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Abstract
A curve-free, Bayesian decision-theoretic two-stage design is proposed to select bio-
logical efficacious doses (BEDs) for phase Ia/Ib trials in which both toxicity and 
efficacy signals are observed. No parametric models are assumed to govern the 
dose–toxicity, dose–efficacy, and toxicity–efficacy relationships. We assume that the 
dose–toxicity curve is monotonic non-decreasing and the dose–efficacy curve is uni-
modal. In the phase Ia stage, a Bayesian model on the toxicity rates is used to locate 
the maximum tolerated dose. In the phase Ib stage, we model the dose–efficacy 
curve using a step function while continuing to monitor the toxicity rates. Further-
more, a measure of the goodness of fit of a candidate step function is proposed, and 
the interval of BEDs associated with the best fitting step function is recommended. 
At the end of phase Ib, if some doses are recommended as BEDs, a cohort of confir-
mation is recruited and assigned at these doses to improve the precision of estimates 
at these doses. Extensive simulation studies show that the proposed design has desir-
able operating characteristics across different shapes of the underlying true toxicity 
and efficacy curves.
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1  Introduction

As the first application of a new drug or drug combination to humans, a phase I 
oncology trial traditionally focuses on finding the safe dose or schedule of the medi-
cation. Such a trial usually is a single-arm, open label, sequential study involving a 
small number of patients. A principal goal of a phase I trial is to establish the rec-
ommended dose and/or schedule of an experimental drug for efficacy testing later. It 
is believed that the toxicity and efficacy of cytotoxic chemotherapies increase with 
dose; thus, the recommended dose is often selected as the maximum tolerated dose 
(MTD). A comprehensive review of the dose escalation methods for MTD in phase I 
cancer clinical trials can be found in Tourneau et al. [17].

Emerging targeted therapies, including monoclonal antibodies and immuno-
therapies, have distinct response outcomes from the chemotherapies. While it may 
be reasonable to assume monotonic toxicity with dose, the dose-limiting toxicity 
(DLT) may not exhibit at the therapeutic doses. Moreover, the efficacy may not fol-
low monotonic patterns [6]. Therefore, methods that are optimal for the selection 
of MTD may not be appropriate for the determination of a recommended dose for 
targeted therapies [3]. These new therapies need alternative or complementary strat-
egies to help the identification of dose ranges based on effect biomarkers, which 
could be target engagement, pharmaco-dynamics or disease progression biomarkers. 
The dose that demonstrates a certain level of biological effect measured by such a 
biomarker is considered a biological efficacious dose (BED), which should have a 
desirable efficacy performance while still safeguarding patients with an acceptable 
toxicity profile [14]. In a review of phase I trials that lead to a recommended phase 
II dose for molecularly targeted agents, Hansen et  al. [7] observed that only 13% 
(22/161) of these trials use non-toxicity endpoints and that BEDs of molecularly tar-
geted agents may not reach MTD in these phase I trials. Therefore, they replaced the 
DLT rate for a 3 + 3 design with an efficacy response rate and searched for a BED by 
modifying the 3 + 3 rule. Another commonly used dose target is the biological opti-
mal dose (BOD), the optimal BED that has the highest efficacy among doses below 
the MTD [1].

To look for BOD, Thall and Cook [16] introduced EffTox, a Bayesian adaptive 
dose-finding design that models correlated binary efficacy and toxicity outcomes 
and incorporates the trade-off between efficacy and toxicity. Brock et al. [2] searched 
the PubMed on October 2016 for articles that cited Thall and Cook [16] and found 
that, among the 54 articles returned, only three used the EffTox design in clinical tri-
als. This reflects the statement made by Thall [15]: “Bayesian models for early phase 
clinical trials have seen limited use in clinical practice”. We believe that, in general, 
parametric models and computational complexities are the primary barriers to wide-
spread adoption of Bayesian designs.

Many researchers have started to develop and promote Bayesian designs that 
are relatively easy to understand and implement. One way is to adopt curve-
free models for dose–response relations. For example, to identify the MTD, Fan 
et  al. [5] proposed a Bayesian design that assumes only a monotonic relation-
ship between dose and toxicity. However, for trials with both toxicity and efficacy 
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outcomes, there is no simple curve-free assumption on the association between 
toxicity and efficacy. Therefore, instead of modelling the toxicity–efficacy rela-
tion, Ivanova [8], Fan and Chaloner [4], and Zhang et al. [19] modelled toxicity 
and efficacy as a single trinary response variable with three outcomes: no tox-
icity and no efficacy (no response), efficacy and no toxicity (success), and tox-
icity. Fan and Chaloner [4] adopted the continuation-ratio model and provided 
the analytic forms of its Bayesian optimal designs. However, their target dose is 
the most successful dose, different to BOD. To identify BOD, Sachs et  al. [14] 
advocated the idea of a two-stage approach, in which stage 1 (Phase Ia) focuses 
primarily on toxicity to assess safety and tolerability as well as to establish the 
MTD, and stage 2 (Phase Ib) focuses primarily on efficacy to find a BED that is 
lower than the MTD. In this way, the complexity of joint modelling of the toxic-
ity–efficacy association can be avoided by utilizing the marginal distributions of 
toxicity and efficacy sequentially. Zang and Lee [18] adopted the idea to identify 
the BOD, and their design assumes only that the (marginal) dose–toxicity rela-
tionship is monotonic and the (marginal) dose–efficacy relationship is unimodal 
or plateaued. A common thread that runs through these works is that the designs 
are curve free, that is, the dose–toxicity, dose–efficacy, and toxicity–efficacy rela-
tionships are not assumed to follow specific parametric curves.

While numerous trial designs for identifying the MTD or BOD have been pro-
posed in the literature, designs for identifying the BEDs are limited. In this paper, 
we propose a two-stage, curve-free Bayesian design to identify the set of all BEDs 
in the dose domain of the study. Our two-stage approach is similar to Zang and Lee 
[18] but the goal is different: instead of finding the BOD, which is the optimal BED, 
we seek to identify all the BEDs. The reason for this goal is that the recommended 
phase II dose should be a decision that involves not only the statisticians but also the 
medical experts (such as the clinicians and pharmacologists). By providing a set of 
BEDs, the medical experts have the option of selecting a BED based on pharmacol-
ogy and other clinical knowledge and experience to move forward to phase II trials, 
rather than relying solely on statistical criteria.

The disadvantage of a two-stage approach is that without utilizing the association 
between the toxicity and efficacy outcomes, a larger sample size may be required. 
However, this disadvantage can be minimized by using an efficient algorithm in the 
first stage. The algorithm proposed by Fan et al. [5] has been demonstrated to locate 
the MTD rapidly and robustly and so we adopt it in the first stage of our design. As 
for the second stage, because the goal is to identify all BEDs rather than the BOD, 
the grouping of doses, or the pooling of the samples at those doses, to estimate a sin-
gle pooled efficacy rate should lead to an increased precision of the estimate. Based 
on this consideration, the efficacy curve is assumed to be unimodal or plateaued, and 
it is modelled nonparametrically by a step function. The dose selection in the second 
stage is based on the estimated step function and the posterior expected utilities.

Another practical issue is the selection of the single BOD from the multiple 
BEDs for phase II trials. Although a phase Ia/Ib trial does not aim to make statistical 
inferences on the efficacy of the selected dose(s), relatively large sample sizes on the 
selected doses (BEDs) could be required or essential for clinicians to make a good 
decision. To achieve that, stopping rules are implemented and the saved sample 
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size can be used for a confirmation cohort. In our simulation studies, confirmation 
cohorts are guaranteed by lowering the maximal sample size of the first two stages.

Finally, the simplicity of the prior distributions and an intuitive way to specify the 
prior parameters are important for the adoption of a Bayesian method in actual trials. 
We choose the flexible beta priors for the toxicity/efficacy rates, which can be easily 
specified based on a preliminary guess of the toxicity/efficacy rates. The curve-free 
toxicity/efficacy models and less-informative priors can increase the robustness of 
the proposed design, so that errors in the initial prior specification can be quickly 
adjusted by the data. To facilitate the application of the proposed design, an R pack-
age has been developed and is available upon request.

The rest of our paper is organized as follows. Section 2 provides a description of 
the design, including the modelling of the dose-toxicity and dose–efficacy relation-
ships, and dose selection rules based on Bayesian decision theory. In Sect.  3, we 
evaluate the operating characteristics of our design through simulation studies and 
sensitivity analysis. To promote the application of our design, a completed trial is 
simulated with complete details and presented in Sect. 4. Finally, we present a dis-
cussion in Sect. 5.

2 � The General Design

We first describe the idea of the proposed design. It starts with identifying the safe 
doses. The Bayesian algorithm originally proposed by Fan et al. [5] for dose-finding 
or phase Ia trials, hereafter referred to as the FLW algorithm, is used to locate the 
MTD. Due to page limits, we cannot describe the FLW algorithm in detail here. In 
essence, the FLW algorithm assumes only a monotonic dose–toxicity relationship 
and estimates the MTD with an isotonic procedure that uses the observed as well as 
extrapolated toxicity data. Furthermore, it recommends the dose with the maximum 
posterior probability of being the MTD. Simulation studies provided by Fan et al. 
[5] show that the algorithm selects the target dose more frequently with fewer num-
ber of patients than other commonly used Bayesian methods; moreover, it is robust 
against prior misspecification. An R package that implements the FLW algorithm is 
available from the authors upon request.

Once the MTD has been identified with sufficient confidence, in terms of the 
posterior probability of the recommended dose being the MTD exceeding a pre-
set threshold, the phase Ib stage for the search of the BEDs begins. During the 
search, we continue to monitor the toxicity rates and update the MTD. In this 
stage, only the admissible doses, those not exceeding the current MTD, are con-
sidered in dose assignments. Because dose-finding trials typically have small 
sample sizes, the efficacy rate for each individual dose cannot be reliably esti-
mated; therefore, we group the adjacent doses to obtain pooled estimates. After-
ward, we approximate the unimodal dose–efficacy curve by a step function that 
divides the dose axis into three intervals/groups as illustrated in Fig. 1. The mid-
dle interval of the step function which maximizes a utility function will be rec-
ommended as the interval of BEDs. After the interval of BEDs has been recom-
mended, a confirmation cohort is added to the trial to increase the precision of the 
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estimate of the pooled efficacy rate of this interval. The point estimate, together 
with confidence intervals of the efficacy rate for each BED and of the pooled effi-
cacy rate for all BEDs, can be provided to help clinicians select a dose to move 
forward to phase II trials.

2.1 � Modelling Toxicity and Efficacy Rates

Let the dose levels be indicated in discrete integers i for i = 1,…, m. Let PT ,i and 
PE,i be the toxicity and efficacy rates, respectively, of dose i. We assume that the 
toxicity rates are monotonically non-decreasing, that is, PT ,1 ≤ PT ,2 ≤ ⋯ ≤ PT ,m ; 
it follows that all doses not exceeding the current estimated MTD are admissible. 
The prior distribution of the toxicity rate at each dose level is taken to be inde-
pendent beta distributions. Specifically, we have PT ,i independently distributed as 
Beta(�0

T ,i
, �0

T ,i
) such that the means are monotonically non-decreasing: 

�0

T ,1
≤ �0

T ,2
≤ ⋯ ≤ �0

T ,m
, where �0

T ,i
= �0

T ,i
∕
(
�0

T ,i
+ �0

T ,i

)
. Note that the monotoni-

cally non-decreasing property will be preserved in the posterior means. Through-
out, the superscript 0 is used to indicate that a parameter is associated with an 
initial prior distribution.

While it is reasonable to assume that the toxicity of an agent is monotonic 
and non-decreasing in dose, this assumption may not be tenable for the effi-
cacy [6]. Therefore, we assume instead that the efficacy curve f (s) is unimodal 
or plateaued: f (s) increases at low dose levels and plateaus or even decreases at 
higher levels. It follows that the set of BEDs is an interval. Because our goal is 
to identify the interval of BEDs, rather than the BOD, we model the unimodal or 
plateaued efficacy curve using a step function, which is identified by an interval 
B = [l, r], 1 ≤ l ≤ r ≤ m as follows:

Fig. 1   Plot of an efficacy curve with the minimum acceptable rate 0.30 and two-step function models: 
the best one in blue and another one in red
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The efficacy rates of doses in the same range: to the left of, to the right of, or in 
the interval B, are modelled as the mean efficacy rate of all doses in the range.

The prior distribution of the efficacy rate at each dose level is taken to be 
independent beta distributions, that is, we have P0

E,i
 independently distributed 

as Beta(�0

E,i
, �0

E,i
) for i = 1,…,m. Similarly, we specify the initial prior distribu-

tion of the mean efficacy rate of an interval A of k doses, PA =
1

k

∑
i∈APE,i, as 

Beta(�0

A
=

1

k

∑
i∈A�

0

E,i
, �0

A
=

1

k

∑
i∈A�

0

E,i
). We defer the discussion of the specification 

of the prior parameters to Sect. 3.

2.2 � Utility Functions

Let Tmax be the maximum tolerable toxicity level and Emin be the minimum accept-
able efficacy rate such that a BED should have its efficacy rate above it. Doses with 
tolerable toxicity and acceptable efficacy are BEDs. The goal of our design is to 
identify the interval of BEDs correctly and promptly. For an arbitrary interval B = [l, 
r], its utility of being the interval of BEDs is defined as follows.

Considering a dose i, if it is a BED, it should be included in B; if it is a non-BED, 
it should be excluded from B. Among all BEDs, the successful inclusion of a more 
efficacious dose should be given larger utility than that of a less efficacious dose. In 
contrast, among all non-BEDs, the successful exclusion of a less efficacious dose 
should be given larger utility than that of a more efficacious dose. The utility of 
interval B = [l, r] associated with dose i is defined as follows:

where 1condition takes the value one if condition is true and zero otherwise. The posi-
tive constants a and b, which are associated with the BEDs, represent the weights 
for correct selection as BEDs and how much more efficacious it is than Emin, respec-
tively. The positive constants c and d, which are associated with the non-BEDs, rep-
resent the weights for correct selection as non-BEDs and how much less efficacious 
it is than Emin, respectively. The total utility is the weighted sum of the utilities at all 
doses:

An intuitive choice for the weight wi is the sample size at dose i, denoted ni, but it 
can be chosen in other ways.

The utility function u(B) is maximized when the interval B contains all and only 
BEDs. For any BED, say dose i, ui(B) is at least one if it is in B and zero if not. 

(1)PE,i =

⎧
⎪⎨⎪⎩

1

l−1

∑l−1

j=1
PE,j for i < l,

1

r−l

∑r

j=l
PE,j for l ≤ i ≤ r

1

m−r−1

∑m

j=r+1
PE,j for i > r.

,

(2)ui(B) =

{
1{PE,i≥Emin}[a + b(PE,i − Emin)] for i ∈ B

1{PE,i<Emin}
[c + d(Emin − PE,i)] for i ∉ B

,

(3)u(B) =

MTD∑
i=1

wi ∗ ui(B).
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Similarly, for any non-BEDs, say dose j, uj(B) is zero if it is in B and at least one 
if not. To maximize the total sum of the utilities at all doses, the interval B must 
include all BEDs and exclude all non-BEDs.

When a prior distribution is added on PE,i, the (Bayesian) utility associated with 
dose i is defined as the posterior expectation of ui(B),E

[
ui(B)

]
. Let ne,i be the num-

ber of efficacy outcomes among the ni patients treated at dose i. The posterior distri-
bution of PE,i is Beta(�E,i = �0

E,i
+ ne,i, �E,i = �0

E,i
+ ni − ne,i) and the expected utility 

at dose i is given by:

where IEmin
(∙, ∙) is the regularized incomplete beta function. It follows that there is an 

analytical expression for the expected total utility of an interval B:

Let A∗ denote the interval which maximizes E[u(B)] at the end of trial. Due 
to limited sample size, not all doses in A∗ are necessarily BEDs and so we need 
to exclude the non-BEDs as follows. First of all, because of the assumed uni-
modality of the dose–efficacy curve, any non-BEDs in the interval A∗ must 
be the lower or higher dose levels in A∗. Let B be a subinterval of A∗ obtained 
by excluding one or more lower and/or higher dose levels in A∗, and let k be the 
number of doses in B. Next, we define the efficacy rate of B as the pooled effi-
cacy rate PB =

1

k

∑
i∈BPE,i, and we specify the initial prior distribution of PB 

as the pooled beta prior distribution Beta(�0

B
=

1

k

∑
i∈B�

0

E,i
, �0

B
=

1

k

∑
i∈B�

0

E,i
). 

Upon the collection of data, the posterior distribution of PB becomes 
Beta(�B = �0

B
+
∑

i∈Bne,i, �B = �0
B
+
∑

i∈B(ni − ne,i)), and the posterior probability 
that B is acceptable is given by P

(
PB ≥ Emin

)
= 1 − IEmin

(
�B, �B

)
. Our design rec-

ommends the subinterval B∗ = [l∗, r∗] that maximizes this posterior probability as 
the final interval of BEDs.

2.3 � Dose Selection Rules

To use the sample size more efficiently, stopping rules are implemented at both 
stages. Let nmin.mtd, nmax.mtd be the minimum and maximum sample sizes at the first 
stage for locating the MTD, and nmin, nmax be the minimum and maximum samples 
sizes of the entire trial. In addition, nmin.mtd ≤ nmax.mtd ≤ nmin ≤ nmax.

At the beginning of a trial, phase Ia, we propose the following dose selection 
rules to locate the MTD quickly:

(1)	 Start at the lowest dose and escalate until a toxicity outcome is observed or the 
highest dose is reached.

E
�
ui(B)

�
=

⎧
⎪⎨⎪⎩

�
a − b*Emin

��
1 − IEmin

�
�E,i, �E,i

��
+

b�E,i

�E,i+�E,i

�
1 − IEmin

�
�E,i + 1, �E,i

��
for i ∈ B,

�
c + d*Emin

�
IEmin

�
�E,i, �E,i

�
−

d�E,i

�E,i+�E,i
IEmin

�
�E,i + 1, �E,i

�
for i ∉ B,

E[u(B)] =

MTD∑
i=1

w∗
i
E[ui(B)]
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(2)	 Use the FLW algorithm to locate the MTD and assign the next patient to the 
current MTD.

(3)	 Step (2) is repeated until a pre-set sample size nmin.mtd is reached. The dose 
assignment between sample size nmin.mtd and nmax.mtd follows the rules below:

(a)	 If the posterior probability of the first dose being overly toxic exceeds a 
threshold, the trial is terminated and we conclude that the MTD is below 
the first dose.

(b)	 Otherwise, if the posterior probability of the current MTD being the true 
MTD exceeds a threshold, we will begin to allocate the BED candidates to 
the patients.

(c)	 Otherwise, the current MTD is assigned to the next patient.

The parameter nmin.mtd in Step (3) is designed to prevent incorrect early termi-
nation due to misspecified prior distributions (the conclusion “all doses are inad-
missible” cannot be made before nmin.mtd patients are treated), while the param-
eter nmax.mtd is designed to ensure possible allocation of the BEDs to patients. 
One can set nmin.mtd = nmax.mtd to simplify the algorithm. The reason to allocate 
the MTD rather than BEDs at the beginning of the trial is to identify the MTD 
quickly, since patient safety should always be the first priority. Once the MTD is 
confidently located, phase Ib begins and patients will be allocated to BED candi-
dates immediately.

The BED candidates are defined to be all the admissible doses in the interval 
of BEDs, B∗ = [l∗, r∗] (as described in the end of Sect. 2.2) and its adjacent doses 
l* − 1 and r* + 1. To ensure patient safety, only admissible doses at or below the 
current MTD can be assigned to patients, and the MTD is updated throughout 
the entire trial using the FLW algorithm and observed data at all doses. Let q1 
be the pres-set threshold of the posterior probability of a dose being acceptable 
and q2 be the threshold of the posterior probability of a dose being unacceptable. 
Each BED candidate is assigned to a patient until a minimum sample size nmin is 
reached and the following stopping rules apply:

(1)	 If the current interval of BEDs, B∗, is very likely to be acceptable, that is, 
P
(
PB∗ ≥ Emin

)
≥ q1, the trial is terminated and we recommend B∗ as the inter-

val of BEDs.
(2)	 Otherwise, if all admissible doses are very likely to be unacceptable, that is, 

P
(
PE,i < Emin

)
≥ q2 for all i ≤ MTD, the trial is terminated and we conclude 

that there is no BED.
(3)	 Otherwise, the trial is terminated until the maximum sample size nmax is reached. 

If the current interval of BEDs, B∗, is very likely to be unacceptable, that is, 
P
(
PB∗ < Emin

)
≥ q2, we conclude that there is no BED; otherwise, we recom-

mend B∗ as the interval of BEDs.

A flowchart of the proposed phase Ia/Ib design is presented in Fig. 2.
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2.4 � Confirmation Cohort

If at the end of trial, an interval  B∗ = [l*, r*] is recommended as the BED inter-
val, a confirmation cohort will be recruited to improve the efficiency of estimates. 
Each dose in the interval B will be assigned the same number of patients and this 

Fig. 2   Flowchart of CFBD
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cohort is later referred to the confirmation cohort. After the confirmation cohort, 
the selection of the MTD and BED interval will be updated. In addition, the pooled 
efficacy rate for the updated interval  B* = [l*, r*] is empirically estimated by 
P̂B∗ =

∑r∗

i=l∗
ne,i∕

∑r∗

i=l∗
ni. The pooled efficacy rate is adopted rather than individual 

efficacy rate because of the small sample size at each individual dose. The size of 
the confirmation cohort depends on the desired efficacy and available resources. 
However, to detect a small difference from the target efficacy level Emin, it requires 
a large sample size at these BEDs. In addition, the goal of dose finding trials is to 
locate the good acceptable doses, not the precision of estimation. The confirmation 
cohort is only used to select one of these BEDs as the single dose to move to phase 
II trials.

3 � Simulation Studies

Hereafter, we refer to our proposed design as CFBD, which stands for Curve-Free 
Bayesian Design. The CFBD is not the only curve-free Bayesian design in the liter-
ature, for example, Zack and Lee (2017) also proposed a curve-free Bayesian design 
(ZL) to identify the BOD. In our simulation studies, we compare the performance of 
CFBD to ZL because there are limited number of designs in the literature that seek to 
identify the BEDs, and ZL uses the same two-stage strategy and a similar curve-free 
Bayesian model. We would like to emphasize that the goals of CFBD and ZL are dif-
ferent and, as a result, the CFBD may outperform ZL in some scenarios simply because 
ZL was designed to identify the BOD rather than BEDs. In other words, our compari-
sons are not intended as a demonstration of the superiority of the CFBD; rather, the 
performance of ZL when used to identify the set of BEDs serves only as a benchmark.

3.1 � Operating Characteristics

3.1.1 � Simulation Settings

We examined the operating characteristics of the CFBD in six scenarios presented 
in Zang and Lee [18]. These scenarios, reproduced in Table 1 with the BEDs high-
lighted in bold, provide a variety of dose-efficacy curves: monotone increasing (sce-
narios 1 and 6), unimodal (scenarios 2 and 3), and increasing with a plateau (sce-
narios 4 and 5). Note that a step function would fit the dose-efficacy curve well in 
scenarios 4 and 5 but not apparently so in other scenarios. We simulated 5000 trials 
for each scenario, where the value of both the maximum tolerable toxicity rate, Tmax, 
and the minimum acceptable efficacy rate, Emin, was 0.3.

In CFBD, we proposed the Beta distributions as the prior distributions of the tox-
icity and efficacy rates. Our choice of the parameters in the simulation studies was 
motivated by the following considerations. First of all, the values of the parameters 
should not be large, since a Beta(α, β) prior distribution has effective sample size 
r = α + β [12]. If r > n, where n is the sample size, the prior dominates posterior 
inferences, and vice versa. Therefore, unless there is reliable prior information, r 



156	 Statistics in Biosciences (2020) 12:146–166

1 3

should be fairly small so that any misspecified priors can be correctly updated with a 
small or moderate sample that is typical in Phase I trials. Secondly, a Beta(α, β) dis-
tribution is unimodal if and only if α > 1 and β > 1. As unimodal prior distributions 
are usually preferred, the parameters α0 and β0 of the Beta prior distributions should 
be larger than 1 if possible. Combining these two considerations, we should have α0 
and β0 larger than but close to 1. However, this condition may not be satisfied at all 
dose levels, and so we require instead that it be at least satisfied at dose levels that 
are believed to be BEDs prior to the trial. Let �0

E,i
 and r0

i
 denote the mean and effec-

tive sample size, respectively, of a Beta(�0

E,i
, �0

E,i
) prior distribution for the efficacy 

rate at dose i. It is trivial to show that �0

E,i
= r0

i
�
0

E,i
 and�0

E,i
= r0

i
(1 − �

0

E,i
), so that the 

equivalent condition is to have both r0
i
�
0

E,i
 and r0

i
(1 − �

0

E,i
) greater than but close to 1 

at the likely BEDs. In practice, these parameters can be specified in collaboration 
with clinicians based on their clinical experience and confidence level. Suppose that 
all efficacy rates of the BEDs are expected to be above Emin but below an upper 
bound of Emax(≥ Emin). Let r be a multiplier such that rEmin, r(1 − Emin), rEmax and 
r(1 − Emax) are all larger than but close to 1. Then �0

E,i
= r�

0

E,i
 and �0

E,i
= r(1 − �

0

E,i
) 

ensure that the prior distributions are unimodal whenever Emin ≤ �0

E,i
≤ Emax. For 

now, �0

E,i
 is chosen to be equal to the actual efficacy rate at dose i; we will study the 

impact of misspecifications in Sect. 3.2. With Emin = 0.3 and Emax = 0.4 in our simu-
lations, we have the effective sample size r = 4. Based on our earlier discussion, our 
prior information is as strong as that obtained from four treated patients.

The weights a, b, c, and d, which represent the rewards in the utility function 
defined in Eq.  (2), are all set to 1, and the weights wi used in the calculation of 
the total utility defined in Eq.  (3) are given by the sample sizes, ni, at the respec-
tive dose levels. The parameters of stopping rules for the simulated trials are 
given as follows. A trial should not be stopped when the sample size is small. The 

Table 1   Six scenarios with its 
shape of efficacy curve; doses in 
bold are BEDs

Scenario Dose level

1 2 3 4 5

1 Toxicity 0.10 0.20 0.30 0.40 0.50
Increasing Efficacy 0.05 0.10 0.18 0.25 0.30
2 Toxicity 0.01 0.05 0.09 0.15 0.20
Unimodal Efficacy 0.10 0.30 0.40 0.20 0.05
3 Toxicity 0.02 0.06 0.12 0.30 0.50
Unimodal Efficacy 0.30 0.40 0.20 0.10 0.05
4 Toxicity 0.02 0.06 0.12 0.30 0.50
Plateau Efficacy 0.10 0.30 0.30 0.30 0.30
5 Toxicity 0.10 0.20 0.25 0.40 0.50
Plateau Efficacy 0.20 0.40 0.40 0.40 0.40
6 Toxicity 0.05 0.10 0.20 0.35 0.50
Increasing Efficacy 0.05 0.20 0.30 0.40 0.50
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minimal and maximal sample size for MTD identification (phase Ia) are set as 
nmin.mtd = 10, and n

max.mtd
= 30. In addition, it takes about 12 patients to have a 

power of 0.70 to test the hypothesis H0: = PE,i = E
min

=0.3 against H1:PE,i = 0.1 at a 
significance level of 0.1. Therefore, with 5 doses in our simulated trials, we set the 
minimum sample size to stop a trial early as nmin.int = 5 × 12 = 60. Although Zang 
and Lee [18] set the maximum sample size, nmax.int, as 150, we chose 100 instead to 
reflect the sample size constraint of actual phase I trials and reserved the remaining 
50 for possible confirmation cohorts later. The size of the confirmation cohort per 
BED is chosen to be 10. Finally, the thresholds q1 and q2 for stopping rules defined 
in Sect. 2.3 are set to be 0.9.

3.1.2 � Simulation Results

The simulation results are summarized in Tables  2 and 3. Recall that Zang and 
Lee [18] aim to identify the BOD (the BED with the highest efficacy rate) whereas 
CFBD aims to identify all BEDs. To facilitate comparisons, we compute the follow-
ing summary statistics in Table 2:

•	 The percentage of trials that conclude that there is a target dose (%found), which 
is defined for CFBD as the percentage of trials recommending BEDs, and for ZL 
as the percentages of trials recommending a BOD.

Table 2   The average sample 
size ( 

−
n ), the percentage of trials 

that recommend any BEDs/
BOD (%found), within the 
trials recommending BEDs/
BOD, the percentage that all 
the recommended doses are 
truly acceptable (%correct) 
and the percentage that sample 
pooled efficacy of the BEDs are 
acceptable (%success), and the 
percentages of in-trial toxicity 
(%tox) and efficacy (%eff) 
under the proposed Bayesian 
design (CFBD) and the design 
proposed by Zang and Lee (ZL)

Design −
n %found %correct %success %tox %eff

Scenario 1: increasing efficacy curve, no BEDs
CFBD 67.0 6.6 0.0 17.7 20.6 11.3
ZL 30.4 2.6 0.0 26.3 9.9

Scenario 2: unimodal efficacy curve, two BEDs in 
middle

CFBD 90.7 99.2 96.7 93.7 10.2 26.2
ZL 114.8 94.6 88.7 7.9 28.4

Scenario 3: unimodal efficacy curve, two BEDs in front
CFBD 89.2 99.7 97.2 95.3 9.0 29.2
ZL 110.0 90.9 95.9 8.2 31.5

Scenario 4: step efficacy curve, three BEDs in middle
CFBD 99.4 96.9 98.3 81.3 14.1 27.5
ZL 108.6 91.2 87.7 11.9 28.0

Scenario 5: step efficacy curve, two BEDs in middle
CFBD 83.0 94.2 90.3 97.6 20.2 34.7
ZL 80.6 75.5 75.2 23.8 29.8

Scenario 6: increasing efficacy curve, one BED in mid-
dle

CFBD 92.1 80.5 48.5 75.1 18.3 26.3
ZL 90.5 64.4 45.5 19.0 23.9
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•	 Within those trials recommending BEDs/BOD, the percentage of trials of which 
all recommended doses are truly admissible and acceptable (%correct).

•	 Within the trials recommending BEDs, the percentage of trials of which the 
sample pooled efficacy rate of the recommended BEDs is acceptable, i.e. confi-
dence level of the pooled efficacy rate being above Emin (%success). This statistic 
is computed for CFBD only.

•	 The percentage of in-trial toxicities (%tox), the percentage of in-trial efficacies 
(%eff), and the average sample size over the 5000 simulated trials ( 

−
n).

Additional summary statistics are provided in Table 3.

Table 3   The selection 
percentages of MTD, BED 
interval limits: L*, U*, and 
patient allocation for all 
doses under CFBD; correct 
percentages are in bold

Dose level 1 2 3 4 5

Scenario 1: increasing efficacy curve, no BEDs
 % of MTD 6.1 48.4 40.7 4.8 0.1
 % of L* 2.8 0.5 2.0 1.3 0.0
 % of U* 2.8 0.5 2.0 1.3 0.0
 % of patients 31.4 40.1 21.1 7.0 0.5

Scenario 2: unimodal efficacy curve, two BEDs in middle
 % of MTD 0.0 0.7 8.6 32 58.6
 % of L* 0.5 27.0 70.5 1.3 0.0
 % of U* 0.5 10.7 85.2 2.8 0.0
 % of patients 7.8 24.7 32.6 21.0 13.9

Scenario 3: unimodal efficacy curve, two BEDs in front
 % of MTD 0.1 2.8 26.6 68.7 1.8
 % of L* 25.2 73.3 1.1 0.1 0.0
 % of U* 8.4 88.4 2.7 0.1 0.0
 % of patients 28.7 36.6 24.9 8.3 1.4

Scenario 4: step efficacy curve, three BEDs in middle
% of MTD 0.3 2.4 25.2 71.3 0.9
% of L* 1.3 42.1 32.8 20.6 0.1
% of U* 1.3 32.1 36.0 27.1 0.3
% of patients 12.4 26.6 35.2 24.2 1.6
Scenario 5: step efficacy curve, two BEDs in middle
 % of MTD 6.0 37.8 45.3 10.9 0.0
 % of L* 2.2 74.3 16.0 1.7 0.0
 % of U* 1.1 50.6 35.5 7.0 0.0
 % of patients 26.7 40.0 25.7 7.2 0.4

Scenario 6: increasing efficacy curve, one BED in middle
 % of MTD 0.4 9.5 56.9 33.0 0.2
 % of L* 3.4 8.7 44.8 23.5 0.1
 % of U* 3.4 7.9 39.5 29.4 0.2
 % of patients 10.2 30.6 41.0 17.5 0.7
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As seen from Table 2, CFBD performs very well in identifying the BEDs in most 
scenarios that have at least one BED. In scenarios 2 to 5, CFBD uses relatively fewer 
patients on average than ZL and yet has higher %found and %correct. Also, CFBD 
was able to recommend one or more BEDs in approximately 95% or more of the tri-
als (%found) with at least 90% accuracy rate (%correct). In scenario 6, CFBD was 
able to detect the existence of BEDs 80.5% of the time, which is 16% more likely 
than ZL; however, the recommended doses are not very likely (less than 50%) to 
be all acceptable. An explanation for the low %correct is the existence of a bound-
ary dose. Dose 4 has a high efficacy rate (0.4 compared to Emin = 0.3) and a toxicity 
rate that is close to being admissible (0.35 compared to Tmax = 0.3). Due to the small 
sample size at dose 4, the toxicity rate of 0.35 cannot be distinguished from 0.30 
and so CFBD often recommended dose 4 as a BED in the simulated trials. More 
specifically, dose 4 was often selected (29.4% of times) as the upper limit, U*, of the 
recommended interval of BEDs (see Table 3). If a toxicity rate of 0.35 is considered 
admissible, the percentage of trials that provided a correct recommendation would 
increase dramatically. It is observed that for all scenarios with BEDs (scenarios 2 
to 6), the confidence level of the recommended BEDs being acceptable as a group 
(%success) is different from the true percentage of the recommended BEDs being all 
acceptable (%correct). This issue can be fixed by increasing the sample size in the 
confirmation cohort. However, the precision of efficacy estimation is not of interest 
in phase I trials and this issue can be deferred to phase II trials.

In scenario 1, where there is no BED, the percentage of trials in which CFBD 
did not recommend any dose (100 − %found) is comparable to that of ZL (93.4% 
versus 97.4%), but the former tended to stop the trials much later than the latter (an 
average of 67.0 versus 30.4 patients). This is due to the stopping rule nmin.int = 60 
that is imposed on CFBD. If nmin.int = 10, the average sample size for CFBD drops to 
26.7 while the percentage of trials in which CFBD did not recommend an interval 
remained at the high level (94.6%).

Overall, CFBD performs wells in terms of the average sample size and the per-
centage of good recommendation, regardless of the shape of the underlying efficacy 
curve.

3.2 � Sensitivity Analysis

We conducted a sensitivity analysis to investigate the robustness of CFBD. There 
were two sets of simulations, one involving random errors and the other involv-
ing fixed errors in prior specifications. In the first set of simulations, we added 
random errors to the means of the Beta prior distributions, which were originally 
chosen to be equal to the true rates. Specifically, we set initial Beta mean toxicity 
and efficacy rate �0

T ,i
= (1 + �T ,i)PT ,i and �0

E,i
= (1 + �E,i)PE,i, where �T ,i and �E,i are 

uniformly distributed between -50% and 50% of the corresponding true rates. All 
other settings were as described in the previous section. Table  5 summarizes the 
results, from which we see that CFBD is extremely robust: the operating character-
istic of CFBD under misspecifications of parameter values, with random errors up 
to 50% of the true values, is nearly identical to that without misspecification. We 
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attribute this robustness to adequate sample size, relatively weak prior information, 
and the curve-free approach. Recall that the minimum sample size of 60 patients 
was selected based on the consideration of power and significance level of a test of 
H0:PE,I = Emin (Sect. 3.1). Because every admissible dose in and around the interval 
of BEDs, rather than only the BOD, were assigned to the next cohort of patients, a 
given sample of patients would be fairly uniformly distributed among the admissible 
doses, such that an average of 12 or more patients were assigned to each admissible 
dose. Also recall that the parameters of the prior distributions were chosen such that 
the prior information is as strong as that obtained from four patients, translates into 
one-third of the average number of patients assigned to each admissible dose. This 
allows the data to correctly update the misspecified priors. Finally, without a para-
metric assumption on the dose–toxicity and dose–efficacy relationships, the data can 
freely correct any errors in the priors.

To investigate the robustness of CFBD to extremer misspecifications, we modified 
the original toxicity and efficacy scenarios in the second set of simulations. The (prior) 
toxicity rates were shifted such that the prior MTD is different from the true MTD, and 
the (prior) efficacy rates were also shifted or modified such that the prior set of BEDs 
and the true set of BEDs are disjoint (Table 4). All other settings remained the same 
as described in Sect. 3.1. The results are summarized in Table 5. Although the priors 
were very different from the true scenario, and the prior MTD and BEDs were com-
pletely different from the actual values, CFBD still performed reasonably well. In sce-
nario 1, the only scenario with no BED, CFBD made the correct conclusion in 86.7% 

Table 4   Sensitivity analysis: fixed error priors with incorrect BED sets (disjoint with the true BED sets)

Dose level True rate (prior rate)

1 2 3 4 5

Scenario 1: no BED becomes one BED
 Toxicity 0.10 (0.05) 0.20 (0.10) 0.30 (0.20) 0.40 (0.30) 0.50 (0.40)
 Efficacy 0.05 (0.10) 0.10 (0.18) 0.18 (0.25) 0.25 (0.30) 0.30 (0.40)

Scenario 2: BED set {2,3} becomes {4}
 Toxicity 0.01 (0.09) 0.05 (0.15) 0.09 (0.20) 0.15 (0.30) 0.20 (0.40)
 Efficacy 0.10 (0.05) 0.30 (0.10) 0.40 (0.20) 0.20 (0.30) 0.05 (0.40)

Scenario 3: BED set {1,2} becomes {3}
 Toxicity 0.02 (0.06) 0.06 (0.12) 0.12 (0.30) 0.30 (0.50) 0.50 (0.60)
 Efficacy 0.30 (0.05) 0.40 (0.10) 0.20 (0.30) 0.10 (0.40) 0.05 (0.20)

Scenario 4: BED set {2,3,4} becomes {1}
 Toxicity 0.02 (0.12) 0.06 (0.35) 0.12 (0.50) 0.30 (0.55) 0.50 (0.60)
 Efficacy 0.10 (0.30) 0.30 (0.30) 0.30 (0.30) 0.30 (0.30) 0.30 (0.10)

Scenario 5: BED set {2,3} becomes {4}
 Toxicity 0.10 (0.05) 0.20 (0.10) 0.25 (0.20) 0.40 (0.25) 0.50 (0.40)
 Efficacy 0.20 (0.20) 0.40 (0.20) 0.40 (0.20) 0.40 (0.40) 0.40 (0.40)

Scenario 6: BED set {3} becomes {2}
 Toxicity 0.05 (0.10) 0.10 (0.20) 0.20 (0.35) 0.35 (0.50) 0.50 (0.55)
 Efficacy 0.05 (0.20) 0.20 (0.30) 0.30 (0.40) 0.40 (0.50) 0.50 (0.55)
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of simulated trials (100 − %found). For the scenarios with BEDs, CFBD was able to 
recommend one or more BEDs in 90% or more of the trials (%found) in scenarios 2 to 
5, with at least 83% accuracy rate (%correct). In scenario 6, where there is a boundary 
dose (dose 4), CFBD under misspecified priors actually made a good recommenda-
tion (%found * %correct) slightly more often than CFBD under correct priors (42% 
vs. 39%). The reason is, the misspecified priors overestimated both toxicity and effi-
cacy rates, which rendered the boundary dose inadmissible in more trials and thereby 
increased %correct, the percentage of trials that provided a correct recommendation 
within those trials recommending BEDs. Overall, in our simulation studies, CFBD still 
remains pretty robust with slightly larger sample size (less than 10 more on average) 
even with such greatly misspecified prior.

Table 5   Sensitivity analysis: 
average sample size ( 

−
n ), 

the percentage of trials that 
recommended any BEDs 
(%found), within the trial 
found BEDs, the percentage 
that recommended BEDs are 
acceptable (%correct) and the 
percentage that data suggest 
acceptable pooled efficacy 
(%success), and the percentages 
of in-trial toxicity (%tox) and 
efficacy (%eff) under correct 
priors, incorrect priors with 
random errors and with fixed 
errors

Prior type −
n %found %correct %success %tox %eff

Scenario 1: increasing efficacy curve, no BEDs
 Correct 67.0 6.6 0.0 17.7 20.6 11.3
 Random error 67.5 6.8 0.0 21.5 20.9 11.4
 Fixed error 72.4 13.3 0.0 24.5 23.5 13.1

Scenario 2: unimodal efficacy curve, two BEDs in middle
 Correct 90.7 99.2 96.7 93.7 10.2 26.2
 Random error 90.4 98.9 96.5 94.1 10.2 26.0
 Fixed error 94.9 97.5 95.7 93.9 10.1 26.9

Scenario 3: unimodal efficacy curve, two BEDs in front
 Correct 89.2 99.7 97.2 95.3 9.0 29.2
 Random error 89.2 99.5 97.4 95.4 9.3 29.1
 Fixed error 96.8 98.4 96.6 95.3 8.5 29.4

Scenario 4: step efficacy curve, three BEDs in middle
 Correct 99.4 96.9 98.3 81.3 14.1 27.5
 Random error 99.1 96.6 98.4 81.2 14.2 27.5
 Fixed error 98.8 90.3 97.5 73.3 8.3 25.6

Scenario 5: step efficacy curve, two BEDs in middle
 Correct 83.0 94.2 90.3 97.6 20.2 34.7
 Random error 83.0 94.6 91.4 96.9 20.1 34.6
 Fixed error 87.0 97.1 83.4 97.7 22.7 36.0

Scenario 6: increasing efficacy curve, one BED in middle
 Correct 92.1 80.5 48.5 75.1 18.3 26.3
 Random error 91.9 80.6 48.3 75.4 18.6 26.5
 Fixed error 91.1 70.3 60.2 62.6 15.0 22.9
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4 � A Demonstration Based On Simulations Using Real Trial Data

A completed phase I trial conducted at the University of California at Los Ange-
les Medical Center [13] was used to demonstrate an application of the proposed 
CFBD. The purpose of the trial is to recommend the BOD of several doses of 
celecoxib combined with erlotinib at a fixed dose in patients diagnosed with 
advanced non-small-cell lung cancer (NSCLC). Celecoxib is a cyclooxygenase-2 
(COX-2) inhibitor, which can regulate cellular proliferation, migration, and inva-
sion. On the other hand, erlotinib is a highly specific epidermal growth factor 
receptor (EGFR) tyrosine kinase inhibitor (TKI), which has been shown to inhibit 
the growth of human cancer cells. Several studies by 2006, for example Krysan 
et  al. [9], found that overexpression of COX-2 promotes EGFR-TKI resistance. 
The knowledge of COX-2 and EGFR in NSCLC and the interaction of their sig-
nalling pathways provided a unique way to inhibit tumour angiogenesis, invasion, 
and growth. Motivated by these findings, Reckamp et al. [13] conducted a com-
bined trial to establish a BOD within 200, 300, 400, 600 and 800 mg of celecoxib 
administered with 150  mg of erlotinb. The BOD was determined at the lowest 
dose level (of celecoxib) showing optimal biological activity, defined as a maxi-
mal decrease in the level of urinary prostaglandin E-M (PGE-M), where no dose-
limiting toxicity (DLT) occurred.

Twenty-two subjects were enrolled and 21 were evaluable for the determina-
tion of the BOD, toxicity and efficacy. There were no DLTs among the 21 sub-
jects and thus a low toxicity profile is assumed. The adopted toxicity profile was 
modified slightly based on scenario 2, the lowest toxicity scenario in Table 1 in 
our previous simulation studies. The efficacy outcome was defined as a decline in 
urinary PGE-M of > 72%, which is known to improve overall survival. Based on 
the data of three patients per dose level, the sample mean of the decline percent-
ages in urinary PGE-M at the five dose levels were around 9%, 8%, 65%, 84%, 
and 87%, respectively, with a sample standard deviation of less than 10%. In our 
illustration of CFBD, we assume the decline percentage follows a normal distri-
bution with the mean 10%, 15%, 70%, 80%, 80%, and a standard deviation of 15% 
for all dose levels. The enlarged standard deviation and slightly different means 
are intended to reflect the uncertainty due to the small sample. The true efficacy 
rate, a probability of more than 72% decline in the urinary PGE-M, can then be 
calculated. Furthermore, the prior efficacy rates are based on the Emax curve 
[11]. The efficacy profile together with the toxicity profile is reported in Table 6.

Different to Reckamp’s phase I/II trial, our method is designed for phase Ia/Ib 
trials and our goal is to find all BEDs, that is, all admissible doses with sufficient 
efficacy. Because the sample size of Reckamp’s trial was much smaller than that 
used in the simulation studies presented in Sect. 3.1.2, we do not recruit any con-
firmation cohorts in the current simulated trials. In addition, to reflect the lower 
toxicity and higher efficacy rates in the actual trial, we set the maximal tolerable 
DLT rate as Tmax = 0.20 and the minimal acceptable efficacy rate as Emin = 0.40. 
All other parameters remain the same as in Sect. 3. The summary statistics over 
5000 simulated trials are reported in Table 6. The results show that CFBD is able 
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to recommend at least one BED correctly 99.2% of time with an average of 61.8 
patients. Within all in-trial patients, 57.1% of them had efficacy outcomes (> 72% 
decline in urinary PGE-M) and only 9.4% of them experienced DLTs. About 91% 
of patients are allocated at BEDs (400, 600, or 800 mg).

As a further illustration, we include here the details of one simulated trial. In 
the first stage, patients are enrolled one by one and are assigned the lowest dose 
(200 mg). If no DLT occurred, the next patient (cohort) is assigned the next higher 
dose level. The dose level continues to increase until the occurrence of a DLT. Once 
a DLT is observed, the FLW algorithm [5] is adopted to find the MTD, which will 
be assigned to the next patient (cohort). In this simulated trial, there is no DLT in 
the first five patients when the dose level is gradually increased from 200 to 800 mg. 
After including the data (no DLTs) from these five patients, the FLW algorithm 
recommends 800 mg as the MTD, which is given to the next patient. Since sixth 
patient did not experience DLT either, the FLW algorithm continues to recommend 
800 mg as the MTD and so the seventh patient is treated at 800 mg. The procedure 
is repeated until the minimal sample size of stage one, 10, is reached. After the first 
10 patients, no DLT ever occurred, and so there is sufficient evidence to conclude 
that 800 mg is the MTD. Stage one is concluded and its statistics are reported in 
Table 7.

Table 6   Demo trial: the 
selection percentages of MTD, 
BED interval limits: L*, U*, 
and patient allocation for all 
doses; average sample size ( 

−
n ), 

percentages of none and good 
BED selection (%none, %good), 
in-trial toxicity and efficacy 
rates (%tox, %eff); MTD and 
BED values are in bold

−
n = 61.8; %good = 99.2; %none = 0.8; %tox = 9.4; %eff = 57.1

Dose level 200 mg 300 mg 400 mg 600 mg 800 mg

True toxicity 0.00 0.01 0.05 0.09 0.15
Prior toxicity 0.00 0.01 0.05 0.09 0.15
True efficacy 0.00 0.00 0.45 0.70 0.70
Prior efficacy 0.00 0.09 0.40 0.78 0.79
% of MTD 0.0 0.1 4.3 25.6 70.0
% of L* 0.0 0.0 21.4 74.9 2.9
% of U* 0.0 0.0 3.6 27.3 68.3
% of patients 1.8 7.5 25.7 28.4 36.6

Table 7   Demo trial: patient 
allocations and responses of one 
simulated trial

Dose level 200 mg 300 mg 400 mg 600 mg 800 mg

Stage 1: finding MTD; one patient per cohort
 Sample size 1 1 1 1 6
 No. of DLT 0 0 0 0 0
 No. of efficacy 0 0 0 1 5

Stage 2: finding BEDs; several patients per cohort
 Sample size 0 0 17 17 17
 No. of DLT 0 0 2 0 3
 No. of efficacy 0 0 9 14 13
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The trial now moves to the second stage to identify the BEDs. As described in 
Sect. 2.3, based on the prior information and data from stage one, the set of BEDs is 
found to be {600 mg, 800 mg} and thus the next cohort is treated at the BEDs and 
adjacently admissible doses: {400 mg, 600 mg, 800 mg}, with one patient per dose. 
After collecting the data from this cohort of 3 patients, the BED is updated and it 
remains the same. Therefore, the same doses (400, 600, and 800 mg) are assigned to 
the next cohort of three patients. This procedure is repeated until the minimal sam-
ple size of a trial, 60, is reached. The statistics of stage two are reported in Table 7. 
The BEDs turned out to be the same for all 17 cohorts in stage two in this particular 
simulated trial, but it is not the case in other simulated trials. After collecting data 
from 61 patients (10 from stage one and 17 × 3 = 51 from stage two), the evidence 
is sufficiently strong to conclude that 600 mg, 800 mg are the BEDs (see Sect. 2.3 
for details). The trial is terminated before reaching the maximum sample size and 
recommends 600 mg and 800 mg for further phase II investigation.

5 � Conclusion and Discussion

In this paper, we propose a curve-free Bayesian design for identifying the BEDs, 
assuming only a monotonic dose–toxicity relationship and a unimodal or plateau 
dose–efficacy relationship. We avoid the complexity of joint modelling of the toxic-
ity–efficacy association by utilizing the marginal distribution approach. In addition 
to the identification of BEDs, a confirmation cohort is recruited to provide a better 
estimate of the efficacy/toxicity rates of the BEDs to facilitate the selection of a rec-
ommended dose to phase II trials.

Our design is motivated by the following considerations. First of all, parametric 
models are not necessarily better for small samples, which are typical in early phase 
clinical trials. Although parametric models provide increased power over nonpara-
metric models, they are usually not robust in that small departures from an assumed 
model can have drastic effects on the performance of the related statistical inference 
procedures. On the other hand, nonparametric models, while robust, lack power in 
small samples to provide meaningful results. To achieve a balance between power 
and robustness, we adopt the curve-free approach: instead of assuming a parametric 
dose–response relationship, we assume that the dose-toxicity curve is monotonically 
increasing and the dose-efficacy curve is unimodal. Our simulation studies show that 
our design is robust under these weaker assumptions.

Secondly, if identifying the BEDs is of primary interest, it may not be nec-
essary to model the association between toxicity and efficacy outcomes. With 
limited information on the agent under study in early phase clinical trials, the 
challenge of specifying a prior on the toxicity–efficacy association will likely dis-
courage the use of Bayesian designs. Therefore, we adopt a simpler phase Ia/Ib 
approach that dispense with the modelling of the toxicity–efficacy association. 
The phase Ia stage of our design focuses on finding the MTD and toxicity is the 
primary outcome. Upon identifying the MTD, the phase Ib stage is initiated to 
search for the BEDs among doses not exceeding the MTD, and efficacy becomes 
the primary outcome. A disadvantage of our phase Ia/Ib approach is that, without 
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utilizing the association between the toxicity and efficacy outcomes, a larger sam-
ple size may be required. This can be mitigated by implementing an algorithm 
that is capable of locating the MTD efficiently and accurately in the phase Ia 
stage, as was demonstrated in our simulation studies.

Thirdly, when identifying the BEDs is the goal, grouping doses could be a 
good idea since pooling the samples should lead to increased precision of esti-
mated efficacy rate. Based on these considerations, we built the skeleton of 
CFBD.

Finally, the careful selection of prior distribution and its parameters fill the mus-
cles of the CFBD. The well-known beta priors are chosen for toxicity/efficacy rates 
so that people can easily understand the models. In addition, the model-free efficacy 
curve and less-informative priors can increase the robustness of CFBD. Errors in the 
initial priors can be fixed quickly. Our simulation studies show the robustness of the 
proposed CFBD.

Several designs have been proposed for seamless phase I/II trials. One difference 
between phase Ia/Ib and phase I/II trials is that phase I/II trials requires statistical 
inferences on the efficacy of the selected dose, whereas phase Ia/Ib trials only rec-
ommend a likely dose range that has initial signals of biological activities beyond 
a target level; that is, a phase Ia/Ib trial is not required to establish the efficacy of a 
selected dose. The proposed CFBD in this paper is for one-agent phase Ia/Ib trials. 
Yet it can be easily extended to two-agent combination trials, under the assump-
tions that the dose-toxicity surface is marginally monotonic non-decreasing and the 
dose–efficacy surface is unimodal. In recent years, several dose-finding algorithms 
have been proposed to identify the maximum tolerated combination; however, 
adopting an efficient dose-finding algorithm in the first stage, such as that proposed 
by Lee et al. [10], is crucial to the success of the extension. To identify the set of 
best efficacious combinations, the dose–efficacy surface can be modelled using the 
equivalent of a step function in two-dimensional space and a similar utility function.
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