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Abstract
Immuno-oncology is a buoyant field of research, with recently developed drugs 
showing unprecedented response rates and/or a hope for a meaningful prolonga-
tion of the overall survival of some patients. These promising clinical developments 
have also pointed to the need of adapting statistical methods to best describe and test 
for treatment effects in randomized clinical trials. We review adaptations to tumor 
response and progression criteria for immune therapies. Survival may be the end-
point of choice for clinical trials in some tumor types, and the search for surrogate 
endpoints is likely to continue to try and reduce the duration and size of clinical 
trials. In  situations for which hazards are likely to be non-proportional, weighted 
logrank tests may be preferred as they have substantially more power to detect 
late separation of survival curves. Alternatively, there is currently much interest in 
accelerated failure time models, and in capturing treatment effect by the difference 
in restricted mean survival times between randomized groups. Finally, generalized 
pairwise comparisons offer much promise in the field of immuno-oncology, both to 
detect late emerging treatment effects and as a general approach to personalize treat-
ment choices through a benefit/risk approach.
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1  Introduction

Immuno-oncology (IO), which embodies the confluence of tumor immunology 
and medical oncology, is a contemporary approach to cancer treatment using an 
old idea [1]. Immunotherapy (IT), the attempt to elicit the immune system to fight 
cancer, dates back at least 120 years, but until very recently, there had been lit-
tle impact on clinical practice. IT comprises a variety of treatments that have as 
primary mechanism of action the generation of an immune response against can-
cer [2–4]. Such treatments include cytokines (e.g., interferons and interleukins), 
checkpoint inhibitors (CPIs) and other types of antibodies with immunological 
targets, genetically engineered T-cell therapies and other cell-based products, 
small molecules, oncolytic viruses, and different types of vaccines [2–5]. Some 
of these agents have led to unprecedented responses in clinical settings marked by 
resistance to conventional treatments, and improvements in overall survival (OS) 
have been very frequently observed in phase 3 trials of CPIs [2]. However, the 
dynamics of tumor responses, disease progression, and long-term gains of several 
IT agents, particularly CPIs, have called into question some of the conventional 
methods of assessing treatment benefit in oncology [2, 6–11]. In this article, we 
provide an overview of the conventional and novel statistical methods for assess-
ing treatment benefit in IO clinical trials. Our focus is on advanced disease, the 
setting in which most of the current evidence on IT has been generated. We begin 
by considering the direct effect of IT on tumors, discuss the translation of these 
effects into patient benefit, and end by exploring measures of treatment effect that 
may capture such benefit.

2 � Tumor Responses as the First Step Toward Benefit

2.1 � Mechanistic Considerations

As a general rule, a measurable antitumor effect is a sine qua non of effective 
treatments in oncology. Unlike chemotherapy and targeted therapy, IT works indi-
rectly, through the generation of an immune response against tumors. The effect 
of IT comprises a continuum of biological phenomena that involve both innate 
and adaptive immune mechanisms, as well as cellular and humoral immune 
responses [2, 12]. Of importance, tumor infiltration by cytotoxic T lymphocytes 
and other effector immune cells is one of the prerequisites for the antitumor activ-
ity of IT [13–15]. This activity is in turn countered by several immune suppres-
sion mechanisms acting in the tumor microenvironment [12, 13]. The dynamic 
interactions between the immune system and the tumor, and the varying nature 
of such interactions over time, can be described using the concept of immunoed-
iting [15]. According to this view, there are three states of interaction between 
the immune system and the tumor: elimination, equilibrium, and escape. Interest-
ingly, a parallel has been suggested between these three states and the clinical 
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observations of response, stable disease and disease progression after IT [2]. 
Thus, the knowledge about the mechanisms involved in response and resistance 
to IT can be used to some extent to explain the dynamics of tumor shrinkage and 
growth during treatment.

2.2 � Patterns of Response

The experience to date suggests that tumor responses in most patients follow the usual 
pattern seen with other treatment modalities, with objective response rates to CPIs that 
vary between close to zero and slightly over 60% according to disease setting [16]. 
However, unusual response patterns have emerged with the use of IT, and the mecha-
nistic aspects mentioned above may underlie some of these patterns. For example, the 
use of CPIs is associated with a response profile that is not adequately captured by 
conventional response assessment criteria, such as the Response Evaluation Criteria in 
Solid Tumors (RECIST) [2, 7, 17]. The three unusual patterns of response described to 
date are mixed responses, pseudoprogression, and hyperprogression [2, 7]. The hetero-
geneity of metastatic cancers, which also characterizes their immunological landscape, 
probably underlies cases in which a mixed clinical picture emerges after treatment, with 
some lesions shrinking while others remain stable or grow [2, 7, 18]. The frequency 
and prognostic significance of such mixed responses are still unclear. On the other 
hand, in 2% to 9% of patients treated with a CPI, an initial tumor growth if followed 
by bona fide responses, a phenomenon now termed pseudoprogression [7, 17, 19]. In 
some of these cases, lymphocytic infiltration of tumors is probably responsible for the 
initial increase in volume of a lesion destined to shrink, but a delayed action of IT is 
also postulated as an underlying mechanism in some cases [7, 10, 19]. In advanced 
melanoma, greater increase in CD8+ cells in serial tumor samples during therapy cor-
related with a greater tumor size decrease on imaging [20]. The role of these postulated 
mechanisms is corroborated by several studies showing that pseudoprogression is asso-
ciated with favorable outcomes when compared with RECIST-defined progressions, 
especially in advanced melanoma [19, 21, 22]. Both mixed responses and the suspicion 
of pseudoprogression represent great challenges to patients and physicians, as a deci-
sion needs to be made about treatment continuation. This is not the case with the more 
recently described phenomenon of hyperprogression, whereby some patients display 
very early signs of unquestionable disease progression after treatment with IT [7, 23]. 
Although definitions have varied among studies, hyperprogression has been associated 
with unfavorable outcomes [7, 23–25]. Moreover, it has been postulated that hyperpro-
gression may underlie the early detriment from the use of CPIs in some phase 3 trials 
[7]. Despite this hypothesis, a putative immunological mechanism for hyperprogression 
remains to be elucidated, and controversy still exists on whether the phenomenon is 
particular to IT or reflects the natural history of some tumors.

2.3 � Response Criteria

Under RECIST [26] and its predecessor guideline, proposed by the World Health 
Organization (WHO) in 1979 [27], tumor growth beyond a certain magnitude or the 
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appearance of a new lesion indicated progressive disease (PD), synonymous with treat-
ment failure in the chemotherapy era. Early in the development of CPIs, the unusual 
response patterns raised concerns about the adequacy of previous guidelines in this set-
ting [10, 19]. Of particular concern was pseudoprogression, given the observation of 
prolonged periods of stable disease (SD) or event complete (CR) or partial response 
(PR) after an initial increase in tumor burden. These concerns led to an international 
collaboration of experts and the publication, in 2009, of a new set of guidelines for 
use with immunotherapy, which were developed based on radiographic images from 
patients with advanced melanoma treated with ipilimumab [19] and were later applied 
to another CPI used in this setting, pembrolizumab [22]. These immune-related 
response criteria (irRC), based on the WHO method of bidimensional measurement, 
introduced the concept of “total tumor burden” and the need to confirm PD. Since 
2009, three additional sets of response criteria have been published [21, 28, 29]. The 
so-called immune-related RECIST combine some features of irRC (total tumor burden 
and the need to confirm PD) and of RECIST, the latter because only unidimensional 
measurements are used [28]. The RECIST group developed immune RECIST (iRE-
CIST), which differs from previous guidelines in that (1) PD that is not confirmed leads 
to “resetting of the bar” for the assessment of progression, and (2) new lesions are not 
incorporated into the total tumor burden, but rather lead to a new set of lesions assessed 
in parallel to the original ones [29]. The more recently published immune-modified 
RECIST have been developed on the basis of imaging studies from patients with non-
small-cell lung cancer and urothelial carcinoma treated with atezolizumab, yet another 
CPI, and is generally similar to iRECIST [21]. The application of these criteria is costly 
and time-consuming, especially in view of the fact that they increase the final overall 
response rate by 1% to 2% in many cases, with an additional 10% of patients overall 
who would have RECIST 1.1-defined PD being characterized as having SD [19, 21, 
30, 31]. On the other hand, some retrospective studies have shown higher percentages 
of patients moving from RECIST 1.1-defined PD to SD or an objective response when 
treated beyond progression, especially in advanced melanoma and renal-cell carcinoma 
[32–34]. One important criticism of some of these results is the fact that IT-related 
response criteria have been developed in the context of clinical trials in which physi-
cians could make a decision to continue IT in patients with an apparent clinical benefit 
despite evidence of progression. This subjective decision may have introduced bias due 
to the separation of patients with more aggressive disease from those with more indo-
lent disease [11, 30].

Given the limitations of imaging assessment in IO, an interesting research avenue 
involves pathological assessment of responses in an attempt to correlate biopsy findings 
with those from radiographic assessment. In recent studies, pathological findings have 
shown promise as predictors of objective response, as well as of long-term benefit from 
IT, both in the neoadjuvant [35] and in the advanced setting [36].
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3 � Translation of Responses into Prolonged benefit

3.1 � Response Duration and Its Assessment

Although objective responses are a desirable first step toward deriving favorable 
results from treatment, and in some cases the means to obtain improvements in 
symptoms, ultimately there is an expectation that responses will be durable and 
will bring long-term benefit. In fact, there is general empirical evidence for that, 
since anticancer agents receiving accelerated approval based on tumor responses 
often have their benefit confirmed later on [37]. On the other hand, prolonged dis-
ease stabilization can also be seen as an important benefit from IT [2, 3]. Moreo-
ver, long-term survivors may have had SD or even PD as their best responses to 
IT [38, 39], and in some patients responses have improved over time even without 
subsequent treatment, especially among those with melanoma [39, 40].

Prolonged responses appear to be more specific to IT than to other treatment 
types. Early in the development of cancer vaccines and CPIs, it became apparent 
that these agents were associated with responses lasting several weeks or months 
in settings for which this was not typically the case with chemotherapy [41]. Like-
wise, prolonged responses often occur when chimeric antigen receptor T cells are 
used in hematological malignancies [42]. Some IT agents have received a first 
approval based on responses in early-phase trials, and regulators have expressed 
interest in expanding our understanding of response-based metrics and their asso-
ciation with clinical benefit [43]. Talimogene laherparepvec, an oncolytic viral 
therapy, was approved after a phase 3 trial demonstrated improvements in durable 
response rate, defined as the percentage of patients with CR or PR maintained 
continuously for at least 6 months [44].

Given the above considerations, the assessment of response duration is a laud-
able goal toward better understanding the benefit from IT. Such an assessment is 
straightforward when made descriptively, but problematic when there is a com-
parative intent. The comparison of treatments in terms of response duration is 
likely biased because only responding patients are considered, with the groups 
under comparison being defined by a post-randomization feature. Interestingly, 
the treatment producing more responses will usually have responding patients of 
worse prognosis, and the bias may in fact go against the superior treatment [45]. 
Although modeling approaches have been proposed to avoid this analysis-by-
responder bias [46], simpler procedures proposed recently may lead to increased 
use of analyses of response duration, at least in an exploratory fashion [47, 48].

The first of these procedures, due to Korn and colleagues, consists in generat-
ing more comparable patient subsets by removing responding patients with the 
least tumor shrinkage in the treatment group with more responders or by add-
ing non-responding patients with the most tumor shrinkage to the group with 
fewer responders, in both cases maintaining similar proportions of responders 
in both groups [48]. Huang and colleagues have proposed a method that takes 
advantage of the additive properties of restricted mean survival times (RMSTs), 
which are discussed in more detail below [47]. The proposed method consists in 
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ascribing a response duration to each patient in a trial, thus avoiding the exclu-
sion of non-responding patients from analysis. The method entails the construc-
tion of Kaplan–Meier curves (for each arm separately) for a composite endpoint 
defined as the time elapsed between treatment initiation and response, progres-
sion, or death, whichever comes first. Kaplan–Meier curves for each arm are also 
constructed for progression-free survival (PFS) in the usual manner. The RMST 
for this composite endpoint is then computed for each arm and subtracted from 
the RMST for the corresponding PFS curve, yielding the restricted mean duration 
of response for each treatment arm. As a result of this procedure, non-responding 
patients will have a response duration of zero, because the same event (of pro-
gression or death) will be used for these patients to indicate the occurrence of the 
composite endpoint and of PFS.

3.2 � Quantifying the Association Between Responses and Long‑Term Benefit

With chemotherapy and targeted therapy, there is often a strong association between 
objective responses and PFS and between the treatment effect on these endpoints 
[49, 50]. On the other hand, the association between responses and OS has been 
more modest [49–51]. Several authors have attempted to quantify the association 
between response to IT and long-term endpoints [16, 52, 53]. Unfortunately, none 
of these studies on IT used individual-patient data; nevertheless, a weak associa-
tion was generally found between objective response rates and both PFS and OS, 
as well as between the treatment effects on response rates and these long-term end-
points. As a possible exception, a modest association was found between the treat-
ment effects on response rate and on PFS in one study (R2 = 0.47; 95% confidence 
interval 0.03–0.77) [53]. To our knowledge, no similar evidence has yet been gener-
ated for the duration of response as a potential surrogate for PFS or OS. The reason 
for the weak association between responses and PFS with IT is not clear. In addition 
to the limitations of analyzing aggregated data, these results may reflect the play of 
chance, real biological phenomena, and issues related to the assessment of responses 
and PFS. For example, the application of immune-related criteria to the assessment 
of PFS has only partially been explored [21], and phase 3 trials of CPIs have based 
such an assessment on RECIST 1.1 methods. Whether different associations could 
exist using response and PFS definitions of the immune-related criteria is a mat-
ter of speculation. The assessment of PFS is addressed explicitly by iRECIST and 
imRECIST, both of which specifying the need to confirm progressions [21, 29]. 
Thus, further work is needed to assess the relationship between rates and duration of 
responses and long-term outcomes in IO.
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4 � Assessing the Ultimate Benefit for Patients

4.1 � The Revival of Overall Survival as Primary Endpoint

The prospect of curing metastatic cancer has never been better for patients [2], and 
unprecedented 5-year survival rates have been reported in some settings [38, 39, 
54]. Prolongation of OS is a realistic goal in IO. In fact, OS is currently the preferred 
endpoint for phase 3 trials in IO, a lesson learned during the development of ipili-
mumab and confirmed in later trials [55, 56]. This is in contrast to chemotherapy 
and targeted therapy, settings in which a decade-long debate prevailed between pro-
ponents of OS and proponents of PFS as the primary endpoint in phase 3 trials. 
Given the limitations of OS, PFS eventually became the preferred primary endpoint 
in several settings in the era of chemotherapy and targeted therapy [57]. With these 
modalities, the effects of treatment coincide with its administration; however, IT 
behaves differently in that regard, given its putative delayed effects. Confirming the 
initial impression about a discordance between PFS and OS in IO [58], several phase 
3 trials have shown gains in OS without an accompanying significant gain in PFS 
[59–64], an infrequent observation in the previous era. An initial increase in tumor 
volume from immune infiltration, delayed antitumor activity, or a sustained antitu-
mor effect beyond progression have been postulated to explain that discordance [64]. 
Moreover, several meta-analyses based on published data have shown weak associa-
tions between PFS and OS in IO [16, 52, 53, 65]. Thus, in the remainder of this arti-
cle we restrict the discussion to the assessment of OS in IO. The reader should note 
that we leave aside considerations related to predictive biomarkers, even though they 
bear implication in some of the design and analysis issues discussed. Moreover, the 
reader should consider that the development of IO will probably lead to increasing 
frequency of crossover to IT after disease progression, recapitulating the challenges 
observed with chemotherapy and targeted therapy.

4.2 � Non‑proportional Hazards of Survival

An early observation from comparative trials of CPIs has been the unusual behav-
ior of Kaplan–Meier curves, especially with regard to the presence of delayed 
treatment effects on OS and of an apparent plateau in the tail of the curves. Later 
on, a third unusual phenomenon became apparent, albeit less frequently: the 
crossing of survival curves in some trials [60]. The mechanism of action of IT has 
been summoned as one of the potential explanations for delayed separation of OS 
curves, a phenomenon that is frequent [55, 58, 61, 64, 66, 67] but not universal 
[63, 68]. It is conceivable that an early detriment from IT, manifested as cross-
ing of the curves a few months after randomization, also results from delayed 
effects, although hyperprogression may also play a role [7]. Likewise, it is con-
ceivable that crossing curves reflect the existence of subpopulations with differ-
ential effects from treatment, as seen with targeted therapy [69]. Finally, the flat-
tening of OS curves, which can be seen as evidence for a cure fraction [8], may 
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also indicate the natural history of the disease in patients with indolent tumors 
[39]. All these observations suggest that design and analysis models assuming the 
proportionality of hazards are less than optimal for trials in IO, especially when 
comparisons are made with treatments from other classes [10, 11]. Among other 
problems, the presence of non-proportional hazards may lead to loss of statistical 
power [8], incorrect conclusions from interim analyses [70, 71], and difficulties 
in understanding and communicating treatment benefit [72–74]. Although sev-
eral solutions to these problems have been proposed in the literature, their uptake 
appears to have been low in terms of both design and analysis of phase 3 trials 
in IO [6, 11, 56, 70, 73, 75–77]. Table 1 displays the most frequently proposed 
solutions to deal with the issue of loss of statistical power and interpretation of 
treatment benefit. The different methods have advantages and disadvantages sum-
marized in Table 1; all of them share a lack of regulatory precedent as compared 
with the decades of use of the logrank test. In the following, we briefly discuss 
methods that appear to have the greatest potential for assessing treatment benefit 
in a more meaningful way than with conventional methods based on the hazard 
ratio (HR) estimated from Cox models.

4.3 � Weighted Logrank Tests

The proportional hazards assumption is arguably too strong in many practical situa-
tions. The violation of this assumption is frequent in oncology, and even more so in 
phase 3 trials in IO, where up to 50% present evidence of non-proportionality [78]. 
The omission of prognostic covariates from the proportional hazards model, many 
of which are often unknown, induces time dependence of the HR for coefficients in 
the model, making it difficult to distinguish the effect from a true time-dependent 
coefficient even in randomized trials; moreover, this bias is accentuated by increas-
ing censoring [79].

The estimation and testing of treatment effects in the presence of non-propor-
tional hazards has been a topic of research for a long time, but proportional haz-
ards models have remained the standard approach in oncology because deviations 
from proportionality were uncommon and/or unknown in advance. With the advent 
of immunotherapies, the standard approach is increasingly being questioned, and 
weighted logrank tests have received renewed attention. Harrington and Fleming 
[80] proposed a two-parameter family of weighted logrank tests that can accommo-
date a large number of situations, in particular delayed treatment effects. Specifi-
cally, for I ordered survival times t1, t2, …, tI, the weighted logrank test statistic is

where Oi and Ei represent, respectively, the observed and expected numbers of 
deaths at the ith event time, ti, and w(ti) a weight at time ti. The Gρ,γ family defines 
the weight function as

Z =

∑I

i=1
w
�
ti
��
Oi − Ei

�
�∑I

i=1
w
�
ti
�2
var

�
Oi − Ei
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where Ŝ
(
ti
)
 is an estimate of the overall survival function at time ti and ρ and γ are 

shape parameters for the weight function. The unweighted logrank test is obtained 
for ρ = γ = 0 (G0,0), the Peto–Prentice test for ρ = 1 and γ = 0 (G1,0). The test 
gives more weight to later time points (and is thus preferable for delayed treatment 
effects) when ρ = 0 and γ = 1 (G0,1) [81]. Zucker and Lakatos proposed weights 
that achieve maximum efficiency when there is a delayed treatment effect [82]. Yang 
and Prentice extended these ideas by using adaptive weights that ensure good power 
over a range of possible alternative hypotheses [83]. More recently, Magirr and Bur-
man proposed “modestly weighted” logrank tests [84]. As an example, among many 
others, of delayed treatment benefit, the phase 3 trial KEYNOTE-40 investigated 
pembrolizumab versus chemotherapy in patients with recurrent or metastatic head 
and neck carcinoma [85]. In this trial, the standard logrank test of the difference in 
OS, the primary endpoint, produced only a marginally significant one-sided p value 
of 0.016. However, a delayed separation of the survival curves after 5  months of 
follow-up was observed. As the delayed treatment effect could have been reasonably 
expected based on the mechanisms of action of the experimental treatment and its 
competitor, a weighted logrank test might have been chosen in order to improve the 
power of the comparison [86].

A weighted logrank statistic may maximize statistical power, but the interpreta-
tion of the corresponding treatment effect is far from straightforward—in contrast to 
the hazard ratio that quantifies a reduction in the instantaneous risk of death at any 
time; the ease of interpretation of the treatment parameter in a proportional hazards 
model is no small reason for its enduring success, regardless of deviations from the 
underlying assumption [87].

4.4 � Accelerated Failure Time Models

Interpretation of treatment effects on the hazard scale is not intuitive, as it is not 
straightforward to translate the information about the mortality hazard reduction, 
conveyed by the estimated value of HR, into a difference of the survival time. The 
latter scale is therefore more natural. Accelerated failure–time (AFT) models assume 
that the effect of treatment manifests itself in shrinking or extending the time scale. 
The model leads to a simple and natural interpretation of the treatment effect, which 
can be quantified in terms of the ratio of the mean survival time for the experimental 
and control treatment.

The AFT model is, essentially, a linear model on the logarithmic time scale, very 
similar to the classical linear regression model. Symbolically, the model can be 
expressed as follows:

where ti is the observed time to event for the ith patient, x1i, …, xki are the values of 
k explanatory variables describing the patient, and εi is the residual random error 
with mean equal to 0. If one assumes that εi is normally distributed, the AFT model 

w
(
ti
)
= Ŝ

(
ti
)𝜌
(1 − Ŝ

(
ti
)
)𝛾

ln
(
ti
)
= �0 + �1x1,i + �2x2,i +⋯ + �kxk,i + �i,
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becomes the familiar linear regression model for the logarithm of survival time. 
Equivalently, the model can be expressed as follows:

According to this formulation, the effect of a unit change in variable xj amounts 
to multiplying the time corresponding to the residual error, e�i , by a factor equal to 
e�j . Hence, e�j can be naturally interpreted as the ratio of the mean survival time cor-
responding to xj + 1 and xj.

The AFT model does not require the proportional hazards assumption and can 
be used in the case of proportional and non-proportional hazards. Hence, it is an 
important alternative to the proportional hazards model. It has been observed that, 
for instance, the log-normal AFT model, in which residual error εi is assumed to be 
normally distributed and which is a non-proportional hazard model, is more suitable 
than the proportional hazard model for analyzing disease-free survival in colon can-
cer [88] or disease-free interval and disease-specific survival in breast cancer [89]. 
In glioblastoma, the log–logistic AFT model, in which residual error εi is assumed 
to have a logistic distribution and which is a non-proportional hazard model, was 
found to perform best with respect to prediction of patient survival time [90].

The main practical issue, often raised in the context of the use of the AFT model, 
is that the estimation of the model is usually carried out by assuming a paramet-
ric form of the distribution of the survival time, which in most cases is unknown. 
Parametric models can be used in situations where survival curves are smooth and 
can be approximated well with models with few parameters [91, 92]. Such approach 
is implemented in commercial statistical software such as SAS (PROC LIFEREG) 
and STATA (streg command) and in open-source software such as R (for instance, 
in function survreg in the survival package, and in function psm in the rms pack-
age). However, it is possible to estimate the model without the specification of the 
survival–time distribution. The semiparametric AFT model has been around since 
the end of 1970s [93, 94]. The main challenge, limiting the use of the model, was 
the lack of efficient and reliable computing algorithms. However, in the last decade, 
this has fundamentally changed. While the new computing algorithms have not yet 
been included in commercial statistical software, they are available in open-source 
software R [95]. These developments open the door to more widespread application 
of the semiparametric AFT model.

In the context of IT trials, it is worth noting that the AFT model, as the propor-
tional hazards model, is not valid in the situation of a delayed treatment effect, when 
the survival functions for the experimental and control treatments initially overlap or 
cross. In that case, the use of the restricted mean survival time might be considered, 
as we discuss next.

4.5 � Restricted Mean Survival Times

Ideally, one would prefer to express the treatment effect in terms of a difference in 
the mean survival time. If the survival curve reaches 0 (i.e., if the single longest 
observed time is an event), the mean survival can be estimated nonparametrically 

ti = e�i e�0+�1x1,i+�2x2,i+⋯+�kxk,i .
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by computing the area under the survival curve. However, this is almost never the 
case in practice. It is nevertheless possible to estimate the RMST by restricting (or 
truncating) the follow-up to a given time t and computing the area under the survival 
curve only up to that point [96–99]. The landmark time t can be chosen arbitrar-
ily, but it is usually taken equal to the minimum of the largest times in all treat-
ment groups. Once the restricted means in both groups are computed, they may be 
contrasted by subtraction. Importantly, the use and interpretation of the difference 
of RMST does not depend on whether hazards are proportional or not [100]. The 
RMST can be applied even in the extreme cases of non-proportional hazards, when 
the survival curves initially overlap or when they cross, as can be observed in IT tri-
als [73]. The difference in RMST measures the mean gain in life expectancy through 
time t associated with the superior treatment. The interpretation of RMST may not 
be trivial, as it depends on the duration of follow-up, which dictates the choice of 
the landmark time t. Moreover, a mean survival time may not be meaningful to a 
patient, in so far as a month of survival gained in the near future (for a patient of 
poorer prognosis) may be quite different from a month of survival gained in a distant 
future (for a patient of better prognosis).

The difference in RMST can be tested for significance, and it is worth noting 
that the power of the test depends on the pattern of the difference and the chosen 
landmark time, among other factors [76, 101]. Hence, even in the situation of non-
proportional hazards, the power of the test may not necessarily be larger than the 
power of the logrank test. Luo et al discuss the design and monitoring of trials using 
RMST [102]. Significance tests for RMST are available in the R software packages 
survRM2 and survRM2adapt. Package SSRMST implements a method to compute 
sample size for a clinical trial with RMST used as an endpoint.

4.6 � Combination Tests

Some authors have proposed to combine several tests in order to maximize power. 
For instance, if one has no idea whether the effect of treatment will be early or late, 
a combination test can use Z = max(|Z0,0|, |Z1,0|, |Z0,1|), where Z0,0, Z1,0, and Z0,1 are 
the statistics obtained from the G0,0, G1,0, and G0,1 weighted logrank tests introduced 
above [103, 104]. Another combination test uses both weighted logrank tests and 
weighted Kaplan–Meier tests, which may be more sensitive than rank tests to differ-
ences in survival estimates [105, 106]. Yet another combination test uses a logrank 
test that would perform best under proportional hazards, and a permutation test of 
the difference in restricted mean survival times that might perform better in other 
situations [107]. These combination tests require small sample size increases as 
compared with the logrank, but they protect the power of the test against departures 
from proportional hazards [108]. Moreover, combination tests do not require pre-
specification of a unique test (such as a weighted logrank test) which might or might 
not turn out to be appropriate for the situation at hand.

An example of this strategy is given by the analysis of the IM211 trial evaluating 
atezolizumab versus chemotherapy in patients with advanced or metastatic urothe-
lial cancer. The comparison of OS in the PD-L1-positive population reported in the 
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publication showed a non-significant treatment effect. In this trial, survival curves 
cross between 4 and 5 months and show a numeric benefit in favor of atezolizumab 
in the long-term follow-up [109]. Roychoudhury et al. have evaluated the use of the 
MaxCombo test, a combined test based on multiple Fleming–Harrington weighted 
logrank tests used adaptively based on underlying data. The MaxCombo chose the 
G0,1 with the minimum p value, and the test was highly statistically significant (p = 
0.005). It strongly suggests that the use of this test strategy increased significantly 
the power of the comparison in this scenario of crossing survival [110].

4.7 � Generalized Pairwise Comparisons (GPC) for Delayed Treatment Effects

Generalized pairwise comparisons (GPC) have recently been proposed to address 
situations of non-proportional hazards, in particular when the treatment effect is 
likely to manifest itself after some time. GPC extend the Wilcoxon–Mann–Whitney 
test to compare two samples, e.g., two randomized groups in a clinical trial. The out-
come of interest is continuous and captured by a variable denoted X (taking values 
x1, x2, … xn) in the treatment group and denoted Y, taking values y1, y2, … ym in the 
control group. Consider all possible pairs (xi, yj) consisting of one observation from 
the treatment group and one observation from the control group. The U-statistic for 
the Wilcoxon–Mann–Whitney test is given by

where

The Wilcoxon–Mann–Whitney test was extended by Gehan to potentially cen-
sored outcomes. GPC generalize the test further to any situation in which every pair 
can be classified as a “win” (if the individual in the treated group has a better out-
come than the individual in the control group), as a “loss” (if the individual in the 
treated group has a worse outcome than the individual in the control group), or as a 
“tie” (if there is no difference in outcome between the two individuals) [111, 112]. 
Hence, the U-statistic is now calculated using generalized pairwise scores:

This generalized U-statistic, called the net benefit, is the difference between the 
probability of a win and the probability of a loss. The ratio between the probability 
of a win and the probability of a loss is called the win ratio [112].

U =
1

n ⋅ m

n∑
i=1

m∑
j=1

uij

uij =

⎧
⎪⎨⎪⎩

+1 if xi > yj
−1 if xi < yj
0 if xi = yj

uij =

⎧
⎪⎨⎪⎩

+1 if pair is a win

−1 if pair is a loss

0 if pair is a tie
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In the analysis of times to event such as survival time, a win (loss) could be 
declared if the difference in survival exceeded a threshold considered to be clini-
cally meaningful, say m [111, 113]. For treatments that have a short-lived effect, the 
net benefit will tend to decrease as a function of m, while for treatments that have a 
delayed effect, the net benefit will tend to remain stable or to increase as a function 
of m [114]. In fact, for treatments that achieve long-term cure in a given proportion 
of patients, the net benefit will tend to the cure rate.

The net benefit has been advocated as a patient-relevant measure of treatment 
benefit, because it is expressed on the time scale and directly answers a question a 
patient might ask, that is, “What is the net chance, for a patient taken at random, of 
surviving longer by at least m months on treatment than on control?” In addition, 
when the treatment benefit is delayed, the GPC test has increasing power when the 
threshold of clinical relevance increases [74]. Figure 1 shows average results from a 
large number of simulated trials in which survival in the control arm was assumed to 
follow an exponential distribution with parameter 0.1. The treatment arm was simu-
lated for two distinct situations: one in which the hazard ratio remained equal to 
0.65 over time (Fig. 1, Panel A), and the other in which the hazard ratio was equal 
to 1 until 4 months, then decreased linearly to 0.4 at 20 months and stayed at 0.4 
thereafter, in such a way that the mean hazard ratio was also equal to 0.65 over the 
follow-up duration (Fig. 1, Panel B). Simulations were performed on complete times 
to event and also by setting a censoring mechanism corresponding on average to 
a proportion of 20% of censored observations. The censoring distribution was uni-
formly distributed, corresponding to an administrative censoring. The shape of the 
survival curves is not strikingly different between panels A and B, yet the net benefit 
as a function of time shows a clear difference between them and emphasizes the 
more substantial long-term net survival benefit from a treatment that has a delayed 
effect. The power of a GPC test with varying thresholds of clinical relevance is 

Fig. 1   Survival estimates as functions of time, net survival benefit, and power as functions of threshold 
of clinical relevance, in situations of proportional hazards (a) and delayed treatment effect (b)
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inferior, as expected, to the power of the logrank test when hazards are proportional 
(Fig. 1, Panel A). However, the power of a GPC test becomes superior to the power 
of the logrank test, and similar to the power of a G0,1 weighted logrank test, when 
the thresholds of clinical relevance are large (Fig. 1, Panel B).

Of note, however, censoring reduces the power of a GPC test for large thresholds 
of clinical relevance. This observation underscores the need for the follow-up time 
to be commensurate with the threshold of clinical relevance of interest.

The CA184-024 trial assessed the combination of ipilimumab plus dacarbazine 
versus placebo plus dacarbazine in patients with metastatic melanoma [66]. In this 
trial, PFS curves separated after the median, violating the proportional hazards 
assumption. When focusing on long-term PFS benefit, corresponding to higher 
values for the threshold of clinical relevance, the values of the net PFS benefit 
increased. The elevated and sustained value of the net PFS benefit, even for high 
threshold values, was a statistically testable measure of the delayed treatment effect 
[74].

4.8 � Generalized Pairwise Comparisons (GPC) for Personalized Medicine

GPC can also prove useful to go beyond the analysis of a single outcome, by defin-
ing wins and losses for multiple outcomes. Hence, for instance, if time to death and 
time to disease progression were both of interest, one could use the composite end-
point of progression-free survival, which is the time to progressive disease or death, 
whichever comes first. A major objection against using such a composite endpoint 
is that it focuses on the time to first event, rather than on the time to most relevant 
endpoint. In other words, the crucially important time to death after progression is 
ignored. Using GPC, one can instead consider survival to have priority over time to 
progressive disease. Hence, if variables {X1, Y1} denote the outcome of first priority 
(e.g., overall survival), respectively, in the treatment and control group, and {X2, Y2} 
denote the outcome of second priority (e.g., time to progressive disease), respec-
tively, in the treatment and control group, the pairwise scores can be generalized as 
follows (ignoring censoring for notational simplicity):

The U-statistic captures the overall treatment effect on any number of prioritized 
outcomes of any type, including safety outcomes, quality of life, or other patient-rel-
evant outcomes [115]. As such, this approach permits an overall benefit/risk assess-
ment of the treatment effects using direct patient comparisons, rather than marginal 
treatment effects on the various outcomes considered that ignore the correlation 
between these outcomes [116]. In cancer, such a benefit/risk assessment is acutely 
required when treatments induce severe toxicities, some of which have a substan-
tial impact on the patient well-being. Finally, because outcomes can be prioritized, 

uij =

⎧
⎪⎨⎪⎩

+1 if X1,i > Y1,jor (X1,i = Y1,j and X2,i > Y2,j)

−1 if X1,i < Y1,jor (X1,i = Y1,j andX2,i < Y2,j)

0 otherwise
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GPC can conceivably take into account individual patient preferences, thus paving 
the way to truly personalized medicine.

5 � Conclusion

IT is not only revolutionizing the systemic treatment of patients with cancer, but also 
paving the way to the adoption of novel methodological approaches to trial design, 
analysis, and interpretation. In fairness, some of the methods now being adopted are 
not new, but their revival is largely due to the issues that have emerged in IT trials. 
IT trials have brought increased attention to the need to follow patients for as long 
as possible, an issue that was largely neglected in situations of proportional hazards. 
In fact, there is a strong incentive for the sponsor of a trial to terminate the follow-
up as soon as a treatment effect is statistically established. This tendency should be 
actively resisted, and ensuring long-term follow-up of clinical trials should become 
the norm rather than the exception. The implementation of the methods discussed 
here in IT trials brings a fresh look to old problems, such as that of non-proportional 
hazards, or the possibility to tackle emerging questions in drug development and 
medical practice, such as that of prioritizing outcomes according to individual pref-
erences. It is hoped that further improvements in the ability to deliver more effica-
cious, and hopefully less toxic, IT modalities to patients with cancer will be made 
more efficient by the use of improved statistical methodology.
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