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Abstract
In studies of gait, continuousmeasurement of force exerted by the ground on a body, or
ground reaction force (GRF), provides valuable insights into biomechanics, locomo-
tion, and the possible presence of pathology. However, gold-standard measurement of
GRF requires a costly in-lab observation obtained with sophisticated equipment and
computer systems. Recently, in-shoe sensors have been pursued as a relatively inex-
pensive alternative to in-lab measurement. In this study, we explore the properties of
continuous in-shoe sensor recordings using a functional data analysis approach. Our
case study is based on measurements of three healthy subjects, with more than 300
stances (defined as the period between the foot striking and lifting from the ground)
per subject. The sensor data show both phase and amplitude variabilities; we separate
these sources via curve registration. We examine the correlation of phase shifts across
sensors within a stance to evaluate the pattern of phase variability shared across sen-
sors. Using the registered curves, we explore possible associations between in-shoe
sensor recordings and GRF measurements to evaluate the in-shoe sensor recordings
as a possible surrogate for in-lab GRF measurements.
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1 Introduction

1.1 Motivation

In order for humans to walk or run, the ground must exert a force on the bottom of
the shoe, or foot, that results in acceleration of the human center of mass. This force
is called the ground reaction force (GRF). The resultant GRF vector is often resolved
into three orthogonal components: a vertical component and two horizontal com-
ponents often called anterior–posterior (fore–aft) and medial–lateral (side-to-side).
Various characteristics of the vertical component of walking and running GRF are
measured, because they are associated with common musculoskeletal impairments
and disease. For example, characteristics of the vertical GRF during walking and run-
ning are associated with knee joint health, including knee osteoarthritis onset and
progression [13,32,37]. Vertical GRF is also measured in order to discern progression
of a musculoskeletal disease, like knee osteoarthritis, or the effectiveness of a clinical
intervention designed to slow disease progression [24].

Currently, the accurate measurement of walking and running GRF requires a sub-
ject to walk across a force platform that is either embedded in a laboratory floor or
moveable surface (e.g., a force-sensing treadmill). Commercial force platforms and
force-sensing treadmills are expensive; further, such instruments are restricted to labo-
ratory environments and require extensive human resources (i.e., expertise) tomanage.
These challenges prohibit some researchers and most clinicians from making accu-
rate measures of walking and running GRF. In addition, real-world (i.e., out of the
laboratory) measures of GRF are currently difficult or impossible to obtain.

These issues have motivated a development of mobile force sensors that can be
used to measure GRF outside of a traditional motional analysis laboratory. Novel
piezo-responsive foam sensors placed in athletic shoes have been recently developed
to accurately estimate walking 3D GRF outside of the laboratory [28]. The electrome-
chanical behaviors of these sensors have been validated for use in various large-strain
applications [2,14]. The strain-induced voltage is measured by attaching a conductive
material embedded in the foam to a voltage-sensing system, which correlates to the
force of impact [21]. By embedding the foam into a shoe sole, it has been shown that
the voltage response generated during gait accurately correlates to 3D GRF [28].

There are several potential advantages of using in-shoe sensor as a surrogate of GRF
measurement. While the GRF is only recordable in controlled indoor laboratories, in-
shoe sensors can be simply incorporated into the sole of a pair of shoes and deployed
anywhere to analyze one’s gait in various settings. Furthermore, Seliktar et al [33]
pointed out a chance of distortion in one’s gait pattern when asked to walk on the
force plates. Distortions that interfere with detecting a true gait pattern are less likely
to happen when using the in-shoe sensors placed on a regular pair of shoes. Thus, it
is important to explore the properties of in-shoe sensor data to understand if in-shoe
recordings can be a viable alternative of GRF measurement.

Figure 1 shows recorded values from both in-shoe sensors and gold-standard GRF
measurement obtained via a force-sensing treadmill, during the ground contact phase
of running (i.e., between heel strike and toe-off, called a “stance”) for five consecutive
stances in a healthy individual. Recordings for both in-shoe sensor and vertical GRF
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(VGRF) measurements are shown over time for each stance. In the first four panels,
the x-axis corresponds to the standardized time frame and the y-axis corresponds to
in-shoe sensor readings. The sensor is measuring a triboelectric effect as the embedded
nanofillers rub against the base polymer in the foam. This effect may be amplified or
concentrated by the voids in the foam which can function as a short duration capacitor
that stores voltage and then discharges it. Larger forces produce larger displacements
in the foam, which correspond to higher magnitude electrical response; in turn, the
responses create more negative values in the sensor readings. The sensor has its lowest
(most negative) values when reacting to the largest forces.

The values observed from the sensors reflect the subject’s gait pattern. According to
Fig. 1, for example, each stance in in-shoe sensor data contains a large dip, after which
the value increases and flattens until the completion of the stance. Recordings within
a sensor share a common structure that is misaligned across stances: the exact timing
of major features depends on stance. Furthermore, the magnitude of the common
feature differs between stances. These observations relate to phase and amplitude
variabilities, respectively; phase variability relates to shifts in time, while amplitude
variability relates to the change in the magnitude of measurements.

The VGRF measurement shown in the fifth panel of Fig. 1 is more stable than
in-shoe sensor recordings, and does not show significant time shifts across stances.
Indeed, it has been documented that healthy runners are very consistent in their stances
[1,15]. Thus, the phase variability in in-shoe sensor data across stances in Fig. 1 is not
expected, and the misalignment arises in the recording process rather than reflecting
actual variability across stances. Removing phase variability from the in-shoe sensor
data is a necessary step if these measurements are going to be used as surrogate mea-
sures of VGRF. In addition, analyzing the sensor data without proper understanding of
phase variability may lead us to draw misleading conclusions regarding the amplitude
variability of common stance features [29]. Our goal, then, is to explore the elimina-
tion of phase variability of in-shoe sensor data without altering the values taken by
the curves, so that differences in amplitude variability can be evaluated as alternative
measures of the VGRF in studies of walking pattern and gait.

Temporal realignment of curves is referred to as curve registration in the func-
tional data analysis literature. Specifically, curve registration shifts, stretches, and
compresses the observations in time so that major features are aligned across curves.
In this process, clock (originally observed) time is converted into the system (common
across curves) time via time warping functions. Let t∗ and t denote clock and system
time, respectively. A warping function h : [0, 1] → [0, 1] represents the functional
relationship between clock time and system time through t∗ = h(t). The warping
functions are monotone increasing with h(0) = 0 and h(1) = 1. The principal chal-
lenge in registration, then, is the estimation of warping functions. Curve registration is
often necessary before applying additional statistical methods to smooth curves, and
warping functions themselves can contain useful information about observed curves.
In this article, we use a curve registration to understand the phase and amplitude
variabilities arising in the in-shoe sensor data.

We investigate the variability present in the in-shoe sensor data recorded for three
representative healthy subjects, with more than 300 stances per subject. We emphasize
the importance of understanding the source of variability and the utility of adequately
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addressing phase variability. Based on the hypothesis that time shifts across sensors
within the same stancemaybe similar,we examine the correlation ofwarping functions
using a permutation test. We further examine the amplitude variability of the in-shoe
sensor recordings after registration, particularly with relation to GRF, by employing
function-on-function regression models. All analyses are conducted separately for
each subject due to unique running patterns.

1.2 Literature Review

In studies of gait, curve registration is valuable but underutilized in reducing intra-
subject variability. In studies of joint mechanical power data, Sadeghi et al. [29,30]
emphasized the importance of curve registration as a preprocessing step. Both stud-
ies obtained joint mechanical power data for the right lower limb of healthy subjects
using a 3D video-based system. Sadeghi et al. [29] applied a straightforward reg-
istration method to align salient features of the observed curves before comparing
key power bursts; Sadeghi et al. [30] implemented more flexible registration method.
These studies found that realigning the observed curves reduces the temporal vari-
ability induced by external sources and instrumental issue and facilitates the focus on
sources of variability that reflect meaningful biomechanical features. More recently,
curve registrationwas used in gait studies on healthy subjects [3,12] and for comparing
healthy individuals to stroke patients [38].

In functional data analysis, curve registration was introduced to identify a shared
structural pattern in a sample of curves and to understand individual realizations of the
shared pattern [16,18,25]. There have been a variety of approaches to and applications
of curve registration. For an in-depth history of curve registration, see Marron et al.
[19,20].

A simple approach to curve registration, referred to as landmark registration, locates
important features of the observed curves by hand or using an automated process and
realigns them using piecewise linear warping functions [7,16]; landmark registration
was implemented in Sadeghi et al. [29]. Although landmark registration is simple and
straightforward to implement, it can be difficult and time consuming to determine
landmark locations, and the performance of this approach may be poor in the area
away from the landmarks.

More flexible methods for curve registration have been introduced. In principle,
they estimate nonlinear, monotone warping functions that map the system (warped)
time into observed clock time. [34] proposes a method that does not require landmarks
by considering uniform shifts in time to realign the observed curves. Ramsay [26] and
Ramsay and Li [25] propose an iterative algorithm with two steps: first, estimate the
cross-sectionalmean of the registered curves using currentwarping function estimates,
and second, update warping function estimates to minimize distance to the shared
mean. This approach was used by Sadeghi et al. [30]. Building on this framework,
functional principal component analysis (FPCA) has been widely used to model the
common structure shared by registered curves [5,6,17].

Srivastava et al. [36] suggests a metric-based framework for registering elastic
curves. The method, like other iterative algorithms for curve registration, alternates
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between two steps until convergence. In this approach, the Fisher–Rao Riemannian
metric and square-root velocity function (SRVF) are used to quantify the distance
between two curves. The Fisher–Rao metric is a widely used tool to compare the
shape of curves; for example, the work of Peter and Rangarajan [23] represents
landmark-based shapes using a Gaussian mixture model and computes geodesic dis-
tances between two shapes using the parametric Fisher–Rao metric. Srivastava et al.
[35] use the extension of nonparametric Fisher–Rao metric directly on the space of
functions, and its parametrization invariance is used to separate the phase and ampli-
tude variabilities. The SRVF maps the Fisher–Rao metric to Euclidean space, which
enables the comparison of distances in L

2 space; it greatly simplifies computation in
analyzing shapes. This method is extended to generative models in Tucker et al. [39]
and the analysis of shape of elastic curves in Euclidean space in Srivastava et al. [35];
it has also been applied to proteomics data and spike train data [40,41].

The remainder of this paper is organized as follows. Section 2 introduces the gait
data and describes the questions of interest. Section 3 illustrates the use of curve
registration, constructs a permutation test framework for evaluating correlation within
stance across sensors, describes ametric that quantifies the amplitude variability before
and after curve registration, and introduces functional regression methods to model
the association between in-shoe sensor recordings and VGRF curves. We present the
results of curve registration, permutation testing, quantification of amplitude variabil-
ity, and regression model fitting in Sect. 4. We conclude with a discussion of our
findings and open areas for future research in Sect. 5.

2 Data

Data were collected in a biomechanics laboratory at Brigham Young University. Sub-
jects were instrumented with a Cosmed K4b2 portable metabolic analyzer (Cosmed
K4b2, Cosmed, Rome, Italy) and standardized athletic shoes instrumented with the
nanocomposite piezo-responsive foam (NCPF) sensors, accompanying electrical com-
ponents, and an accelerometer attached to the dorsal aspect of the shoe (Fig. 2). Next,
to be able to account for any NCPF sensor drift, subjects completed a 15-min warm-
up run at 2.68 m/s. After this warm-up, subjects completed five different trials in a
randomized order. Each trial consisted of 4 min of walking or running, at one of the
following speeds: 1.34, 2.23, 2.68, 3.13, or 3.58 m/s. A 1-min walk (1.34 m/s) was
completed before and after every trial, to be able to characterize any drift in the NCPF
sensors. Voltages, recorded via the NCPF sensors and microcontroller (1000 Hz),
energy expenditure, recorded via the Cosmed (breath by breath), and accelerations,
measured via the shoe accelerometer (16 Hz), were measured throughout the entire
collection period (the warm-up period and all five trials), which lasted approximately
50 min.

The data set analyzed here consists of measurements obtained from three healthy
female subjects whowear size 8 shoes. Themass and height of the subjects are (52, 60,
60) kg and (161, 165, 169) cm, respectively. Each subjectwas required to 1) be between
the ages of 18 and 30; 2) have no history of lower-extremity injury within the past 6
months; 3) have no history of lower-extremity surgery in their lifetime; 4) be able to
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Fig. 2 In-shoe sensor: (Left) NCPF sensor with wires embedded to measure the voltage response during
impacts. (Right) Shoe equipped with NCPF foam sensors, microcontroller, and battery. The sensors were
embedded under the insole at the heel, arch, ball, and toe

walk and run without pain; and 5) be able to comfortably run consistently for at least 5
continuous km. Each subject ran at 6mph (2.68m/s) for 4min and completed 362, 321,
and 308 stances, respectively. Consistent with much of the scientific literature in this
area, we define “stance” as a period from heel strike (point at which vertical GRF rises
above 50 N) to toe-off (point at which VGRF drops below 50 N). From each stance,
information such as VGRF and in-shoe sensor measurements at four locations (heel,
arch, ball, and toe) has been collected. Completing a stance takes different amount
of time; once a stance is extracted, the curves are linearly interpolated to a common
domain with 200 discrete time points. This preprocessing formats the data in a way
that is suitable for our subsequent analysis, but does not alter stances beyond a simple
stretching to a common domain.

The resulting data are shown in Fig. 3. For each in-shoe sensor and subject, a
common feature exists across stances but is misaligned in time. In addition to the
observed phase variability, there is amplitude variability across individuals and stances.
The distinctive patterns in the in-shoe sensor and VGRF data across subjects are due
to different running styles. We classify the Subject 1 as a mid-foot striker; this runner
is more likely to land near the middle of the foot, rather than the heel, leading to low
amplitude variability in the heel sensor and high amplitude variability in the arch and
ball sensors. This running pattern also results in the absence of an impact transient,
or initial local maximum, in the VGRF. In contrast, the remaining subjects are heel
strikers who show greater amplitude variability in the heel sensor, lower amplitude
variability in the arch, ball, and toe sensors, and have, to differing degrees, the impact
transient in the VGRF.

These distinctive running patterns may have long term implications for biome-
chanics and the health of joints involved in running [27]. The initial peak or impact
transient is an important element of GRF data, as is the slope, or load rate, of the
impact transient. A steeper impact transient load rate is thought to be correlated with
certain musculoskeletal injury [4], and the absence of this peak for the Subject 1 might
suggest that she is at lower risk for certain types of injuries [27].

123



Statistics in Biosciences (2019) 11:288–313 295

Fi
g.
3

O
ri
gi
na
lm

ea
su
re
m
en
ts
:O

bs
er
ve
d
da
ta
fo
r
th
re
e
ru
nn

er
s
ar
e
sh
ow

n
in

ro
w
s;
da
ta
fr
om

in
-s
ho

e
se
ns
or
s
at
va
ri
ou

s
lo
ca
tio

ns
ar
e
sh
ow

n
in

th
e
fir
st
fo
ur

co
lu
m
ns

an
d
th
e

di
re
ct
m
ea
su
re

of
V
G
R
F
is
sh
ow

n
in

th
e
fif
th

co
lu
m
n.
C
ur
ve
s
ar
e
co
lo
r
co
de
d
pe
r
su
bj
ec
t,
an
d
ea
ch

cu
rv
e
re
pr
es
en
ts
a
st
an
ce

123



296 Statistics in Biosciences (2019) 11:288–313

As noted in Sect. 1.1, time shifts in in-shoe sensor data are not expected for healthy
subjects. The stance-level force measurements are expected to be relatively consis-
tent, and shifts away from a common structure shared by every curve are an issue of
measurement rather than true phase variability; this is emphasized by the consistency
of concurrently measured VGRFs during data collection. There are several possible
reasons for the presence of phase variability in in-shoe sensor data, including the
need for a warming-up duration before sensors output consistent voltages correspond-
ing to consistent impacts and the possibility of misalignment in the sensor recording
mechanisms (e.g., inconsistent identification of heel strike). It is also unclear whether
the phase variation is similar across sensors within the same stance; that is, whether
recordings made by the difference sensors on the same stance are time-shifted in a
similar way. For new and developing technologies, such as NCPF sensors, preprocess-
ing the observed data is valuable for understanding how the technology can be used
and improved.

3 Methods

Unlike classic statistical methods, where one observation consists of a single scalar
value, functional data analysis considers the basic unit of observation to be a smooth
curve. The gait data illustrated in Fig. 3 are an example of functional data, since
stances recorded by each sensor within each subject are the observations of interest.
We introduce notation to denote curves for each subject and conduct curve registration
to each sensor and subject separately. Let ysi (t

∗), t∗ ∈ [0, 1], denote the observed curve
for the i-th stance for sensor s, where i = 1, 2, . . . , I , and s = 1 (Heel), 2 (Arch),
3 (Ball), 4 (Toe). Here, the clock time t∗ is curve specific; the goal of curve registration
is to estimate warping functions t∗ = hsi (t) that map the shared system time t to curve-
specific clock time t∗.

3.1 Curve Registration

We implement the curve registration proposed by Srivastava et al. [36]. Like other
approaches, this method is based on an iterative algorithm that alternates two steps
until convergence. In the first step, themean of registered curves using current warping
functions is estimated; this mean is referred to as a template. In the second step,
the warping functions are updated to minimize the distance between the curves and
the current template, using the square-root velocity function (SRVF) to calculate the
distance between twocurves. TheSRVF represents theFisher–RaoRiemannianmetric,
which is a widely used tool to compare the shape of curves in L

2, and alleviates the
computational complexity of the algorithm.

More concretely, for an absolutely continuous function ysi (t
∗), t ∈ [0, 1] with its

derivative ys
′

i (t∗), define the SRVF qsi : [0, 1] → R as

qsi (t
∗) = sign(ys

′
i (t∗))

√
|ys′i (t∗)|.
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With warping function t∗ = h(t), the SRVF of the registered curve ysi (h
−1(t∗)) can

be written as qsi,h(t
∗) = q(h−1(t∗))

√
(h−1)

′
(t∗). For any curves ysi (t

∗) and ys
i ′ (t

∗),
i, i

′ ∈ {1, 2, · · · , I } and a warping function h(t), the distance between SRVFs of
registered curves is the same as that between SRVFs of unregistered curves; i.e.,
||qsi,h(t∗) − qs

i ′ ,h(t
∗)|| = ||qsi (t∗) − qs

i ′ (t
∗)||. This distance function in L2 is invariant

to time warping, and it can be used to define a mean template.
In the first iteration, the template μ(t∗) is taken to be the observed qsi (t

∗) that is
closest to the sample mean 1

I

∑I
j=1 q

s
j (t

∗). Then, in the second step of the iterative
algorithm, for each observed curve ysi (t

∗), warping function estimate is updated as
argminh ||μ(t∗) − qsi,h(t

∗)||. That is, the warping function estimate minimizes the
distance of SRVF between the template and registered curves. In subsequent iterations,
the template is updated as a mean of SRVFs qsi,hi with current warping function
estimates. The algorithm iterates the two steps of calibrating the template μ(t∗) and
updating the warping functions until convergence.

Although we use the SRVFs for curve registration and achieve computational effi-
ciency, the q functions are difficult to interpret in themselves. We instead focus on the
aligned sensormeasurements for subsequent analyses so that wemake an interpretable
inference regarding the gait measurements.

3.2 Sources of Variability

We conduct exploratory analyses on registered curves to evaluate the utility of curve
registration. Following Tucker et al. [39] and Kneip and Ramsay [17], we define the
amplitude variability of observed curves {ysi (t∗), i = 1, 2, . . . , I , t∗ ∈ [0, 1]} for
sensor s as

Vs = 1

I − 1

∫ 1

0

I∑
i=1

⎛
⎝ysi (t

∗) − 1

I

I∑
j=1

ysj (t
∗)

⎞
⎠

2

dt∗.

Similarly, we define the amplitude variability after curve registration with time trans-
formation t∗ = hsi (t) and denote the resulting quantity asV

s
h . This definition quantifies

the amplitude variability as the mean integrated sum of squared differences between
curves in a sample and their mean. We expect that the amplitude variability before
curve registration, V s , may contain variability attributable to misalignment in time.
Therefore, we compare the amplitude variability before and after curve registration to
describe the utility of curve registration.

In addition, we conduct functional principal component analysis (FPCA) to under-
stand the patterns observed in amplitude variability after curve registration [8,42].
FPCA allows a parsimonious representation of registered curves by decomposing the
observed functions into a mean, scores, and shared functional principal components:

ysi (t) = μs(t) +
K∑

k=1

csikφ
s
k(t) + εsi (t) (1)
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The representation in (1) is based on the Karhunne-Loève representation of the ysi (t)
in which μ(t) is the population mean, the φs

k are population level basis functions
obtained through an eigendecomposition of the covariance Cov(ysi (t), y

s
i (t

′)) with
corresponding eigenvalues λsk such that λ

s
1 ≥ λs2 ≥ . . ., the subject-specific scores csik

with E(csik) = 0 and Var(csik) = λsk are uncorrelated random variables, and the εsi (t)
are white noise errors.

In our analyses, FPCA is conducted for each sensor separately to understand the
directions of variation for each sensor within subjects.

3.3 Phase Variability Across Sensors

We are interested in exploring the similarity of phase shifts across sensors within
stance. Similarity in time shifts across sensors within stance may reasonably be
expected given the biomechanical process underlying these data; dissimilarity would
suggest that phase shifts are not consistent across sensors in the same stance.

To assess similarity, we use a permutation test based on a functional analog of
Pearson’s correlation that considers the relationship between two warping functions
after subtracting the identity function (i.e., h(t) = t). Namely,we define the correlation
between two warping functions from sensor s and s′ within the i-th stance as

Corri =
∫ 1
0 {hsi (t) − t}{hs′i (t) − t} dt − ∫ 1

0 {hsi (t) − t} dt ∫ 1
0 {hs′i (t) − t} dt√[∫ 1

0 {hsi (t) − t}2 dt − [∫ 1
0 {hsi (t) − t} dt]2][∫ 1

0 {hs′i (t) − t}2 dt − [∫ 1
0 {hs′i (t) − t} dt]2]

.

Terms in the numerator and denominator are based on the expectations and vari-
ances that appear in the usual definition of Pearson’s correlation. Let ĥsi (t) denote the
estimated warping function of the i-th stance for sensor s, where i = 1, 2, . . . I and
s = 1, 2, 3, 4. The test statistic used to evaluate the similarity across sensors is the
mean of correlations within stance Corri ; that is, we compute the correlation between
two sensors within each stance, and then average across stances.

To determine statistical significance, we randomly permute the stance label of sec-
ond sensor, recompute within-stance correlations, and average across stances. Test
statistic for k-th permuted sample, denoted as Tk , is defined as a mean of correlations
in the permuted sample. We repeat the permutation process K times to obtain a null
distribution for our test statistic. The p value for permutation test is defined to be

pvalue = 2 ×
∑K

k=1 1{T < Tk}
K

.

3.4 Association Between In-Shoe Sensors and GRF

We are interested in the relationship between VGRF curves and the aligned in-shoe
sensor recordings because any meaningful relationship between VGRF curves and
in-shoe sensor recordings may support the utilization of inexpensive in-shoe sensor
measurement as a surrogate for GRF measurement.

123



Statistics in Biosciences (2019) 11:288–313 299

To understand possible associations, we apply function-on-function regression
models using VGRF as an outcome and in-shoe sensor recording as a predictor. Let
VGRFi (t) be the measure of VGRF from the i-th stance and let ysi (u), u ∈ [0, 1]
denote the registered curve of the i-th stance for sensor s. We fit a model with VGRF
as a response and the sensor s recording as a predictor:

VGRFi (t) = β0(t) +
∫ 1

0
ysi (u) βs(u, t) du + εi (t). (2)

We fit separate models for each subject using the tensor-product spline approach
described in Scheipl et al. [31] and implemented in the pffr function in the refund
package in R [9]. The bivariate coefficient surface βs(u, t) is smooth over both u and
t and relates the predictor measured over u to the response measured t , respectively.
In this model, fitted values at time t are obtained fixing t and viewing βs(u, t) as
as a univariate coefficient function over u, which is multiplied by the predictor and
integrated over u. The bivariate smoothness of βs(u, t) allows the effect of predictor
functions to vary over the domain of the response.

4 Results

4.1 Curve Registration

Curve registration is applied separately to each individual and each measurement.
Figure 4 shows in-shoe sensor curves after registration, and can be directly com-
pared to Fig. 3. The fifth panel in Fig. 4 shows unregistered VGRF measurement;
although the VGRF is not realigned, it is presented in the figure to aid visual compar-
isons.

Curve registration achieves a reduction in phase variability; curves are better
aligned, and amplitude variability is more easily understood. For example, the spikes
in the early phase of the heel sensor for each subject were largely obscured before
registration. In the middle of Subject 1’s arch and Subject 2’s toe sensors, there is
some variability after registration.

Inverse warping functions for such realignments of Subject 1 are presented in Fig.
5, with observed clock times on the x-axis and aligned system times on the y-axis.
Roughly speaking, inverse warping functions above the identity line shift an early
peak in the observed time and map it to a later system time, while inverse warp-
ing functions below the identity warping shift later peaks to an earlier system time.
In the arch sensor, the range of system time when clock time is 0.5 is wide com-
pared to the other sensors, which is reasonable given the wide time shifts across
stances in the originally observed curves. Visual inspection of inverse warping func-
tions suggests that adjacent sensors, such as the heel and arch or the ball and toe, are
similar for this subject, which may imply some association in time shifts for these
sensors. The similarity in warping functions across sensors within a subject moti-
vates the pairwise comparison of warping functions across sensors presented in Sect.
4.3.
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4.2 Sources of Variability

Table 1 presents the amplitude variability, defined in Sect. 3.2, before and after curve
registration. As expected, all sensors across subjects have smaller amplitude variability
after curve registration. Many sensors have large reductions in amplitude variability,
often by asmuch as 80–90%; for example, the heel sensor of Subject 2 and the heel and
arch sensors of Subject 3. The substantial reduction in amplitude variability indicates
that the registration has a substantial effect in understanding the sources of variability
in sensor data.

After curve registration, we can better understand the patterns that underly ampli-
tude variability. We conduct FPCA to identify the dominant direction of variation in
the registered curves. The first two FPCs for all subjects and sensors are plotted in
Fig. 6. Between 24 and 50% of curve variability is explained by the first FPC, and
the first two FPCs together explain between 39 and 75%. The FPCs for each subject,
even those coming from the same sensor, are very different; this supports the unique-
ness of running patterns from subject to subject. It is also noteworthy that for only a
few subjects, major patterns of variation coincide with the location of major peaks,
while, in most cases, the FPCs are relatively flat in the areas where major features are
observed. For example, the peak in the heel sensor does not show up in either the first
or the second FPC, suggesting much of the variability in the sensor is not related to
the magnitude of the largest force but instead lies elsewhere in the sensor recordings.

4.3 Phase Variability Across Sensors

Using the permutation test framework described in Sect. 3.3 with 1000 permuted
datasets, correlations between warping functions within stance across sensors are
significant for all subjects and all sensor pairs; the p-value for eachpairwise comparison
is less than 0.001. These results indicate that the phase variability in-shoe sensors are
more similar within a stance than across stances, perhaps suggesting that the process
underlying phase variation depends on the stance itself.

Test statistics for each pairwise comparison of all subjects are presented in Table 2.
The magnitude of the correlation varies across sensors and, in many cases, the correla-
tion is relatively small. Together with the finding of strong statistical significance, the
low observed correlations suggest that although some phase variability in sensors is
similar due to processes underlying the stance, a large proportion of phase variability
is dissimilar across sensors in the same stance. Stated differently, although the warping

Table 1 Comparison of variability: amplitude variability (×105) before and after registration

Heel Arch Ball Toe

Before After Before After Before After Before After

Subject 1 38.50 20.70 183.84 49.39 519.77 78.77 48.43 9.01

Subject 2 196.76 28.76 24.44 5.09 45.62 9.22 51.95 19.80

Subject 3 340.98 39.93 30.94 3.48 57.22 4.83 9.09 2.65
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Table 2 Test statistic of pairwise comparison: for each subject, the upper diagonal elements are the mean
correlation within stance across sensors

Subject 1 Subject 2 Subject 3

Arch Ball Toe Arch Ball Toe Arch Ball Toe

Heel 0.617 0.240 0.094 0.268 0.264 0.411 0.378 0.280 0.238

Arch 0.315 0.125 0.262 0.258 0.337 0.300

Ball 0.501 0.239 0.276

functions obtained through the registration process are similar for different sensors in
the same stance, substantial dissimilarities in warping functions remain.

Recall that Subject 1 is amid-foot striker and the other subjects are heel strikers. The
pairwise correlation values in Table 2 suggest different correlation patterns depending
on the running style. In case of mid-foot striker, the heel sensor shows the biggest
correlation with arch (0.617) while the smallest correlation appears between heel
and toe (0.094). More generally, adjacent sensors have greater strength of correlation
within stance.Heel strikers in contrast have roughlyuniformcorrelation across sensors;
adjacency does not matter. It is possible that the mid-foot striker has a smoother
transition of forces in different parts of the foot within a stance compared to the heel
strikers, which may help explain why mid-foot strikers have been hypothesized to
have lower risks of certain musculoskeletal injuries. Analyses of additional runners
with varying gait patterns will help clarify this hypothesis.

4.4 Association Between In-Shoe Sensors and GRF

In this section, we use the VGRF curves as a response and fit function-on-function
regression models. We choose to focus on a single subject for the bulk of our analysis
and interpretation tomake a detailed case study of a single subject; we focus on Subject
2 to examine a heel strikerwith a discernible impact transient, which is of broad interest
in the analysis of gait and injury. Although we present analyses for Subject 2 in the
main text, we include similar results for the remaining two subjects in Appendix.

We start with an exploration of the relationship between VGRF and in-shoe sensors
to examine the data-generating mechanism. Figure 7 shows the correlation surface for
VGRF and in-shoe sensor curves for Subject 2. These data do not contain a specific
pattern, like a clear off diagonal band or an obvious peak along the diagonal (which
might suggest a lagged or concurrent model). Keeping that in mind, we proceed with
general function-on-function regression models.

We conduct a cross-validation study of models relating the VGRF to sensor predic-
tors. We compare the predictive accuracy of function-on-function regression models
using the heel, arch, ball and toe sensors in isolation, and thesemodels using all sensors.
We randomly select 20% of the data as a test set, fit five function-on-function regres-
sion models, predict VGRFs for the test set, and compute mean integrated squared
errors; this process is repeated 100 times, and the results for Subject 2 are shown in
Fig. 8.
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Fig. 8 Cross-validation study: Box plots of mean integrated squared errors of function-on-function regres-
sion models. Each box plot is created based on 100 simulations

The cross-validation study suggests that the heel sensor is most important in isolation
but that no single sensor performs as well as using all sensors. As a result, we choose
to fit a function-on-function regression model specified below:

VGRFi (t) = β0(t) +
4∑

s=1

∫ 1

0
ysi (u) βs(u, t) du + εi (t). (3)

Figure 9 below shows estimated coefficient surfaces of the function-on-function
regression model with all four in-shoe sensors for Subject 2. The coefficient surfaces
are interpreted by integrating the product of the predictor and surface at a time t for
the VGRF(t). For example, fixing t = 0.1, which is roughly the location of the initial
peak, the heel sensor coefficient β1(u, t) suggests that the contrast between sensor
values in the middle and edges of the u domain drives the fitted value for the VGRF.
In particular, stances with high starting and ending values and low middle values from
heel sensor may have higher initial peaks in the VGRF.

Fitted values and residuals from this function-on-function regression model are
presented in Fig. 10. The fitted values are similar to the observed VGRF measure-
ments (shown in the second row and fifth column in Fig. 3); the function-on-function
regression model captures the major features of observed curves, including the over-

Fig. 9 Function-on-function regression coefficient estimates: Heat map of function-on-function regression
coefficient estimates (×104) with all four sensors as predictors. VGRF is measured over t (y-axis) and
in-shoe sensors are measured over u (x-axis). Color gradation represents the magnitude of coefficient
estimates
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Fig. 10 Model fitting of function-on-function regression: Fitted values (Left) and residuals (Right) of
function-on-function regression for Subject 2

all shape and impact transient. This suggests that in-shoe sensor data may be indeed
useful for predicting important features or the whole of VGRF curve. However, the
residuals indicate that variability in the VGRF is not wholly captured by the function-
on-function regression model, especially near the impact transient.

Results for Subjects 1 and 3 also indicate that the heel sensor is the best predictor
in isolation but that a model with all sensors has the best performance (Fig. 12 in
Appendix) but that the estimated coefficients are distinct across subjects, implying a
unique relationship between in-shoe sensors and VGRF curves for each subject (Fig.
13 in Appendix). Heel strikers (Subjects 2 and 3) may have more similar coefficients
compared to the mid-foot striker (Subject 1). Exploring this in more detail will require
a larger study population composed of both heel and mid-foot strikers, and the use of a
function-on-function regression model that allows coefficients to vary across subjects.

5 Discussion

In this project, we explored in-shoe sensor data observed from three healthy subjects
obtained during an experiment evaluating gait.We examined both phase and amplitude
variabilities in the observed data and illustrated the importance of aligning the observed
curves via curve registration. Because the observed phase variability is not expected
in stances of healthy individuals, the processing of data using registration methods
is an important step in obtaining reliable data from in-shoe sensors; the results of
registration also shed light on the properties of the in-shoe sensors and may help to
refine the development of this new technology.

In our analyses, we examined the utility of curve registration by comparing the
amplitude variability before and after curve registration, which identified a reduction
in amplitude variability after curve registration. We further investigated the similarity
in estimated warping functions to understand the sources of phase variability across
sensors within stance. Our permutation test results indicate that within each stance,
time shifts are related across sensors, but that much of the phase variability across
stances is dissimilar within the same sensor. This correlation may support the devel-
opment of a hierarchical approach to understand the shared- and sensor-specific phase
variation within a stance.
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Fig. 12 Cross-validation study: Box plots of mean integrated squared errors of function-on-function regres-
sion models for Subject 1 (Left) and Subject 3 (Right). Each box plot is created based on 100 simulations

For examining the association between VGRF and in-shoe sensors, we explored
modeling approaches including concurrent models and function-on-function regres-
sion models; for poor performance, we omitted the results from concurrent models.
The correlation surfaces for VGRF and in-shoe sensor curves did not show a specific
pattern, suggesting to fit general function-on-function regression models instead of
lagged or concurrent models. The cross-validation study further verified that concur-
rent models performed uniformly worse than function-on-function regression models.

We used function-on-function regression to evaluate in-shoe sensor data as sur-
rogate of VGRF measurements. Our results provide some initial evidence for a
relationship between key features of in-shoe sensors and VGRF curves: according
to our results, there is some signal in the in-shoe sensors but subject-to-subject vari-
ations in performance and regression coefficients are high, and additional work is
needed to provide insights into modeling this variation. It may also be the case that
in-shoe sensors become a useful complement to, but not replacement for, in-lab mea-
surements.

Although we have focused on healthy subjects, it is also of interest to use in-shoe
data to diagnose pathologies. Both phase and amplitude variabilities can be an evi-
dence of pathological conditions such as movement disorders (Parkinson’s disease
and Huntington’s disease; Hausdorff et al. [10]), age effects [22], and psychologi-
cal disorders (major depressive disorder and bipolar disorder; Hausdorff et al. [11]).
Including individuals with pathological disorders and investigating their time shifts
will emphasize the clinical importance of curve registration and enhance the quality
of gait analysis after preprocessing.

Acknowledgements This work was supported in part by NSF CMMI Award #1538447. The last author’s
research was supported by the Award #R01HL123407 from the National Heart, Lung, and Blood Institute,
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Appendix

In Sect. 4.4, we apply functional analysis methods to examine the association between
VGRF measurement and in-shoe sensor curves for Subject 2; here, we present the
results of functional regression models for Subjects 1 and 3.
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Fig. 14 Model fitting of function-on-function regression: Fitted values (Top) and residuals (Bottom) of
function-on-function regression for Subjects 1 and 3

Analogous to Fig. 7, Fig. 11 shows the correlations between VGRF and in-shoe
sensor curves for Subjects 1 and 3. Similar to Subject 2, these two subjects show
neither a clear off-diagonal band nor an obvious peak along the diagonal.

The results in Fig. 12 of cross-validation study for Subjects 2 and 3 are similar to
those in Fig. 8 from the main manuscript. For both Subjects 1 and 3, the heel seems
most useful, but the model with all four predictors performs the best.

Figures 13 and 14 are analogous to Figs. 9, and 10 in the main manuscript,
respectively. Rows in Fig. 13 show the estimated coefficients of function-on-function
regression models with all four in-shoe sensors as predictors for Subjects 2 and 3. The
estimated coefficients are distinctively different across subjects, implying the unique
relationship between VGRF and in-shoe sensors for each subject.
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