
Statistics in Biosciences (2019) 11:371–402
https://doi.org/10.1007/s12561-019-09236-4

Joint and Individual Representation of Domains of Physical
Activity, Sleep, and Circadian Rhythmicity

Junrui Di, et al. [full author details at the end of the article]

Received: 18 December 2017 / Revised: 7 March 2019 / Accepted: 2 April 2019 / Published online: 15 April 2019
© International Chinese Statistical Association 2019

Abstract
Developments in wearable technology have enabled researchers to continuously and
objectively monitor various aspects and physiological domains of real life includ-
ing levels of physical activity, quality of sleep, and strength of circadian rhythm in
many epidemiological and clinical studies. Current analytical practice is to summa-
rize each of these three domains individually via a standard inventory of interpretable
features, and explore individual associations between the features and clinical vari-
ables. However, the features often exhibit significant interaction and correlation both
within and between domains. Integration of features across multiple domains remains
methodologically challenging. To address this problem, we propose to use joint and
individual variation explained, a dimension reduction technique that efficiently deals
with multivariate data representing multiple domains. In this paper, we review the
most frequently used features to characterize the domains of physical activity, sleep,
and circadian rhythmicity and illustrate the approach using wrist-worn actigraphy data
from 198 participants of the Baltimore Longitudinal Study of Aging.

Keywords Multi-domain · Physical activity · Sleep · Circadian rhythmicity · JIVE ·
Dimension reduction

1 Introduction

Traditional methods of collecting information about human behavior in the free-
living environment have relied heavily on self-reported questionnaires, sleep logs, and
daily diaries [65]. However, these methods have numerous limitations including recall
biases, disease association confounding, and lack of detailed time-of-day information
[4,56]. In recent years, there has been an exponential growth of both research- and
consumer-grade wearable devices that employ actigraphy to obtain high-resolution
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objective assessment of multiple domains including physical activity, sleep, and cir-
cadian rest/activity rhythms. This multi-system or multi-domain objective tracking
provides tremendous opportunities to identify key influences on the core components
of human health and behavior [21]. However, this dramatic growth in the volume and
complexity of collected behavioral data also presents difficult analytic challenges. To
capture the complexity of information presented in wearable data, multiple features
are typically generated to represent each of the domains of physical activity, sleep,
and circadian rhythmicity.

Physical activity (PA) refers to motor activity taking place during waking time. In
general, daily activity can be categorized into sedentary behavior, light PA (LiPA), and
moderate-to-vigorous PA (MVPA) [11,71].As recently shown, not only total sedentary
and active times, but also the patterns of their accumulation demonstrate strong inde-
pendent associations with adverse health outcomes and mortality [10,14,15]. Finally,
the total volume of physical activity has been quantified through alternative aggregate
measures of activity counts without applying any cut-points [9,71,72,77].

The amount, timing, and quality of sleep (SL) can be accurately estimatedwithwrist
actigraphy. Estimating sleep over multiple days and weeks in the natural environment
is a major advantage of using actigraphy over polysomnography, a golden standard
for measuring the quality of sleep [3]. Typical actigraphy-derived summaries charac-
terizing SL domain include measures of total sleep time, sleep efficiency, midpoint of
time in bed, and sleep fragmentation [58,67].

Circadian rhythms are rhythms that oscillate about every 24 h. Circadian rhyth-
micity (CR) has been observed in multiple physiological processes including core
body temperature, hormone secretion, heart rate, blood pressure, and many others
[16,18,44]. Measuring circadian rhythm with wearables is based on a principle that
there is increased movement during wake periods and reduced movement during sleep
periods, and has been shown to be reliable and valid [26,28,30]. The strength of CR
can be assessed using both parametric and non-parametric approaches. The cosinor,
the extended cosinor, and the multi-period cosinor are the most popular parametric
models [13,41] for CR. Intra-daily variability (IV) and relative amplitude (RA) are
the most popular non-parametric summaries that quantify fragmentation and synchro-
nization, and have been widely used in various applications [24,69,70,75]. Functional
data analysis provides non-parametric quantification of diurnal patterns via functional
principal components [23,57,78].

Guided by specific questions, several lines of research typically focus on one of
the three domains without considering the joint dependence of features within and
between the domains. There is now a growing interest in understanding both joint
and individual effects of all three domains and their relationships with different health
outcomes.

When faced with multivariate correlated data, the common practice is to seek a
low-dimensional representation of the data using appropriate dimension reduction
techniques. Principal component analysis (PCA) is a popular method that transforms
the originally correlated variables to orthogonal principal components (PCs). How-
ever, PCA fails to properly account for clustering of features within domains. Given
the physiological relation between PA, SL, and CR, it is reasonable to expect some
shared patterns across the domains. At the same time, since the domains represent
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Fig. 1 Venn diagram shows two
parts of variation,
domain-specific (individual part
of each circle) and joint (the
shaded intersection regions)

different physiological systems, a substantial domain-specific variation is expected.
Figure 1 schematically illustrates a hypothetical variation allocation across the three
domains. Each of the three domains contains domain-specific or individual variation
(represented by the specific part of the circle) and the variation that is shared by two
of three or all three domains (represented by the shaded intersection).

To deal with this type of data, several integrative dimension reduction techniques
have been developed. Canonical Correlation Analysis (CCA) [29] is a popular method
to globally examine the relation between two sets of variables. Partial Least Squares
(PLS) [76] directions are defined similarly to CCA, but maximize covariance rather
than correlation. However, the restriction of PLS to pairwise comparisons limits their
utility in finding common structure among more than two data types. Recently Lock
et al. [40] introduced joint and individual variation explained (JIVE), a method which
decomposes original data matrix into a low-rank approximation capturing joint varia-
tion across data types, low-rank approximations for structured variation individual to
each data type, and residual noise. It is an efficient extension of PCA that quantifies
the amount of joint variation between data types, reduces the dimensionality of the
data and reveals principal components that can be used for the visual exploration of
joint and individual structures. Several recent generalizations have focused on extend-
ing JIVE to (1) incorporate heterogeneous data types (continuous/binary/count) using
exponential family distributions Li and Gaynanova [39], (2) separate not only joint
and individual, but also joint and partially shared variation [22], and (3) formalize
the problem and increase computation feasibility with non-iterative procedure using
fast linear algebra [19]. In this study, we propose to use original JIVE as a flexible
approach to quantify and separate between- and within-domain variation for objective
tracking of human behavior.

In the rest of the paper, we first provide a brief review of typically used actigraphy-
derived features for each of the three domains. Then, we describe JIVE method and
demonstrate it in a case study that analyses actigraphy data of 198 participants from
the Baltimore Longitudinal Study of Aging (BLSA).
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2 The Domains of PA, SL, and CR

Accelerometer, a key component of most wearable devices and smartphones, is often
used to objectivelymeasure 24-hmotor activity. It collects high-resolution acceleration
signal (e.g., 30–100 HZ). However, to study questions regarding PA, SL, and CR
domains, researchers often rely on summary measures of the raw acceleration signal
aggregated over certain epochs (e.g., 1 min) [7]. One common example is activity
count (AC) which is a unitless proxy measure of activity level within an epoch. AC is
usually generated by software using proprietary algorithms (different across platforms)
or using open-source software that filters the acceleration signal and aggregates it
at epoch level, typically, minute level [1,7,32]. Regardless of the above-mentioned
properties, AC is almost always a reflection of intensity and volume of activity [8].
Therefore, in this study, we focus on minute-level AC data, so that subject-specific
activity daily profile is represented via a 1440-dimensional vector of ACs.

A large number of features/summaries have been proposed in literature to describe
different aspects of PA, SL, andCR. In this section, we review commonly used features
from each domain and briefly describe their statistical interpretations.

2.1 Notation

Let y(t) denote the activity count (AC) at epoch t and minute-level epochs, t ∈ T =
{1, 2, 3, . . . , 1440}. We will represent T as a union of the two parts, wake time (WT)
period and sleep (time in bed) (SL(TiB)) period that will be used to derive features
representing PA and SL domains, respectively.

2.2 The Domain of Physical Activity

2.2.1 Total Volume of Physical Activity

Total volume of physical activity [72] serves as a proxy for the total amount of accu-
mulated physical activity over a day across all levels of intensity, from sedentary to
vigorous. The most commonly used measure is total activity counts (TAC) which is
defined as

TAC =
∑

t∈WT

y(t). (1)

Because, TAC exhibits high levels of skewness [53,72], a Box–Cox transformation
is often applied to obtain a more symmetric distribution. The most straightforward
approach is to take the log-transformation of TAC (LTAC). Another measure of the
total volume is total log-transformed activity counts (TLAC), defined as

TLAC =
∑

t∈WT

log(y(t) + 1). (2)
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After the log-transformation, zero activity count is transformed to zero and non-zero
activity counts are re-scaled to a much smaller range with a more symmetric dis-
tribution. TAC and TLAC have been systematically compared by Varma et al. [72]
in National Health and Nutrition Examination and Survey (NHANES) 2003–2006.
Varma et al. [72] concluded that TAC primarily represents moderate-to-vigorous
intensity physical activity (MVPA), while TLAC primarily represents light-intensity
physical activity (LiPA).

2.2.2 Total Volume of Sedentary Behavior

Sedentary behavior, as a significant risk factor for a wide range of chronic diseases
and mortality, had gained a lot of attention in various research fields recently [11,12,
17,25,27,35,42,48,73]. Conceptually, it is defined as any waking low-energy behavior
while in a sitting, reclining, or lying posture and includes activities such as sitting,
lying down, and watching television, and other forms of screen-based entertainment
[63].

To identify sedentary behavior from epoch level AC data, one needs to apply pre-
defined thresholds. For example, inNHANES2003–2006,whereActiGraphAM-7164
accelerometer (ActiGraph, LLC, Fort Walton Beach, Florida) was used, sedentary
activity is typically defined for minutes with less than 100 AC [35,64]. In studies that
use devices with no validated thresholds, a common practice is to explore a grid of
thresholds and report the results and their interpretation and sensitivity for the entire
grid.

The most common summary of sedentary behavior is total sedentary time (TST)
spent during wake period. It can be represented as

TST =
∑

t∈WT

I (y(t) < h), (3)

where I () is the indicator function.
To account for subject-specific differences in total WT (TWT) and try to separate

effects of the longer total sedentary time and shorter sleep, the percent of sedentary
time (pST) is considered as a normalized measure of the total sedentary time

pST = TST

TWT
. (4)

Similar features can be calculated to represent other time-related volumes, such as
the total active time (TAT) and the percent of total active time (pAT).

2.2.3 Patterns of Accumulation of Sedentary and Active Time

Recently, there has been a growing interest in exploring and quantifying the patterns
of accumulation of the total sedentary and total active times and associating these
patterns with various health outcomes [14,15,17,38]. In a systematic review, Di et
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al. [14] compared previously proposed fragmentation metrics. Conceptually, frag-
mentation approaches represent actigraphy-estimated wake period of the daily profile
as a sequence of alternating bouts of sedentary and active time and quantify this
sequence via summaries of the duration of and frequency of switching between seden-
tary and active bouts. Themain fragmentation features include i) average bout duration
(denoted by μ), (ii) Gini index (denoted by g), defined as an absolute variability nor-
malized to the average bout duration, (iii) active-to-sedentary and sedentary-to-active
transition probabilities (denoted byλa andλs , respectively), which can be re-expressed
as the reciprocal of μ (see proof in Di et al. [14]); and (iv) α, the parameter of the
power-law distribution. For a detailed discussion of these measures, their statistical
properties, and the distribution in the elderly US population, we refer to Di et al. [14].

2.3 The Domain of Sleep

Actigraphy devices used in sleep research, such as Actiwatch-2 (Philips Respirnonics,
Bend,OR), often have built-in event buttons or come alongwith sleep logs that allow to
estimateWT and SL (TiB) using participant reports. For devices with no event buttons
and studies not using sleep logs, automatic sleep detection algorithms [2,31,46,61,
68] can be applied to estimate WT and SL (TiB). Per current practice [3], standard
actigraphy-derived sleep parameters, which are derived using algorithms that have
been validated against overnight polysomnography, include (i) total sleep time (TSLT;
total time slept while in bed), (ii) percentage of total sleep time (pSLT; percentage of
total time slept while in bed), (iii) the number of sleep bouts (NSB), (iv) wake after
sleep onset (WASO, total time awake after initial sleep onset), v) percentage of total
wake time (pWT), (vi) the number of wake bouts (NWB), (vii) average wake bout
duration (AWB; WASO divided by NWB), (viii) sleep efficiency (SEFF; percentage
of time in bed spent asleep), (viiii) sleep onset latency (SOL; interval from time into
bed to sleep onset), and (x) midpoint of the time in bed [67]. .

Similarly, to the fragmentation metrics for PA domain, we define the wake-to-sleep
transition probability (WSTP) as the reciprocal of AWB.

2.4 The Domain of Circadian Rhythmicity

2.4.1 Extended Cosinor Model

Marler et al. [41] introduced a family of non-linear parametric transformations of
the traditional cosine curve used in the modeling of biological rhythms and often
referred as the extended cosinor model (extCosinor). The non-linear transformation is
the sigmoidal family, represented by three family members: (i) the Hill function, (ii)
the anti-logistic function, and (iii) the arctangent function. These transformations add
two additional parameters that must be estimated, in addition to the acrophase (φ),
MESOR (mes), and amplitude (amp). The main advantage of extCosinor is that the
estimated curves have shapes that would require more than two additional harmonics
to achieve the same (non-linear) fit when modeled with harmonic analysis [41].
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The classic cosinor model is defined as

y(t) = mes + amp · c(t), (5)

where c(t) = cos([t − φ]2π/24).
The Hill-transformed cosine curve is defined as h(c(t)) = [c(t) + 1]γ /(mγ +

[c(t) + 1]γ ); the anti-logistic-transformed cosine curve as l(c(t)) = exp(β[c(t) −
α])/{1+exp(β[c(t)−α])}; and the arctangent-transformed cosine curve asψ(c(t)) =
tan−1[βc(t)−α]/π+0.5. Thus, the sigmoidally transformed cosinemodels is defined
as y(t) = min + amp · F(c(t)) with F() being either h(), l(), or ψ().

Interpretation wise,mes is a half of the deflection;min is the minimum value of the
function; amp is the difference between theminimum andmaximumof the function;φ
is the time at which y(t) has its mathematically well-defined “peak”; α andm controls
the “width” of the function; and β and γ controls the “steepness” of the function.

Although cosinor and extCosinor models are popular in the analysis of traditional
circadian markers such as cortisol, melatonin, and core body temperature, its use for
actigraphy data has a few important limitations. The major limitation is the parametric
form of the model that it is very restrictive and may not be very appropriate for real
diurnal patterns ofmotor activity. In addition, assuming the 24-h period, the extCosinor
model estimates only five parameters and as can be seen from profiles shown in Fig. 2,
actigraphy profiles often have more than five landmarks, thus the profiles often cannot
be adequately modeled via extCosinor framework. Non-parametric approaches are
often more flexible and more sensitive.

2.4.2 Functional Principal Components Scores

As opposed to extCosinor model, functional principal component analysis (FPCA) is a
data-driven technique that makes no parametric assumptions about the functional form
of diurnal patterns. FPCA represents any sample of diurnal patterns via L2-orthogonal
functional “principal components” and subject-specific functional PC scores that can
be used as scalar covariates. For subject i , FPCA is typically formulated as

yi (t) = μ(t) + zi (t) = μ(t) +
K∑

k=1

φk(t)ξik, (6)

whereμ(t) is the overall mean function, and zi (t) is the subject-specific deviation from
the overall mean. The deviation zi (t) can be further decomposed as

∑K
k=1 φk(t)ξik ,

where φk(t) is the k-th functional principal component and ξik is the k-th principal
component score. More details can be found in Ramsay [51].

2.4.3 Stability of Rest-Activity Rhythms

Van Someren et al had proposed non-parametric methods to summarize rest-activity
rhythms and study them in Alzheimer patients [69,70,75].
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Intra-daily variability (IV) and relative amplitude (RA) have been used to estimate
circadian rhythmicity in various clinical populations. IV measures fragmentation in
the rest/activity rhythms and is capable of detecting periods of daytime sleep and
nocturnal arousal, and is calculated as the ratio of the mean squares of the difference
between successive hours and the mean squares around the grand mean, i.e.,

I V =
∑T

t=2(y(t)−y(t−1))2

T−1
∑T

t=1(y(t)−ȳ)2

T

. (7)

We assume that time epochs, t , can be minute, hour, etc and ȳ is the overall mean. RA
is defined as (M10−L5)/(M10+L5), where M10 is the most active 10-h period and L5
is the least active 5-h period.

3 Integrative Analysis of Features fromMultiple Domains via JIVE

The list of actigraphy-derived features representing each of the three domains can
be easily expanded with more summaries quantifying uncovered aspects of activ-
ity profiles, by applying different thresholds, and considering different time (epoch)
resolutions [24]. Thus, eliminating possible redundancy while accounting for multi-
feature multi-domain representation of wearable date becomes a critical component
of efficient data analytical pipelines. Low-dimensional representations of the original
high-dimensional summaries extracted from wearable data can often capture most of
the relevant information. These representations can provide informative visual insight
into the data and reveal hidden clusters of features and subpopulations of subjects.

Intuitively, a significant amount of interdependence is expected across domains of
thePA,SL, andCRdue to the fact that jointlymodeled domains represent the same24-h
day/night cycles from the same group of subjects. At the same time, since the domains
represent different physiological systems, a substantial individual domain variation
is expected as well. Traditional dimension reduction techniques, such as PCA, can
be applied to each domain separately. However, analysis of individual domains will
not capture potential dependencies between domains. This motivated recent research
on developing methods that explicitly take into account joint and individual domain
variation [40].

Joint and individual variation explained (JIVE) has been proposed to deal with
scenarios where different sources or views of the data are simultaneously available for
the same set of samples [40]. In the original application, JIVE jointly models Mi-RNA
and gene expression data collected on the same set of subjects. JIVE decomposes the
original multi-block data into a sum of three components: a low-rank approximation
capturing joint variation of the domains, low-rank approximations capturing variation
individual to each domain, and residual noise. The imposed rank and orthogonality
constraints can be considered as extensions of PCA. Let Yd ∈ R

pd×n denote the data
structure from domain d, pd denote the number of features. IfY has been row centered
and scaled, JIVE can be formulated as follows:
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Y1 = J 1 + A1+ε1 = Φ1
JΓJ + Φ1

AΓ 1
A + ε1

...
...

YD = J D + AD+εD = ΦD
J ΓJ + ΦD

A Γ D
A + εD,

(8)

or in a general form as

Y = J + A + ε, (9)

where J =
⎡

⎢⎣
J 1

...

J D

⎤

⎥⎦ denotes the joint structure matrix with rank(J) = r , and Ad

denotes the individual structure with respect to Yd with rank(Ad) = rd . Ranks r and
rd ’s can be determined by either BIC or a permutation test [40]. Matrices ΓJ and ΦJ

are score and loading matrices to the joint structure, while Γ d
A and Φd

A are score and
loading matrices for the individual structures. JIVE is fitted by iteratively estimating
joint and individual structures. The full details on JIVE and its estimation can be found
in Lock et al. [40].

It is important to note that JIVE provides a non-parametric low-rank- based pro-
cedure to estimate and exclude joint across-domain variation from original features
by creating adjusted domain-specific features such as Yad j = Y − J. For example, it
is possible to filter out the effect of physical activity from the quality of sleep, which
regular PCA is not capable of.

4 Case Study: BLSA Study

4.1 Data Description

The Baltimore Longitudinal Study of Aging (BLSA) is a study of normative
human aging, established in 1958 and conducted by the National Institute on Aging
Intramural Research Program. Detailed descriptions of the sample and enrollment
procedures/criteria have been previously reported [20,59].

In a sub-study,BLSAparticipantswere asked to dowrist actigraphywithActiwatch-
2 (Philips Respironics, Bend, OR), an actigraph worn on the non-dominant wrist
for seven consecutive 24-h periods. To assist with sleep scoring of actigraphy data,
participants were asked to press the “event” marker button on the device to indicate
“lights off” time in the evening and “wake-up” time in the morning when no longer
intending to sleep, and to complete a sleep diary confirming these times. Following
the convention for processing BLSA actigraphy data [47,53,55,74], days with more
than 5% of data missing (more than 72 min per day) were treated as invalid and
excluded from the analysis. For the days with less than 5% of missing data, missing
values were imputed as the average activity counts per minute over all valid days at
the same period for each participant. Participants with at least 3 valid (not necessarily
consecutive) days of actigraphy data were included in the analysis. Thus, the analysis
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Fig. 2 Activity profiles of 6 days/nights for three randomly chosen BLSA participants. Red and blue
backgrounds indicate sleep and wake periods, respectively (Color figure online)

included 198 BLSA participants (with an average of 5.72 valid days) with age ranging
from 31 to 96 years (with median age of 74 years) and 58% of females.

Figure 2 shows 6 days from three randomly selected BLSA participants. Red back-
ground shows sleep periods (defined by the event marker/diary), the blue background
shows wake periods. As can be easily observed from the example, there is a significant
difference across the three subjects both in physical activity and sleep patterns. For
example, participants at the top and bottom panels demonstrate more consolidated
sleep periods, characterized by lower activity and lower fragmentation, compared
with the middle profile. This could potentially be the reason for the subjects to have
distinctively different activity patterns during wake time.

4.2 Features

The features described in Sect. 2 have been calculated for each subject. Table 1 sum-
marizes all domain-specific features. In the domain of PA, TAC, TLAC, LTAC, TST,
and pST were calculated for each day and averaged across valid days. Fragmentation
metrics were calculated by aggregating bouts across all valid days in one summary.
We considered the thresholds of 50 AC and 100 AC to define sedentary periods. Sleep
domain features were calculated using Actiware 6.0 software (Philips Respironics,
Bend, OR), which uses a validated algorithm to derive sleep parameters [37]. SL fea-
tures were calculated based on two thresholds: 20 AC and 40 AC. All sleep features
were derived at nightly level and then averaged across all valid days/nights. Features

123



Statistics in Biosciences (2019) 11:371–402 381

Table 1 Domain-specific Features

Domains Thresholds Features

PA 50, 100 TAC, TLAC, LTAC, TST, pST, μ, λ, g, α

SL 20, 40 SOL, SEFF, WASO, pWT, NWB, AWB, TSLT, pSLT, NSB, WSTP

CR – Min, mesor, amplitude, α, β, φ, RA, IV (at both minute and hourly
level), f PC1, f PC2,…, f PC10

of CR included five parameters of the extended cosinor models with anti-logistic-
transformation fitted using all valid days. RA and IV were calculated at daily level,
and then averaged across valid days. Subject-specific 24 h activity profiles were aver-
aged across valid days and functional PCA was applied to them to obtain first ten
functional PCs which explained more than 90% of total variation.

As a result, 23 features represented PA domain, 20 features represented SL domain,
and 19 features represented CR domain. Please see Table 1 for the list of all features
grouped within each domain.

All features have been pre-normalized. Specifically, Lock at al. [40] suggested
to pre-normalize each data domain (i.e., center each individual feature and scale by
Frobenius norm of the block) to circumvent cases where “the largest domain wins.”
However, in our application, even within each domain, different features can have
highly distinct scales. For example, consider TAC and λa in the PA domain. TAC is
usually in the magnitude of at least 105, while λa is a probability that takes values
between 0 and 1. To address this, we also centered and scaled each feature. As a
result, we ended up using the correlation matrices of features from multiple domains.
This is an important step to perform in situations when features are measured on very
heterogeneous scales.

4.3 Results

Both standard PCA and JIVE were applied to the domain-specific features. In
JIVE, ranks were selected via permutation test proposed in Lock et al. [40]. Row-
orthogonality was enforced both between joint and individual components. The
optimal choices of the lower rank representation were estimated to be:

– rank 4 joint structure,
– rank 2 structure individual to PA domain,
– rank 3 structure individual to SL domain,
– rank 4 structure individual to CR domain.

Figure 3 displays a bar-chart of the amount of variation explained by joint and
individual components in each of the three domains. Interestingly, almost 70% of
variation in PA and only around 20% of variation in SL and CR can be explained
by the joint components. Partially, this could be explained by PA having the largest
number of included features. Individual components explain around 30%, 75%, and
40% of total variation in PA, SL, and CR domains, respectively. Thus, there is almost
40% variation that remain unexplained in CR domain. It is important to put these
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Fig. 3 Joint and individual
variations explained by each
domain from JIVE. Joint
structure explains 67.4%,
19.9%, and 25.6% of total
variation in PA, SL, and CR
domains, respectively.
Individual structures explain
26.8%, 74.7%, and 38.7% of
total variation in PA, SL, and CR
domains, respectively. And there
are still 5.8%, 5.3%, and 35.6%
of variation that cannot be
explained in PA, SL, and CR,
respectively

Table 2 Joint variation explained by each domain, JIVE

Joint components Individual components

Joint PC1 Joint PC2 Joint PC3 Joint PC4

PA % 89.4 5.4 25.8 16.4 9.9

SL % 0.3 57.2 55.4 5.9 24.1

CR % 10.3 37.4 18.8 77.7 11.9

Total variation % 39.3 45.9

Table 3 Variation explained by
each domain, PCA

PC1 PC2 PC3 PC4

PA % 90.9 1.7 15.4 64.8

SL % 0.5 93.8 72.7 14.5

CR % 8.6 4.5 11.9 20.7

Cumulative variation % 29.1 48.2 55.9 62.2

results into a perspective by comparing the number of components and the number of
features representing each domain.

Table 2 shows the contribution of each domain to the variation explained by joint
and individual components. Overall, the joint components explained 39.3% of total
variation and the individual components explained 45.9% of total variation. It is inter-
esting to note that the first joint PC is almost exclusively loaded on PA (89.4%) and
CR (10.3%) domains. A similar loading allocation is observed for the fourth joint PC
which is loaded on PA (16.4%), SL (5.9%), and CR (77.7%) domains. The second
joint PC is primarily loaded on SL (57.2%) and CR (37.4%) domains.

To compare and demonstrate the difference between JIVE and PCA, we applied
PCA and retained first 4 principal components, which explained 62.2% of total vari-
ation. Variation explained by the PCs and their loading on the three domains are
displayed in Table 3. The first PC (PC1) is highly loaded on PA (90.9%) and CR
(8.6%), but not SL, which is similar to Joint PC1.
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Fig. 4 JIVE decomposition. Columns represent subjects and rows represent features. The columns are
vertically aligned for all heatmaps, with red corresponding to higher values and blue lower values. Rows
and columns are ordered by complete-linkage clustering of the joint structure

JIVE estimates in the form of low-rank matrix approximations are shown as
heatmaps in Fig. 4 with columns representing subjects and rows representing features.
Both columns and rows were clustered by complete-linkage hierarchical clustering
of Euclidean distances based on the joint structure to better display underlying latent
structures. The joint structure shows clear patterns that can also be seen in the three
blocks of data representing the domains. Note that the joint structure appears less
prominent in the CR domain, mostly because it explains a smaller amount of the
circadian variation.

PCA rank-4 approximation was visualized in a similar fashion and is shown in
Fig. 5. PCA obviously captured a low-rank structure that is different from the one
defined by joint components of JIVE.

Figure 6 shows the hierarchical clustering of features corresponding to JIVE joint
components (a–c in PA, SL, and CR domains, respectively) and PCA components (d–f
in PA, SL, and CR domains, respectively). In PA domain, the clusters are similar both
for JIVE and PCA: the features characterizing sedentary and active behavior compose
different clusters. However, in SL domain, the clusters created by JIVE are different
from those created by PCA. Interestingly, total sleep time (TSLT) forms a distinctive
cluster by JIVE, but not by PCA. On the other hand, sleep efficiency (SEFF) and
percentage of sleep time (pSLT) are placed in the same clusters both by JIVE and
PCA. Finally, in CR domain, although both JIVE and PCA create a distinctive cluster
including fPC1 and RA, however, JIVE provides a more nuanced clustering of the
other non-parametric and parametric features of circadian rhythmicity

Figure 7 shows the cumulative variation explained by the first four PCA and the four
joint JIVE PCs with the relative loading of each domain. Since PCA did not account
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Fig. 5 Rank 4 approximation based on PCA (no individual domain structure). Columns represent subjects
and rows represent features. The columns are vertically aligned for all heatmaps, with red corresponding
to higher values and blue lower values. Rows and columns are ordered by complete-linkage clustering of
the joint structure (Color figure online)

Fig. 6 Details of feature clustering for JIVE joint structure and PCA shown in Figs. 4 and 5. a–c show
clusters for JIVE estimation of PA, SL, and CR, respectively. d–f show clusters for PCA estimation of PA,
SL, and CR, respectively

for the individual structure, hence, it is less constrained, so it captured more variation
than joint JIVE. First, four PCA and joint JIVE PCs explain roughly 60% and 40% of
total variation, respectively. Surprisingly, almost 20% difference is primarily driven
by the reduced contribution of the SL domain.
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Fig. 7 Cumulative variation explained by first four PCA-PCs and first four JIVE-JT-PCs

Both PCA and JIVE provide principal component scores, projections of the original
data onto the corresponding principal components. Below, we denote a joint JIVE
score by “JT-PC” and an individual score corresponding to one of the domains by
“PA/SL/CR-PC.” Figure 8 shows the cross-correlation between all features, the 13
joint and individual JIVE scores, and top 4 PC scores from PCA. It is obvious that
there is extremely high correlation between features within both the PA and the SL
domains. However, the level of correlation in the CR domain is not as high. This is
expected because the first 10 functional PC scores have been included to represent
this domain. Surprisingly, there is a very low cross-correlation between features of
PA and SL domains. Moreover, all features in the PA domains display relatively high
correlation with majority of features in CR. This correlation is particularly strong
between PA and the first functional PC scores (fPC1), which typically shows the
average diurnal profile. As shown in 11 in Appendix A, fPC1 corresponds to overall
activity level during waking hours (approximately 6AM to 12AM), the time period
where the features of PAdomainwere derived formajority of participants.Weobserved
that JT-PC1 is highly correlated with majority of features from PA, and some features
from CR (especially fPC1), but not correlated with SL features. This is consistent with
our finding such that the first Joint PC primarily represents PA and CR, but not SL.
On the other hand, JT-PC2 and JT-PC3 represent significant variation of SL domain.
Figure 9 shows the age-related change of joint and individual JIVE scores. Clear age
trends can be seen for most of the derived JIVE scores with specific landmarks, such
as lows and highs and changes in the observed trends.

Unlike the original features that demonstrate significant correlation, the derived
JIVE scores are orthogonal by construction. Similar to how PCA scores are used in
the principal component regression to substitute original covariates with PC scores,
JIVE scores can be used in the same way.

To illustrate this, we studied the association between usual gait speed (a commonly
used indicator of physical function/performance) and scores from PCA (PCA regres-
sion) and JIVE (JIVE-regression). Both PCA and JIVE scores are uncorrelated by
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Fig. 8 Cross-correlations between twenty three PA features, twenty SL features, nineteen CR features, four
JIVE joint scores, two JIVE-PA scores, three JIVE-SL scores, four JIVE-CR scores, and four PC scores

construction, therefore, we can include all of them as covariates without worrying
about collinearity. Baseline model (Model 0) contains age, gender, and body mass
index (BMI) as covariates. Models 1 and 2 expand the baseline model with PCA and
JIVE scores, respectively. The results for all three models are shown in Table 4. In
general, the JIVE-regression resulted in a higher adjusted-R2 of 0.33 compared to
adjusted-R2 of 0.29 for PCA regression. However, this could be partially due to the
smaller number of PCA components. In the model with PCA scores, PCA-PC1 and
PCA-PC4 are negatively associated with gait speed. PCA-PC1 is highly loaded on
all features in PA domain, while PCA-PC4 is slightly loaded on almost all features
in all three domains. Thus, the interpretation of PCA regression is quite complicated
because it involves almost all features. JIVE-regression provides 0.09 increase in the
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Fig. 9 Relationship between age and joint/individual scores. Black solid lines are smoothing curve fitted
using loess

adjusted-R2 compared to the baseline model. Because all scores are uncorrelated
and normalized, the magnitude of regression coefficients can be approximately inter-
preted as a contribution to the increase of the adjusted-R2. First, JIVE-JT-1 is highly
negatively correlated with PCA-PC1, thus, this finding is similar to PCA regression.
However, significant scores JIVE-PA-2 in PA domain and JIVE-SL-2 and JIVE-SL-3
in SL domain together contribute more than a half to the increase of the adjusted-
R2. JIVE-PA-2 is highly loaded on all fragmentation metrics of physical activity and
JIVE-SL-2 and JIVE-SL-3 are highly loaded on the fragmentation of sleep and do
not include any metrics characterizing sleep efficiency. Thus, the results highlight
the features quantifying patterns of fragmentation both during wake and during sleep
as independently associated with gait speed. Interestingly, this is consistent with a
recent finding of a negative association between the gait speed and the fragmentation
of physical activity(measured by λa , i.e., activity-to-sedentary transition probability),
such that increasing of λa is associated with a slower gait speed [54]. To the best of
our knowledge, the association between gait speed and the sleep characteristics has
not been studied. Thus, JIVE-regression allows to separate domain-specific sources
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Table 4 Regression modeling of gait speed and PCA and JIVE scores

Model Covariates β p value Adjusted R2

Model 0 BMI − 0.079 0.21 0.24

Age −0.50 < 0.0001

Female −0.31 0.016

Model 1 PC1 −0.17 0.0069 0.29

PC2 − 0.031 0.61

PC3 − 0.11 0.075

PC4 −0.14 0.022

Model 2 JIVE-JT-1 0.21 0.00096 0.33

JIVE-JT-2 − 0.061 0.33

JIVE-JT3 0.036 0.56

JIVE-JT4 − 0.0055 0.93

JIVE-PA-1 − 0.016 0.79

JIVE-PA-2 0.15 0.012

JIVE-SL-1 − 0.019 0.75

JIVE-SL-2 −0.14 0.024

JIVE-SL-3 0.13 0.033

JIVE-CR-1 − 0.016 0.79

JIVE-CR-2 0.14 0.023

JIVE-CR3 0.049 0.34

JIVE-CR4 − 0.094 0.11

Model 0 is the baseline model with age, gender, and BMI.Models 1 and 2 include PCA-PC and JIVE scores,
respectively. All continuous variables (age, BMI, and all scores) have been centered and normalized
Statistically significant values are given in bold (p < 0.05)

of variability and model their independent association with the outcome of interest
while addressing possible multicollinearity.

We also explored a simple alternative to JIVE by using a two-step procedure: (1)
performing PCA to each individual domain and (2) applying JIVE to the joint truncated
data representing all three domains. To keep high enough percent of variation and to
be able to potentially recover structures similar to original JIVE, we considered two
scenarios for step one (PCA for individual domains): (1) keeping 5 PCs in each domain
and (2) keeping 8 PCs in each domain. The full results are provided in Appendix B.

We believe this approach may have two limitations. First, it requires rank selection
both at step 1 (PCA for individual domains) and step 2 (JIVE to truncated data). This
seems to introduce extra uncertainty. Second, if we do not keep a sufficiently large
number of PCs for each domain, this can result in not capturing some parts of joint
variation. One intuitive analogy is Principal Component Regression (PCR) that does
PCA on covariates at step 1 and regress PC scores on an outcome at step 2. PCR has
no guarantee that variation kept at Step 1 is relevant to variation of the outcome. In our
settings, PCA done in each individual domain is not informed by variation from other
domains and, thus, in the same way as PCR, may discard a part of joint variation.
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4.4 Sensitivity Analyses to Missing Data

In the main analysis, we follow the convention for BLSA actigraphy data processing
pipeline to handle missingness in raw minute-level AC data. Specifically, days with
more than 5% of missingness (more than 72 min per day) were treated as invalid and
excluded from the analysis. For the days with less than 5% of missing data, missing
values were imputed as the average activity counts per minute over all valid days at
the same period for each participant.

In this section, we conduct sensitivity analyses using alternative ways of handling
missing data. In sensitivity analysis 1 (denoted by S1), missing data were imputed
using median of the specific time for each participant. We still have 198 subjects with
the total of 1134 valid days (the mean is 5.72 days and standard deviation is 0.62).
In sensitivity analysis 2 (denoted by S2), instead of using 5% of the threshold, we
excluded days with more than 7% of missing data (101 min per day). We have 198
subjects with the total of 1163 days (the mean is 5.76 days and standard deviation is
0.59). In sensitivity analysis 3 (denoted by S3), we considered the most aggressive
approach that removed all days with any missing data. This approach resulted in 189
subjects with the total 986 days (the mean is 5.22 days and standard deviation is 0.98).

All three approaches provided the results very similar to the results in the main
analysis. In all three sensitivity analyses, JIVE chose joint rank to be 4, and individual
ranks for PA/SL/CR domains to be 2, 3, and 4, respectively. Fig 10 displays bar-charts
of the amount of variation explained by joint and individual components in each of the
three domains. PA is dominated by the joint variation, SL is dominated by individual
variations, and a significant amount of variation remained unexplained in CR domain.

Figures 15, 16, and 17 in the appendix display the cross-correlation plots between
features and JIVE/PCA scores. The patterns are quite similar to what we observed
from main analysis as well.

5 Discussion

We proposed to use JIVE to model individual and joint variation of domains of physi-
cal activity, sleep, and circadian rhythmicity represented by multiple domain-specific
actigraphy-derived features. Using the BLSA study, we estimated and separated joint
and individual components and scores and examined the correlation between those
scores and the original features. We also explored age-specific changes of the scores
and their association with usual gait speed. To the best of our knowledge, this is the
first attempt to simultaneously model the domains of PA, SL, and CR using JIVE.

Our results demonstrate that the first JIVE Joint PC (JT-PC1) primarily represents
shared PA andCR variation. Recent studies have shown that fPC1, which is also highly
correlated with JIVE-JT-PC1, can be used as a biomarker for “biological age” [50].
Even though JIVE is developed to identify joint variation across all three domains, this
is an interesting finding. This can be further investigated by applying recently devel-
oped “structural learning and integrative decomposition” [22] that estimates partially
shared variation by assuming certain block-sparsity across domains.
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Fig. 10 Joint and individual variations explained by each domain from JIVE for S1–S3. Results of all three
sensitivity analyses are similar to the variation pattern in the main analysis

Visual exploration of age-related changes in JIVE scores revealed interesting trends
across joint and individual JIVE scores. These trendsmayprovide additional insights in
studies of PA/SL/CR that look at age effects, and try to understand joint and individual
effects to each domain. This deserves further analyses and proper regression modeling
in the future to identify a more rigorous relationship between age and the joint and
individual scores.

From regression modeling perspective, JIVE provides joint and individual scores
that can be included simultaneously in regression models as covariates, which can
be seen as an extension of the standard principal component regression [34]. A big
advantage of JIVE is its ability to separate joint and individual variation and to
explore associations between domain-specific variation and outcomes. As an exam-
ple, we studied the association between usual gait speed with PCA and JIVE scores.
The results showed that features quantifying patterns of fragmentation both during
wake and sleep time were independently associated with gait speed, which sup-
ports results from a recent study [54]. Thus, our results demonstrate the potential
of JIVE to reveal important biological mechanisms in the joint context of PA, SL, and
CR.

It is important to note that, JIVE, similar to PCA, is an unsupervised, data-driven
approach for dimension reduction, which depends on pre-selected features and, poten-
tially, the study sample [52]. Therefore, when JIVE results are interpreted, it is crucial
to understand that the inferences are based on pre-selected features. Even though we
tried to incorporate a comprehensive list of commonly used features, the research
fields of physical activity, sleep, and circadian rhythmicity are under a rapid develop-
ment with a constant in-flow of novel summaries. Therefore, the number of features
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within each domain is expected to increase drastically. A big advantage of JIVE is
that it efficiently handles redundancy of highly correlated features. Thus, for those
features that require thresholding of AC or depend on a parameter which needs to
be tuned or there is an interest in considering multiple time scale, it is possible to
include several features corresponding to a wide grid of thresholds/parameters/time
scales and eliminate created redundancy through JIVE. This is important because (i)
this eliminates the need for choosing thresholds/parameters and (ii) different thresh-
olds/parameters may correspond to different aspects of the phenomena of interest.
It is also important to note that BLSA is a study of healthy aging and on average
tend to focus on healthier sub-population, so the results in another cohort may be
different.

Surprisingly, in our study the cross-correlation between domains of PA and
SL was small. There are a few possible explanations for this. First, it may be
due to non-linear relationships between features of PA and SL. For example, it
has been shown that the total sleep time usually exhibits a U-shaped associa-
tion with various health outcomes such as obesity, diabetes, heart disease, and
mortality [5,6,36,49,60]. Second, domain-specific features were generated by aver-
aging across valid days, which likely resulted in damping dynamic associations
between adjacent sleep–wake periods. Thus, potentially strong within-week tempo-
ral patterns clustered within subjects were averaged out. Estimating those weekly
temporal patterns and incorporating them into JIVE will need to be done as a next
step.

JIVE can be readily extended to include an arbitrary number of domains. This is
especially important considering the active embeddingofmultiple sensors inwearables
for multi-domain tracking of physical activity, ambient light, skin temperature, sweat,
blood pressure, glucose, heart rate, and many others.

There are a few limitations. First, JIVE only accounts for second-order correlation
structure and ignores higher-order mutual dependencies that may be quite informa-
tive when dealing with continuous multivariate non-Gaussian data. Second, JIVE
is not capable of working with features that follow discrete distributions such as
binary, Poisson, ordinal, or categorical distributions. Third, JIVE only models joint
and individual patterns without accounting for partially shared structure, when, for
example, two domains can share a joint component that is not present in the third
domain. Thus, future work will need to focus on developing and applying methods
that decompose joint dependence structure using measures of higher-order depen-
dency, such as multivariate skewness and kurtosis [33,43,45], and are capable of
handing mixed data types [39,62,66] and accounting for partially shared structure
[22].

In summary, our proposal of using JIVE to model the domains of PA, SL, and CR
is an important step forward to provide analytical methods for multi-feature multi-
domain wearable data that will facilitate our understanding of complex interactions of
multiple physiological systems.
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Fig. 11 First 10 functional principal components reported with cumulative variance explained
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Appendix

A Functional PCA

Functional PCs for circadian rhythmicity domain, for each subject, 1440-min activity
profile were averaged across valid days which resulted in an average daily profile
that is representative. Then functional PCA using sandwich smoother for covariance
matrix smoothing was applied [78]. The first 10 principal components explained more
than 90% of total variation. Figure 11 shows the first 10 functional PCs.
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Fig. 12 Joint and individual variations explained by each domain from the alternative approach to conduct
JIVE. a 5 PCs were kept from the first step. Joint structure explains 87.3%, 49.8%, and 19.6% of total
variation in PA, SL, and CR domains, respectively. Individual structures explain 9.6%, 48.2%, and 79.8%
of total variation in PA, SL, and CR domains, respectively. And there are only 3.2%, 2.0%, and 0.5%
of variation that cannot be explained in PA, SL, and CR, respectively. b 8 PCs were kept from the first
step. Joint structure explains 64.4%, 58.6%, and 21.6% of total variation in PA, SL, and CR domains,
respectively. Individual structures explain 31.4%, 37.3%, and 76.4% of total variation in PA, SL, and CR
domains, respectively. And there are only 4.2%, 4.1%, and 2.0% of variation that cannot be explained in
PA, SL, and CR, respectively

B Results from the Two-Step Alternative Approach

We considered an alternative two-step approach by first performing PCA to each
domain individually, and then applying JIVE to the joint truncated data from all three
domains.

In order to keep as much joint variation as possible, we considered in the first step
(i.e., individual PCA) to keep 5 and 8 PCs from each domain. When 5 PCs were kept
in each domain, JIVE selected joint rank to be 4, and 1, 2, and 5 as the individual ranks
for PA, SL, and CR, respectively. Meanwhile, when 8 PCs were kept in each domain,
JIVE selected joint rank to be 4 as well, but individual ranks to be 2, 2, and 7 for
domains for PA, SL, and CR, respectively. Figure 12 shows the proportion of variation
explained. Even though it seems like there are more joint variation recovered, but
we have to keep in mind that potentially useful information may have been removed,
and the proportion here is with respect to the remained variation in the truncated
data.

Figures 13 and 14 show the relationships between JIVE results from the main
analysis (denoted by (A)) and the alternative analysis with 5 PCs selected (denoted
by (B1)), and with 8 PCs selected (denoted by (B2)). The first joint PCs between
(A) and (B1)/(B2) are highly correlated, which shows high consistency between
the two approaches. There is also certain level of correlation between JT-PC2 from
the two approaches. The individual PCs from the two approaches are highly corre-
lated.
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Fig. 13 Cross-correlations between (A) original JIVE and (B1) two-step JIVE with 5 PCs selected in the
first step

C Results for the Sensitivity Analyses

This section contains the results from the sensitivity analyses described in Sect. 4.4
where we considered 3 other ways to handle missing data in activity profiles. In
sensitivity analysis 1 (S1), missing data were imputed using median of the specific
time within each subject instead of mean. We still have 198 subjects contributed
by 1134 days (with mean 5.72 days and standard deviation of 0.62). In sensitiv-
ity analysis 2 (S2), instead of using 5% of the threshold, we consider removing
days with more than 7% of missing data (101 min per day). We have 198 sub-
jects contributed by 1163 days (with mean 5.76 days and standard deviation of
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Fig. 14 Cross-correlations between (A) original JIVE and (B2) two-step JIVE with 8 PCs selected in the
first step

0.59). In sensitivity analysis 3 (S3), we considered the most aggressive approach
which is to remove all subject days with missing values. This approach left us 189
subjects contributed by 986 days (with mean 5.22 days and standard deviation of
0.98).

The patterns are quite similar to what we observed from the main analysis. In S1,
joint structure explains 68.1%, 20.1%, and 25.8% of total variation in PA, SL, and CR
domains, respectively. Individual structures explain 26.1%, 74.5%, and 38.5% of total
variation in PA, SL, and CR domains, respectively. And there are only 5.8%, 5.3%,
and 35.7% of variation that cannot be explained in PA, SL, and CR respectively. In
S2, joint structure explains 69.0%, 18.7%, and 25.9% of total variation in PA, SL, and
CR domains, respectively. Individual structures explain 25.2%, 76.2%, and 38.6% of

123



396 Statistics in Biosciences (2019) 11:371–402

Fig. 15 Cross-correlations between features and JIVE/PC scores, for S1, where median is used to impute
missing data

total variation in PA, SL, and CR domains, respectively. And there are only 5.7%,
5.2%, and 35.5% of variation that cannot be explained in PA, SL, and CR respectively.
Finally, in S3, joint structure explains 63.6%, 20.7%, and 27.2% of total variation in
PA, SL, and CR domains, respectively. Individual structures explain 30.5%, 73.0%,
and 35.3% of total variation in PA, SL, and CR domains, respectively. And there are
only 6.0%, 6.3%, and 37.5% of variation that cannot be explained in PA, SL, and
CR, respectively. The cross-correlation plots between features and JIVE/PC scores
are shown in Figs. 15, 16, and 17.
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Fig. 16 Cross-correlations between features and JIVE/PC scores, for S2, where days with more than 7%
were removed
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Fig. 17 Cross-correlations between features and JIVE/PC scores, for S3,where all subject dayswithmissing
values were removed
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