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Abstract
Studies for the associations between physical activity and disease risk have been
supported by newly developed wearable accelerometer-based devices. These devices
record raw activity/movement information in real time on a second-by-second basis
and the data can be converted to a variety of summarymetrics, such as energy expendi-
ture, sedentary time andmoderate-vigorous intensity physical activity. Herewe review
some of the methods used to analyze the accelerometer data and the R packages that
can generate activity related variables from raw data.We also discuss longitudinal data
and functional data approaches to perform analyses for various research purposes.
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1 Introduction

Engaging in regular physical activity decreases risk of obesity, chronic diseases and
improves longevity [40]. To date, much of the evidences linking activity to disease
in large studies have relied on self-report questionnaires to assess physical activity
[1,39]. Such questionnaires provide reasonable estimates for time spent in structured
exercise, but questionnaires are subject to measurement error [36] and do not provide
precise estimates for lower intensity activities of daily living or sedentary time. The
gold-standard approach to measure energy expenditure is doubly labeled water [12],
but it is expensive and time-consuming in practice and does not provide estimates
of time in different postures (e.g., sitting vs. standing) or intensities (e.g., light vs.
vigorous). To get around these difficulties, many recent health studies use wearable
accelerometer-based devices. These devices are fairly inexpensive and convenient for
participants to wear formultiple days or weeks. They can collect and store acceleration
signals at relatively high frequencies (e.g., 80 Hz) in 3-axes for weeks. Freedson et
al. [19] provide a detailed review for the application of these devices.

There are two main categories of statistical considerations for accelerometer data.
The first is that an algorithm is needed to translate the acceleration signal into esti-
mates of metrics that are of use to physical activity and health researchers (e.g., time
spent sitting vs. standing, in light, moderate or vigorous intensity activity). Because
the monitors could generate over 10,000 observations per person per day, specific sta-
tistical software is required to process the raw data. The second is that, once summary
estimates of time spent in particular activity intensities or behaviors are obtained,
researchers in physical activity and health are interested in the relationships between
different types of activities across days and weeks or even within a day. Thus, our
statistical methods should postulate the association pattern. This manuscript will pro-
vide a brief overview of methods to estimate activity based on acceleration signals,
but will primarily focus on reviewing statistical methods for analyzing the summary
data obtained from these devices over days and weeks.

The manuscript is organized as follows. Section 2 describes methods to translate
acceleration signals to estimates of physical activity behaviors, and Sect. 3 discusses
longitudinal data methods to analyze the data. Functional data analysis to handle
minute-by-minute physical activity information is discussed in Sect. 4. Concluding
remarks are given in Sect. 5.

2 Translating Acceleration Signals to Estimates of Physical Activity
Behavior

Some research-based activitymonitors provide estimates of behavior within the device
using proprietary software. For example, the activPAL device (www.paltech.plus.
com), which is taped in the front of the thigh, uses 1- to 3-axis accelerometers to
measure the angle of the thigh and movement. Based on the measurements, the soft-
ware generates the estimate of body posture and movement in three categories: sitting,
standing, and stepping. The software also estimates energy expenditure (metabolic
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Table 1 Sample data obtained from the ActivPAL device [51]

Time Time interval Activity code Cumulative step count MET

2000-01-01 11:04:51 2230.5 0 0 0.77448

2000-01-01 11:42:01 2.8 1 0 0.00109

2000-01-01 11:42:04 1.1 2 1 0.00115

2000-01-01 11:42:05 2.7 2 2 0.00177

2000-01-01 11:42:08 4.3 2 3 0.00239

2000-01-01 11:42:12 7.7 1 3 0.00299

2000-01-01 11:42:20 1.2 2 4 0.00119

2000-01-01 11:42:21 23.9 1 4 0.00929

2000-01-01 11:42:45 1.3 2 5 0.00123

2000-01-01 11:42:46 1.1 2 6 0.00115

Time interval is measured in seconds. Activity codes 0, 1, and 2 represent sitting, standing, and stepping
activities, respectively. As the activPALdevice is taped only in one of the thigh, every step count is calculated
as two steps. MET represents metabolic equivalent for the energy expenditure level evaluated in Eq. 1

equivalent, MET) using the following equation [25]:

MET · h−1 = 1.4 × d + (4 − 1.4) × (c/120) × d, (1)

where c represents the number of steps per minute and d is activity duration (in hours).
Table 1 displays a sample dataset obtained from the activPAL device [51]. Based on the
MET level, the intensity of activity can be categorized to sedentary (1 ≤ MET < 2),
light (2 ≤ MET < 3), moderate (3 ≤ MET < 6), and vigorous (MET ≥ 6) [11].

Other research-based monitors (e.g., ActiGraph [www.actigraphcorp.com]) pro-
vide output files with the “raw” acceleration data and then researchers select algorithm
to process the data into summary estimates. In the first-generation devices, the mon-
itors collect and store one data signal, in an arbitrary unit called an “activity count”,
each minute in the vertical axis only. As previous mentioned, the devices now capture
and store acceleration signals in 3-axes at 80 Hz. The processing of ActiGraph raw
acceleration data to activity counts can be refereed to Brønd and Arvidsson [6] and the
vector magnitude counts from 3-axes are studied by Howe et al. [26]. Table 2 shows
a sample activity counts dataset collected from an ActiGraph device [14]. Moreover,
Bai et al. [3] summarize a general workflow to translate the acceleration signal into
the variables with research interests. Several pathways are involved in this workflow.
For example, linear regression models are developed to estimate thresholds (or cut-
points) that define activity intensity categories [18]. Machine learning algorithms are
also studied to derive a group of measurements for physical activity including “time
active” and activity intensity [2,3]. A comprehensive evaluation of existing methods
is beyond the scope of this paper, but have been summarized by others [13].

The increasing of the quality in the signal and the sophistication in data processing
methods should increase the accuracy and precision of the estimates, but also increase
the computational burden and there is a need for software that can handle this complex
data. Many R packages [41] are developed to sort the raw data. Domelen et al. [15] and
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Table 2 Sample signal data
obtained from the ActiGraph
device [14]

VERT AP ML Steps

118 297 117 4

0 0 0 0

0 0 0 0

2 11 4 0

0 0 0 0

0 0 0 0

0 0 0 0

20 107 11 0

0 0 0 0

0 0 0 0

Each row represents a record in 1 min. “VERT”, “AP”, and “ML”
represent the counts in vertical axis, anteroposterior axis, and medio-
lateral axis, respectively. “Steps” represents the total step counts in the
one-minute interval

Domelen [14] develop the packages accelerometry and nhanesaccel to process data
collected from the National Health and Nutrition Examination Survey [48]. Choi et al.
[10] and Geraci [20] propose the packages PhysicalActivity and pawacc to analyze
Actigraph data, respectively. Zhang et al. [51] develop the package PAactivPAL for
activPAL data, and Zhang et al. [52] propose the PASenseWear to handle BodyMedia
records. van Hees et al. [49] develop the package GGIR to process and analyze raw
accelerometer data collected from multiple types of devices.

3 Longitudinal Data Analysis

Standard statistical approaches such as group comparison (e.g., t-test), correlation
coefficient, and regression can be directly used to analyze sorted physical activity
data [25]. However, regular statistical methods do not take advantage of these newly
developed instruments. Accelerometer data are generally collected by following up
individuals over days or weeks, the trend and association for activity variables across
different time points are also the statistical problems of great research interests. Once
the activity data are summarized into daily summary measures, data recorded over
multiple days or weeks can be viewed as longitudinal data. One such study, Kozey-
Keadle et al. [28] and Kozey-Keadle et al. [29] evaluate the trend of physical activity
outcomes (e.g., total daily energy expenditure), and health factors (e.g., cardiorespi-
ratory fitness, body weight) across several weeks.

Moreover, additional complexities in longitudinal data analysis arise from multi-
variate outcomes and varying variable types. Keadle et al. [27] suggest that a complete
description of an individual’s pattern of physical activity requires specification of mul-
tiple variables. They discuss a set of 48 metrics generated from activPAL data, where
20 of them are for sedentary behavior, 16metrics are for light activities, and 12metrics
are for moderate to vigorous physical activity (MVPA).
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To model the trend and association for activity outcomes across time points, lon-
gitudinal data methods such as linear mixed models can be implemented [17]. Li et
al. [32] propose a multivariate longitudinal data model to jointly analyze the multiple
measurements from a physical activity study. In this study, participants have one day’s
wearable device records across 5 weeks. The recorded information involves eight vari-
ables: (1) daily sedentary hours (continuous); (2) energy expenditure (continuous); (3)
proportion of sedentary time greater than 20 min; (4) proportion of active time greater
than 5 min; (5) number of daily standing up behaviors (count); (6) number of daily
steps (count); (7) whether daily MVPA time is greater than one hour (binary); (8)
whether the highest energy expenditure rate measured by METs in 10 min is greater
than 3 (binary). The joint model for continuous data (� = 1, 2) is

Y (�)
i j = X (�)

i j β(�) + Z (�)
i j u

(�)
i + ε

(�)
i j ,

where Y (�)
i j is the �th outcome at week j for subject i , X (�)

i j and Z (�)
i j are covariate

vectors for fixed and random effects, β(�) is a vector of fixed effect coefficients, u(�)
i

is a vector of correlated random effects, and ε
(�)
i j is independent random noise with

normal distribution. For proportional data (� = 3, 4), the Beta regression framework
[16] is used and its mean μ

(�)
i j given X (�)

i j , Z
(�)
i j and u(�)

i has

logit{μ(�)
i j } = X (�)

i j β(�) + Z (�)
i j u

(�)
i ,

Poisson distribution with log link function is employed to model the count data (� =
5, 6)

log{μ(�)
i j } = X (�)

i j β(�) + Z (�)
i j u

(�)
i ,

and the binary data (� = 7, 8) are postulated by binomial distribution with logit link
function

logit{μ(�)
i j } = X (�)

i j β(�) + Z (�)
i j u

(�)
i .

The joint model further assumes that given the random effects u(�)
i (� = 1, . . . , 8), the

observations across all visits and different types of responses are independent. There-
fore, the association pattern across all visits and response variables are established
by the correlation structures among the random effects. To handle model estima-
tion, this study develops an efficient algorithm, which combines the idea of penalized
quasilikelihood framework [5,23] and the expectation/conditionalmaximization either
algorithm (ECME, [35,44]).

The proposed joint model can be applied to fit the wearable device data. The results
show that four responses, energy expenditure levels, number of daily steps, whether
dailyMVPA time is greater than one hour, and whether the highest energy expenditure
rate measured by METs in 10 min is greater than 3, will be improved in the exercise
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treatment group. Therefore, the analysis demonstrates the health benefits for physical
activity intervention on population level.

The model of the correlation structure can also facilitate the study among typical
subgroups of research interests. For example, a study focuses on the longitudinal
pattern of sedentary time and energy expenditure in a subgroup of active participants
whose first week records have: (1) the proportion of long sedentary bout is less than
20%; (2) the proportion of long active bouts is more than 30%; (3) more than 40 times
of daily standing up; (4) more than 6000 daily steps; (5) more than 1 h daily MVPA
time; (6)more than 3METs for themost intensive activities in 10min. A naive solution
for this problem is to analyze the individuals who meet those criteria. However, the
physical activity study only has a small sample, and there could be few or even none
of the individuals meet all of the criteria. On the other hand, the proposed joint model
can handle this issue. Statistically, the mean sedentary time and energy expenditure
can be expressed in a conditional expectation formulation as follows:

E
{
Y (�)
i j

∣∣∣Y (3)
i1 < 0.2,Y (4)

i1 ≥ 0.3,Y (5)
i1 ≥ 40,Y (6)

i1 ≥ 6000,Y (7)
i1 = 1,Y (8)

i1 = 1
}

,

where � = 1, 2. The conditional expectation can be estimated based on the joint model
via Monte Carlo samplings. In this application, the estimates suggest that the active
participants in thefirstweekwouldhave lower sedentary time thanother subjects across
all five weeks. In addition, for those active participants, the exercise treatment would
help them to have faster decreasing rate in sedentary time through weeks comparing to
the control group. A reasonable explanation is that the supervised structured exercise
training leads to further reductions in sedentary behaviors. For energy expenditure
levels in those exercise treatment participants, the active ones have higher outcome
than the inactive ones for the first week but the difference is gradually decreasing.
In particular, active subjects have decreased energy expenditure across weeks. In this
study, all participants in the exercise groups completes the same amount of exercise
each week (∼ 200 min) regardless of their baseline activity status. This is a standard
practice in such trials to ensure all participants complete the same dose. However,
the evaluation of the conditional expectation based on the joint model suggests that
active participants at baseline decrease their energy expenditure as a result of the
standard intervention. The data analysis suggests that future studies could consider
personalized exercise programs based on initial activity status to promote increases in
energy expenditure for all participants.

4 Functional Data Analysis

When research interest focuses on minute-by-minute temporal pattern of physical
activity over a period of monitoring time, the functional data [24,38,42,43] framework
can be applied to our data analysis. Physical activity information obtained by wearable
device is often summarized into time intervals by every 1or 5 or 10min. For a univariate
response, Schrack et al. [45] explore smoothing curves for activity counts per minute
across 24-h by different age groups. Goldsmith et al. [22] discuss a functional data
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analysis method to explore the pattern of diurnal activity profile (aggregated into 10-
min intervals) in children. In the following sections, we discuss the utility of functional
data models to handle multivariate, multilevel, and excess zero features in analyzing
physical activity data.

4.1 Multivariate Functional Data Analysis

Similar to longitudinal data analysis, the joint modeling ofmultiple aspects of physical
activity is useful for health studies. Li et al. [30] propose a functional data method to
jointly model energy expenditure and interruptions to sedentary behavior across 36
five-minute intervals. The energy expenditure is a continuous measurement skewed
to the right. The interruptions to sedentary behavior is a binary variable to indicate
whether sedentary behavior was interrupted at least once in an interval. The joint
functional data model is

dtr{Yi (t); λ} = μ(t) + Ui (t) + εyi (t);
logit[pr{Wi (t) = 1|Vi (t)}] = ν(t) + Vi (t),

where {Yi (t),Wi (t)} denotes continuous and binary outcomes at time interval t for
subject i , dtr(·; λ) is the Box-Cox transformation function with transformation param-
eter λ, μ(t) and ν(t) are fixed effect curves, Ui (t) and Vi (t) are correlated random
effect curves, and εyi (t) denotes independent random noise. The model assumes that
given Ui (t) and Vi (t), the paired observations are independent for all t , and thus,
the correlation structure between the two outcomes is postulated by the random effect
curvesUi (t) andVi (t). The two random effect curves are further modeled by principal
components as

Ui (t) =
ky∑

�=1

fy,�(t)αyi,�; Vi (t) =
kw∑
�=1

fw,�(t)αwi,�,

where ky and kw are the number of principal components, fy,�(t) and fw,�(t) are
orthogonal principal component functions, andαyi,� andαwi,� are principal component
scores. αyi,� (� = 1, . . . , ky) and αwi,�∗ (�∗ = 1, . . . , kw) are set to be correlated to
establish the association for two outcomes.

To analyze the data obtained from the physical activity study [28], the multivariate
functional data model has Yi (t) to be METs minus 1.24 for subject i in the t th time
interval. Wi (t) = 1 if sedentary behavior is interrupted at least once in the t th time
interval and is zero otherwise. The study displays that the energy expenditure increases
dramatically at about 15 min before theMVPA bout, and then decreases to the starting
level by an hour after the bout. The probability of interrupting sedentary behavior fol-
lows the similar pattern. In addition, it is of interest to compare the energy expenditure
level for a participant with/without consecutive sedentary behavior interruptions in
the previous 10 min. This is equivalent to estimate the conditional expectation
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E{Yi (t)|Wi (t − 1) = 1,Wi (t − 2) = 1} and

E{Yi (t)|Wi (t − 1) = 0,Wi (t − 2) = 0}.

The fitted model shows that without previous sedentary behavior interruptions, the
energy expenditure is higher around the MVPA bout. On the other hand, the simu-
lation study illustrates that if the association structure between energy expenditure
and sedentary behavior interruptions is ignored (i.e., two outcomes are assumed to be
independent), the estimation would lead to biased conclusion.

4.2 Multilevel Functional Data Analysis

Physical activity information can be collected by accelerometer device over several
days, and thus, the functional data can be multilevel for daily observations nested in
days and days nested in subjects. Goldsmith et al. [21] propose a generalizedmultilevel
functional data model to study physical activity response observed by 144 ten-minute
intervals per subject per day for 5 days. The model is

g[μi j (t)] = β0(t) +
p∑

k=1

xi j,kβk(t) + bi (t) + νi j (t),

where μi j (t) represents the mean curve for functional response Yi j (t) for subject i
on day j at time interval t , given covariate xi j,k , subject-specific random effect curve
bi (t) and day-specific random effect curve νi j (t), g(·) is a known link function, βk(t)
are fixed effect coefficient functions corresponding to the scalar covariates xi j,k , p is
the dimension of covariates. This model is estimated by a Bayesian method.

Li et al. [31] work on a more complicated functional data structure for energy
expenditure (METs) measured by every 5 min. The dataset is collected from 5 days
a week (Monday through Friday) for 5 separated weeks. Therefore, the hierarchical
data structure has daily observations nested in weeks and weeks nested in subjects.
The study uses a three-level functional data model to handle the issue. The model is

Yi jk(t) = μ··(t) + μ j ·(t) + μ·k(t) + μ jk(t) + ξ i (t) + ηi j (t)

+ζ ik(t) + γ i jk(t) + εi jk(t),

whereμ··(t) is the populationmean curve,μ j ·(t),μ·k(t), andμ jk(t) areweek-specific,
day-specific, and week×day interaction mean curves, ξ i (t), ηi j (t), ζ ik(t) and γ i jk(t)
are mutually independent subject-specific, week-within-subject, day-within-subject,
and week×day interaction-within-subject random effect curves, and εi jk(t) denotes
random noise. The model can be estimated by an extension of the ECME algorithm,
and the estimation approach can be used to handle incomplete functional data. This
work also suggests to use Wald test to handle hypothesis tests for mean curves.

There are many other methodology developments involving multilevel functional
data model to analyze physical activity data. For example, Xiao et al. [50] propose
a covariate-dependent functional model to quantify the lifetime circadian rhythm of
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physical activity; Shou et al. [46] discuss a structured functional principal component
analysis method to handle multiple levels of variation generated by nested and crossed
study designs.

4.3 Functional Data Analysis with Excess Zero

Physical activity information aggregated by 1- or 5- or 10-min intervals is featured
by excess zeros for variables such as numbers of steps and standing-up behaviors.
This issue is the result of massive inactive intervals recorded by wearable devices,
where no movement signal is captured. To assess the data with excess zeros, Bai et
al. [4] propose a two-stage model. The first stage is to model Ai (t) as a binary factor
to indicate whether subject i is active at time interval t . Ai (t) = 1 represents active
time interval, while Ai (t) = 0 indicates inactive time interval. The second stage is
to model Yi (t) as a non-negative variable (e.g., activity counts or number of steps)
conditioning on Ai (t) = 1. The model is

logit[pr{Ai (t) = 1|Zi (t), Hi (t)}] = β0(t) + Zi (t)
Tβ1 + Hi (t)

Tβ2(t),

and given Ai (t) = 1,

log{Yi (t)} = γ0(t) + Zi (t)
Tγ1 + Hi (t)

Tγ2(t) + εi (t),

where Zi (t) and Hi (t) are time-invariant and time-varying covariates, respectively,
β0(t) and γ0(t) are time-varying intercepts, β1 and γ1 are time-invariant coefficients,
β2(t) and γ2(t) are time-varying coefficients, and εi (t) has E{εi (t)} = 0. The two-
stage model can be estimated by solving estimation equations.

Li et al. [33] extend the definition of time intervals from two categories (inactive
and active) to three categories (inactive, partially active and active). This extension can
cover a wide range of activity combinations. For example, in a 5-min interval, a wearer
can be inactive for 2 min and walk for 3 min. To implement this setting, this study
definesCi (t) for subject i at time interval t whereCi (t) ∈ {1, 2, 3} represents inactive,
partially active, and completely active intervals, respectively. Pi (t) is the proportion
of active behavior in time interval t with Pi (t) = 0 when Ci (t) = 1, 0 < Pi (t) < 1
whenCi (t) = 2, and Pi (t) = 1whenCi (t) = 3. Yi (t) denotes energy expenditure rate
with Yi (t) = 0 when Ci (t) = 1 and Yi (t) > 0 otherwise. The proposed method uses
the continuation-ratio model suggested by Molenberghs and Verbeke [37] to model
the ordinal outcome Ci (t). The Beta regression is employed to model proportional
outcome Pi (t). The Box-Cox transformation is applied to handle skewed Yi (t). The
joint model is

logit[pr{Ci (t) > �|Ci (t) ≥ �,UC�,i (t)}] = μC�
(t) + UC�,i (t), � = 1, 2,

logit[E{Pi (t)|Ci (t) = 2,UP,i (t)}] = μP (t) + UP,i (t),

dtr{Yi (t)|Ci (t) ≥ 2,UY ,i (t); λ} = μY1(t) + I {Ci (t) = 3}μY2(t)

+UY ,i (t) + εY ,i (t),
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where μC�
(t), μP (t), and μY�

(t) are fixed effect curves,UC�,i (t),UP,i (t) andUY ,i (t)
are random effect curves, λ is transformation parameter and εY ,i (t) denotes random
noise. The model can be estimated by an ECME procedure. The algorithm iteratively
runs a Newton-Raphson estimation step, an EM estimation step and a principal com-
ponent selection step.

The model to handle excess zeros can facilitate efficient estimation of the energy
expenditure rate for active behaviors, physical activity energy expenditure (PAEE). In
the application from Li et al. [33], there exists a relationship for Yi (t)+1.25 = 1.25×
{1−Pi (t)}+Pi (t)PAEEi (t), and thus the term Yi (t)/Pi (t) represents energy expendi-
ture rate for active behaviors (PAEE−1.25). A typical research interest is to explore the
PAEE in a 5-min interval with active behaviors use more than 2.5 min, which is equiv-
alent to study the conditional expectation E{Yi (t)/Pi (t)|C (1)

i (t) = 1, Pi (t) > 0.5}.
Based on the model estimation from the model, the PAEE rate increases significantly
at about 10 min before the MVPA bout, and returns to the initial level after an hour
from the bout.

5 Discussion

We have reviewed the statistical methods to analyze physical activity data obtained
from wearable accelerometer-based devices. The large-scale raw data can be sum-
marized by useful algorithms and R packages. Longitudinal data methods provide
appropriate estimation on responses followed by days and weeks. The applications
of function data approaches demonstrate their utilities to model the activity pattern
across minute-by-minute intervals. These methods can be extended to handle more
complicated accelerometer data with multi-sensors to collect physiologic variables
such as skin temperature and heat flux.

One potential limitation for our discussed methods is that we require the physi-
cal activity data to be accurate and complete. Staudenmayer et al. [47] suggest that
measurement error/misclassification and missing data problems could lead to biased
conclusion in physical activity studies. Measurement error/misclassification issue
occurs when accelerometer device may not accurately detect real behavior. Miss-
ing data are common for non-compliance reasons in randomized trials. Missing data
problem may also arise if wearers take off the monitor for bathing or water activities.
Statistical methods (e.g., [7–9,34]) to handle these issues can be employed to obtain
valid inference conclusions.
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