers to Table 5 for details. We ignore the first 
two time periods (period 1 and 2) and one neocortex region (V1C) due to the high 
variations. For one time period with more than one brains, we aggregate over sam-
ples for each time and region combination. We refer the readers to those papers for 
more dataset description.

4.1.2  Dataset Preprocessing

Following [8], we selected genes with reproducible spatial patterns across individu-
als according to their correlations between samples, leading to a total of 1087 genes. 
To reduce individual variations, we first take average across subjects for each (gene, 
location, time period). Then we get a data tensor of size dG = 1087 , dS = 10 and 
dT = 13.

Before applying the tensor PCA, we first centered the gene expression measure-
ments by subtracting the mean expression level for each gene because we are pri-
marily interested in the spatial and temporal dynamics of the expression levels. To 
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remove the mean level, however it is more subtle than the classical PCA, we want 
to remove both mean spatial effect and mean temporal effect. More specifically, we 
applied tensor PCA to X̃ ∈ ℝ

dG×dT×dS where

and X is the original data tensor.

4.2  Analysis Based on Tensor PCA

4.2.1  Choose the Number of Components

We first conduct tensor decomposition by our proposed algorithm. As in the classi-
cal PCA, we can look at the scree plot to examine the contribution of each compo-
nent in the tensor PCA model. We can see that the contribution from the principal 
components quickly tapers off (Fig. 2). We choose the top three components accord-
ing to the scree plot. Notice that choosing the number of components is trickier for 
clustering analysis, we use the scree plot here to fix ideas. For more discussion on 
how to choose optimal number of components, we refer readers to Yeung and Ruzzo 
[38].

4.2.2  Biological Interpretations of the Spatial and Temporal Factors

To gain insights, the top three spatial and temporal principal components are given 
in Fig. 3. And the top three spatial factors are mapped to brain neocortex regions in 
Fig. 4, where the color represents value, the darker the higher. L1 to L8 denote the 
different physical slice coordinates of brains. The first factor increases from L1 and 

x̃gst = xgst − x̄g⋅t − x̄gs⋅ + x̄g⋅⋅

Table 5  Periods of human devel-
opment and adulthood as defined 
by [12]: M postnatal months; 
PCW post-conceptional weeks; Y 
postnatal years

Period Description Age

1 Embryonic 4PCW≤Age<8PCW
2 Early fetal 8PCW≤Age<10PCW
3 Early fetal 10PCW≤Age<13PCW
4 Early mid-fetal 13PCW≤Age<16PCW
5 Early mid-fetal 16PCW≤Age<19PCW
6 Late mid-fetal 19PCW≤Age<24PCW
7 Late fetal 24PCW≤Age<38PCW
8 Neonatal and early infancy 0M (birth)≤Age<6M
9 Late infancy 6M≤Age<12M
10 Early childhood 1Y≤Age<6Y
11 Middle and late childhood 6Y≤Age<12Y
12 Adolescence 12Y≤Age<20Y
13 Young adulthood 20Y≤Age<40Y
14 Middle adulthood 40Y≤Age<60Y
15 Late adulthood 60Y≤Age
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L2 to L4 and L5. The second factor achieves maximum at M1C and S1C and decays 
over distance from the above two regions. The third factor shows strong signals in 
MFC and ITC.

To better understand these three factors, we conducted gene set enrichment analy-
sis based on Gene Ontology (http:// geneo ntolo gy. org) for each factor. We calculated 
the relative weight of factor i for each gene by �ui�∕

∑3

j=1
�uj� , where u ∈ ℝ

3 is one 
row of gene factors. For each factor, we chose the top 15% quantile genes to form 
the gene sets. The results are presented in Table 6. Factor 1 relates with anatomical 
structure development, and this result is consistent with its spatial gradient pattern 

Fig. 2  Scree plot of the tensor PCA for the dataset from [12]

Fig. 3  Temporal and spatial factors of tensor PCA for the dataset from [12]

http://geneontology.org
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and decrease in magnitude of temporal pattern. Factor 2 has enriched term in sen-
sory organ development, and this agrees with its huge magnitude in S1C. Besides, 
regulation of anatomical structure morphogenesis term supports the smooth spatial 
pattern from S1C and M1C to MFC and ITC. Factor 3 is enriched in innervation 

Table 6  Gene enrichment analysis results on factors

Factor Enriched term P-value with 
Bonferroni cor-
rection

1 Anatomical structure development 4.65E−04
Developmental process 2.93E−03

2 Nervous system development 4.20E−04
Sensory organ development 1.09E−03
Positive regulation of signal transduction 1.36E−02
Generation of neurons 1.98E−02

3 Chemical synaptic transmission 3.23E−06
Multicellular organismal response to stress 7.32E−04
Nucleic acid metabolic process 9.09E−04
Ion transmembrane transport 8.02E−04
Innervation 1.62E−02
Startle response 2.79E−02

Fig. 4  Spatial factors on locations of neocortex
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related with aging [2, 18], startle response associated with ITC [32], and chemical 
synaptic transmission related with aging [23].

To further examine the meaning of the spatial factors, we use the three spatial 
factors as the coordinates for each of the 10 locations in a 3D plot as shown in 
Fig. 5. Remarkably the spatial patterns of these locations are fairly consistent with 
the physical locations of these neocortex regions in the brain.

It is interesting to note, from the temporal trajectories, that the first two fac-
tors show clear signs of prenatal development (until Period 7) while the third fac-
tor exhibits increasing influence from young childhood (from Period 11). Factor 1 
shows a spatial gradient effect that expression level tapers off from ITC to MFC or 
the other way. Remarkably, the same effect was reported in [24], which is explained 
by intrinsic signaling controlled partly by graded expression of transcription factors. 
Some representative genes such as FGFR3 and CBLN2 were found to preserve in 
both human and mouse neocortex. Taking temporal effect into consideration, factor 
1 indicates that the gradient effect diminishes from early fetal (Period 3) to late fetal 
(Period 7), and almost vanishes after early infancy. Same effects were observed in 
[30] that areal transcriptional become more synchronized during postnatal develop-
ment. Factor 2 suggests the importance of prenatal development of M1C and S1C. 
Both areas are well represented in the second factor while essentially absent from 
the other factors. This observation based on our analysis seems to agree with recent 
findings in neuroscience that activation patterns of extremely preterm infants’ pri-
mary somatosensory cortex area are predictive of future development outcome. See, 
e.g., [27]. Factor 3 distinguishes middle adulthood (Period 14) and late adulthood 

Fig. 5  Loadings on the top three spatial factors for each of the ten neocortex regions
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(Period 15) with different value in ITC and MFC comparing other 8 regions. This 
effect was reported in [30] that MFC and ITC have much higher number of neo-
cortical interareal differentially expressed (DEX) genes. In term of aging, declin-
ing metabolism in MFC correlates with declining cognitive function [5–7, 28], and 
shrinkage of ITC increases with age [31]. When we consider 3 factors together, we 
can validate the temporal hourglass pattern observed in [30] that huge number of 
DEX genes exist before infancy (Period 8), and areal differences almost vanish from 
infancy to adulthood (Period 14) and reappear in late adulthood (Period 15).

4.2.3  Clustering Analysis

Finally, we used the factors estimated based on our tensor PCA model as the basis 
for clustering. In particular, we applied k-means clustering with k = 5 clusters to the 
three dimensional factor loadings. The resulting cluster sizes are 156, 167, 332, 280, 
and 152, respectively. Gene set enrichment analysis based on Gene ontology was 
performed for each group with the results presented in Table 7.

These results show a clear separation among different functional groups. This 
further indicates that the spatiotemporal pattern of a gene informs its functional-
ity. Moreover, enriched terms such as anatomical structure development, forebrain 
development are highly associated with the spatial areas of neocortex, which again 
suggests the meaningfulness of the tensor principal components.

5  Conclusions

In this paper, we have introduced a generalization of the classical PCA that can be 
applied to data in the form of tensors. We also proposed efficient algorithms to esti-
mate the principal components using a novel combination of power iteration and tensor 
unfolding. Both theoretical analysis and numerical experiments point to the efficacy 
of our method. Although the methodology is generally applicable to other applica-
tions, our development was motivated by the analysis of spatiotemporal expression data 
which in recent years have become a common place in studying brain development 
among other biological processes. An application of our method to one such example 
further demonstrates its potential usefulness.

6  Software

Software in the form of R package with complete documentation. It is available at 
https:// github. com/ Teren ceLiu 4444/ tenso rpca.

https://github.com/TerenceLiu4444/tensorpca
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Table 7  Gene enrichment analysis results. We apply TPCA algorithm to reduce the dimensionality of 
spatiotemporal pattern to 3d for each gene

Then we apply kmean clustering algorithm to cluster genes into 5 clusters according their spatiotemporal 
patterns. We conduct gene enrichment analysis for each cluster of genes and identify the most salient bio-
logical process associated with each cluster

Cluster Enriched term P-value after Bonferroni 
correction

1 Nervous system development 8.58E−11
Anatomical structure development 3.43E−09
Neurogenesis 1.63E−05
Regulation of developmental process 3.12E−05
Cell communication 9.93E−05

2 Chemical synaptic transmission 8.38E−08
Inorganic ion transmembrane transport 2.98E−04
Nucleic acid metabolic process 6.57E−04
Regulation of postsynaptic membrane potential 8.45E−04
Multicellular organismal response to stress 1.24E−02

3 Single-organism process 1.81E−10
Regulation of localization 9.92E−04
Single organism signaling 1.06E−03
Response to stimulus 1.59E−03
Regulation of multicellular organismal process 6.18E−03

4 Single-organism process 4.13E−06
Anatomical structure development 2.72E−04
Nervous system development 4.05E−04
Signal transduction 4.84E−02

5 Single-organism developmental process 6.18E−05
Forebrain development 4.77E−03
Chemical synaptic transmission 1.18E−03
Neuron projection morphogenesis 9.42E−03
Axon development 9.65E−03
Regulation of neuron differentiation 3.23E−02
Regulation of smooth muscle cell migration 3.88E−02

Appendix: Proofs

Proof (Proof of Theorem 1) Write

Then X = T + E . Denote by

T =
√
dG

r�

k=1

𝜆k
�
uk ⊗ vk ⊗ wk

�
.

Xg = (xgst)1≤s≤dS ,1≤t≤dT .
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Let Tg , Eg be similarly defined. Then

Hereafter, with slight abuse of notation, we use M to denote the matricization oper-
ator that collapses the first two, and remaining two indices of a fourth order tensor 
respectively. Observe that

Therefore

Because of the orthogonality among uk s, we get

On the other hand, note that

In other words, M(d−1
G

∑dG
g=1

Eg ⊗ Eg) is the sample covariance matrix of independ-
ent Gaussian vectors

Therefore, there exists an absolute constant C1 > 0 such that

with probability tending to one as dG → ∞ . See, e.g., [34].
Finally, observe that

1

dG
M(X)⊤M(X) =

1

dG

dG∑

g=1

vec(Xg)⊗ vec(Xg)

=M

(
1

dG

dG∑

g=1

Xg ⊗ Xg

)

=M

(
1

dG

dG∑

g=1

Tg ⊗ Tg +
1

dG

dG∑

g=1

Eg ⊗ Eg +
1

dG

dG∑

g=1

(
Tg ⊗ Eg + Eg ⊗ Tg

)
)
.

Tg =
√
dG

r�

k=1

𝜆kukg
�
vk ⊗ wk

�
.

Tg ⊗ Tg = dG

r∑

k1,k2=1

𝜆k1𝜆k2uk1guk2g
(
vk1

⊗ wk1
⊗ vk2

⊗ wk2

)
.

1

dG

dG∑

g=1

Tg ⊗ Tg =

r∑

k=1

𝜆2
k

(
(vk ⊗ wk)⊗ (vk ⊗ wk)

)
.

M

(
1

dG

dG∑

g=1

Eg ⊗ Eg

)
=

1

dG

dG∑

g=1

(
vec(Eg)⊗ vec(Eg)

)
.

vec(Eg) ∼ N(0, IdS⋅dT ), 1 ≤ g ≤ dG.

‖‖‖‖‖‖
M

(
1

dG

dG∑

g=1

Eg ⊗ Eg

)
− IdS⋅dT

‖‖‖‖‖‖
≤ C1𝜎

2

√
dSdT

dG
.
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By the orthogonality of uk s, it is not hard to see that Zk s are independent Gaussian 
matrices:

so that there exists an absolute constant C2 > 0 such that

with probability tending to one.
To sum up, we get

where

It is clear that

are the leading eigenvalue-eigenvector pairs of A.
Recall that (�̂2

k
, ĥk) is the kth eigenvalue-eigenvector pair of M(X)⊤M(X) . By 

Lidskii’s inequality,

See, e.g., [13, 20]. Then

dG�

g=1

Tg ⊗ Eg =
√
dG

r�

k=1

𝜆k

�
vk ⊗ wk ⊗

�
dG�

g=1

ukgEg

��
=∶

√
dG

r�

k=1

𝜆k
�
vk ⊗ wk ⊗ Zk

�
.

vec(Zk) ∼ N
(
0, �2IdS⋅dT

)
,

‖‖‖‖‖‖
M

(
1

dG

dG∑

g=1

(
Tg ⊗ Eg + Eg ⊗ Tg

)
)‖‖‖‖‖‖

≤
2

dG

‖‖‖‖‖‖
M

(
dG∑

g=1

Tg ⊗ Eg

)‖‖‖‖‖‖
≤ C2𝜆1𝜎

√
dSdT

dG
,

‖‖‖‖
1

dG
M(X)⊤M(X) − A

‖‖‖‖
≤ (C1𝜎

2 + C2𝜆1𝜎)

√
dSdT

dG
.

A = IdS⋅dT +

r∑

k=1

𝜆2
k

[
vec

(
vk ⊗ wk

)
⊗ vec

(
vk ⊗ wk

)]
.

{
(1 + 𝜆2

k
, vec(vk ⊗ wk)) ∶ 1 ≤ k ≤ r

}

|�̂2
k
− �2

k
| ≤ (C1�

2 + C2�1�)

√
dSdT

dG
.

‖vec−1(�hk) − vk ⊗ wk‖2 ≤‖vec−1(�hk) − vk ⊗ wk‖2F
=2 − 2⟨�hk, vec(vk ⊗ wk)⟩

≤2
���
�hk ⊗

�hk − vec(vk ⊗ wk)⊗ vec(vk ⊗ wk)
���

≤8(C1𝜎
2 + C2𝜆1𝜎)g

−1
k

�
dSdT

dG
,
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where the last inequality follows from Lemma 1 from [15]. For large enough C, we 
can ensure that

Recall also that v̂k and ŵk be the leading singular vectors of vec−1(ĥk) . By Wedin’s 
perturbation theorem, we obtain immediately that

See, e.g., [25, 36].  □

Proof (Proof of Theorem 2) Denote by

It is not hard to see that

Let M−1 be the inverse of the matricization operator M that unfold a fourth order 
tensor into matrices, that is, M−1 reshapes a (dSdT ) × (dSdT ) matrix into a fourth 
order tensor of size dS × dT × dS × dT . Observe that

We get

where we used the fact that

‖vec−1(�hk) − vk ⊗ wk‖2 ≤
C

4
(𝜎2 + 𝜆1𝜎)g

−1
k

�
dSdT

dG
≤

1

4
.

max
�
1 − �⟨v̂k, vk⟩�, 1 − �⟨ŵk,wk⟩�

�
≤ C(�2 + �1�)�

2g−1
k

�
dSdT

dG
.

b̃ =

(
1

dG

dG∑

g=1

Xg ⊗ Xg

)
×2 c

[m−1] ×3 c
[m−1] ×4 b

[m−1] − 𝜎2
b
[m−1].

b
[m] = b̃∕‖b̃‖.

1

dG

dG∑

g=1

Xg ⊗ Xg =
1

dG

dG∑

g=1

Tg ⊗ Tg +
1

dG

dG∑

g=1

Eg ⊗ Eg +
1

dG

dG∑

g=1

(
Tg ⊗ Eg + Eg ⊗ Tg

)

=𝜆2
k

(
(vk ⊗ wk)⊗ (vk ⊗ wk)

)
+
∑

j≠k

𝜆2
j

(
(vj ⊗ wj)⊗ (vj ⊗ wj)

)

+ 𝜎2M
−1(IdS⋅dT ) +

(
1

dG

dG∑
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Eg ⊗ Eg −M
−1(IdS⋅dT )

)

+
1

dG

dG∑

g=1

(
Tg ⊗ Eg + Eg ⊗ Tg

)

=∶𝜆2
k

(
(vk ⊗ wk)⊗ (vk ⊗ wk)

)
+ 𝛥1 + 𝜎2M

−1(IdS⋅dT ) + 𝛥2 + 𝛥3.

b̃ = 𝜆2
k
⟨b[m−1], vk⟩⟨c[m−1],wk⟩2vk + (𝛥1 + 𝛥2 + 𝛥3) ×2 c

[m−1] ×3 c
[m−1] ×4 b

[m−1],
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Therefore

Denote by

Then,

On the other hand, note that

Write

Then

Therefore,

M
−1(IdS⋅dT ) ×2 c

[m−1] ×3 c
[m−1] ×4 b

[m−1] = b
[m−1].

�⟨b̃, vk⟩� =
���𝜆

2
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�
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Assume that

which we shall verify later. Then

Similarly, we can show that

Together, they imply that

It is clear from (11) that if

so is 1 − �m . Thus (12) holds for any

We now derive bounds for ‖�2 + �3‖ . By triangular inequality 
‖�2 + �3‖ ≤ ‖�2‖ + ‖�3‖ . By Lemma 1,
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Next we consider bounding ‖�3‖ . Recall that

By triangular inequality,

Note that

where Zk s are independent dS × dT Gaussian ensembles. By Lemma 2, we get

where we used the fact that r ≤ min{dS, dT} . Therefore,

Thus, (12) implies that

for any large enough m.
It remains to verify condition (9), which we shall do by induction. In the light of 

Theorem 1 and the assumption on �1 and �k , we know that it is satisfied when m = 0 , 
as soon as the numerical constant C > 0 is taken large enough. Now if �m−1 satis-
fies (9), then (11) holds. We can then deduct that the lower bound given by (9) also 
holds for �m .  □
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B. Auxiliary Results

We now derive tail bounds necessary for the proof of Theorem 2.

Lemma 1 Let E ∈ ℝ
d1×d2×d3 ( d1 ≥ d2 ≥ d3 ) be a third order tensor whose entries 

ei1i2i3 ( 1 ≤ ik ≤ dk ) are independently sampled from the standard normal distribution. 
Write Ei = (ei1i2i3 )1≤i2≤d2,1≤i3≤d3 its ith (2, 3) slice. Then

with probability tending to one as d1 → ∞.

Proof (Proof of Lemma 1) For brevity, denote by

and

Note that T is a d2 × d3 × d3 × d2 tensor obeying

where �k1k2 permutes the k1 and k2 entry of vector. Therefore
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We can find a 1/8 cover set N1 of �d2−1 such that |N1| ≤ 9d2 . Similarly, let N2 be a 
1/8 covering set of �d3−1 such that |N2| ≤ 9d3 . Then by (14)

suggesting

Now note that for any a ∈ N1 and b ∈ N2,

Therefore

An application of the �2 tail bound from [17] leads to

for any x < 1 . By union bound,

so that

with probability tending to one as d1 → ∞ .  □

Lemma 2 Let {v1,… , vd1} be an orthonormal basis of ℝd1 , and {w1,… ,wd2
} an 

orthonormal basis of ℝd2 . Let Z1,… , Zr be independent d3 × d4 Gaussian random 
matrix whose entries are independently drawn from the standard normal distribu-
tion. Then for any sequence of nonnegative numbers �1,… , �r ≤ 1:

Proof (Proof of Lemma 2) Observe that
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By concentration bounds for Gaussian random matrices,

See, e.g., [34].  □
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